


SQL Server 2022
Administration Inside Out

Randolph West
William Assaf

Elizabeth Noble
Meagan Longoria

Joey D’Antoni
Louis Davidson

With contributions from:
William Carter

Josh Smith
Melody Zacharias



SQL Server 2022 Administration Inside Out Published with the
authorization of Microsoft Corporation by: Pearson Education,
Inc.

Copyright © 2023 by Pearson Education.

All rights reserved. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please
visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability
assumed for damages resulting from the use of the information
contained herein.

ISBN-13: 978-0-13-789988-3
ISBN-10: 0-13-789988-2

Library of Congress Control Number: 2023930547

ScoutAutomatedPrintCode

Trademarks
Microsoft and the trademarks listed at http://www.microsoft.com on
the “Trademarks” webpage are trademarks of the Microsoft group of
companies. All other marks are property of their respective owners.

http://www.pearson.com/permissions
http://www.microsoft.com/


Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an "as is" basis. The author, the publisher,
and Microsoft Corporation shall have neither liability nor
responsibility to any person or entity with respect to any loss or
damages arising from the information contained in this book or from
the use of the programs accompanying it.

Special Sales
For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom
cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800)
382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief: Brett Bartow
Executive Editor: Loretta Yates
Associate Editor: Charvi Arora
Development Editor: Kate Shoup
Technical Reviewers: William Carter, Louis Davidson, Meagan Longoria,
Elizabeth Noble, Josh Smith
Managing Editor: Sandra Schroeder
Senior Project Editor: Tracey Croom
Copy Editor: Rebecca Rider
Indexer: Rachel Kuhn
Proofreaders: Audrey Doyle, James Fraleigh
Editorial Assistant: Cindy Teeters
Cover Designer: Twist Creative, Seattle
Compositor: Jeff Lytle, Happenstance Type-O-Rama

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com


Graphics: Jeff Wilson, Happenstance Type-O-Rama



Pearson’s Commitment to Diversity,
Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the
diversity of all learners. We embrace the many dimensions of
diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious
or political beliefs.

Education is a powerful force for equity and change in our world. It
has the potential to deliver opportunities that improve lives and
enable economic mobility. As we work with authors to create content
for every product and service, we acknowledge our responsibility to
demonstrate inclusivity and incorporate diverse scholarship so that
everyone can achieve their potential through learning. As the world’s
leading learning company, we have a duty to help drive change and
live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

Everyone has an equitable and lifelong opportunity to succeed
through learning.

Our educational products and services are inclusive and
represent the rich diversity of learners.

Our educational content accurately reflects the histories and
experiences of the learners we serve.

Our educational content prompts deeper discussions with
learners and motivates them to expand their own learning (and
worldview).



While we work hard to present unbiased content, we want to hear
from you about any concerns or needs with this Pearson product so
that we can investigate and address them.

Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html


Dedications
To Marinus (as always), to the friends we’ve lost along the way, and

to the friends we make by saying “yes” to new opportunities.
—Randolph West

The previous book in this series was published in March 2020, at the
advent of a historic disruption: social, political, economic, and

educational. I dedicate this book to all those who have been made
unsafe and further marginalized by the COVID-19 pandemic.

—William Assaf

To Mind, Danny, Eve, Mom, and Dad, for your encouragement and
support.

—Elizabeth Noble

I dedicate this book to my dad, who passed away in 2022. He was
always supportive of my educational and professional goals.

—Meagan Longoria

I would like to thank my other authors and my family for helping this
work go so smoothly.

—Joey D’Antoni

To all my friends at CBN who provided me with training, inspiration,
practice, and until recently, servers to test code on for so many

years.
—Louis Davidson



To all those who need someone to believe in them. Know that there
are two, Me and You, because as Henry Ford said, “Whether you

think you can or you can’t, you’re right!”
—Melody Zacharias

In memory of Ruby Jean Carter. You were the embodiment of love,
patience, and strength.

—William Carter

For data professionals everywhere always looking to learn and grow.
—Josh Smith



Contents at a glance

Foreword
Introduction

Part I: Introduction
Chapter 1 Get started with SQL Server tools
Chapter 2 Introduction to database server components
Chapter 3 Design and implement an on-premises
database infrastructure

Part II: Deployment
Chapter 4 Install and configure SQL Server instances
and features
Chapter 5 Install and configure SQL Server on Linux
Chapter 6 Provision and configure SQL Server
databases
Chapter 7 Understand table features

Part III: SQL Server management
Chapter 8 Maintain and monitor SQL Server
Chapter 9 Automate SQL Server administration
Chapter 10 Develop, deploy, and manage data recovery



Chapter 11 Implement high availability and disaster
recovery

Part IV: Security
Chapter 12 Administer instance and database security
and permissions
Chapter 13 Protect data through classification,
encryption, and auditing

Part V: Performance
Chapter 14 Performance tune SQL Server
Chapter 15 Understand and design indexes

Part VI: Cloud
Chapter 16 Design and implement hybrid and Azure
database infrastructure
Chapter 17 Provision Azure SQL Database
Chapter 18 Provision Azure SQL Managed Instance
Chapter 19 Migrate to SQL Server solutions in Azure

Index



Table of Contents

About the Authors
Acknowledgments

Foreword

Introduction
Who this book is for
How this book is organized
Conventions

Text conventions
Book features

Errata, updates, and book support

Part I: Introduction

Chapter 1 Get started with SQL Server tools
SQL Server setup

Install SQL Server with the Installation
Center
Plan before an upgrade or installation
Install or upgrade SQL Server

Tools and services installed with the Database
Engine

Machine Learning Services
Data Quality Services



Command line interface
SQL Server Configuration Manager

Performance and reliability monitoring tools
Database Engine Tuning Advisor
Extended Events
Management Data Warehouse

SQL Server Reporting Services (SSRS)
Installation
Report Server Configuration Manager

SQL Server Management Studio (SSMS)
Releases and versions
Install SQL Server Management Studio
Upgrade SQL Server Management Studio
Features of SQL Server Management
Studio
Additional tools in SQL Server Management
Studio
Error logs
Activity Monitor
SQL Server Agent

Azure Data Studio
User interface
Highlighted features in Azure Data Studio
Notebooks in Azure Data Studio

SQL Server Data Tools
SQL Server Integration Services

SQL Server on Azure Arc–enabled servers
Microsoft Purview
Discontinued and deprecated features

Chapter 2 Introduction to database server
components

Memory
Understand the working set



Cache data in the buffer pool
Cached plans in the procedure cache
Lock pages in memory
Editions and memory limits

Central processing unit
Simultaneous multithreading
Non-uniform memory access
Disable power saving everywhere

Data storage
Types of storage
Configure the storage layer

Connect to SQL Server over the network
Protocols and ports
Added complexity with Virtual Local Area
Networks

High-availability concepts
Why redundancy matters
Disaster recovery
Clustering
The versatility of log shipping
Always On availability groups

Secure SQL Server
Integrated Authentication and Active
Directory
Azure Active Directory
Kerberos for Azure SQL Managed Instance

Understand virtualization and containers
Going virtual
Provision resources for virtual consumers
When processors are no longer processors
The network is virtual, too

Chapter 3 Design and implement an on-premises
database infrastructure



Introduction to SQL Server database architecture
Data files and filegroups

Group data pages with extents
Contents and types of data pages
Verify data pages by using a checksum

Record changes in the transaction log
Flush data to the storage subsystem with
checkpoints
Inside the transaction log file
The Minimum Recovery LSN
Types of database checkpoints
Restart with recovery
MinLSN and the active log
A faster recovery with accelerated database
recovery

Partition tables
Compress data

Table and index compression
Backup compression

Manage the temporary database
Storage options for tempdb
Recommended number of files

Configuration settings
Manage system usage with Resource
Governor
Configure the operating system page file
Take advantage of logical processors with
parallelism
SQL Server memory settings
Allocate CPU cores with an affinity mask
File system configuration

Part II: Deployment



Chapter 4 Install and configure SQL Server instances
and features

What to do before installing SQL Server
Decide on volume usage
Important SQL Server volume settings
SQL Server editions

Install a new instance
Plan for multiple SQL Server instances
Install SQL Server on Windows
Install common features
Log SQL Server Setup
Automate SQL Server Setup with
configuration files

SQL Server on Azure virtual machines
Post-installation server configuration

Post-installation checklist
Post-installation configuration of other features

SSISDB initial configuration and setup
SQL Server Reporting Services initial
configuration and setup
SQL Server Analysis Services initial
configuration and setup
Azure Synapse Link for SQL Server

Container orchestration with Kubernetes
Kubernetes support for SQL Server
Deploy SQL Server in containers
Get started with SQL Server on Kubernetes
Deploy SQL Server on Kubernetes
Review cluster health

Chapter 5 Install and configure SQL Server on Linux
What is Linux?

Differences between Windows and Linux



Linux distributions supported by SQL
Server

Considerations for installing SQL Server on Linux
Configure OS settings

Install SQL Server on Linux
Installation requirements
Download and install packages

Configure SQL Server on Linux
Use mssql-conf to set up and configure
SQL Server

Caveats of SQL Server on Linux
Missing SQL Server features on Linux

Chapter 6 Provision and configure SQL Server
databases

Add databases to a SQL Server instance
Create a database
Move existing databases
Upgrade database compatibility levels
Other considerations for migrating
databases
Database-scoped configurations
Database properties and options

Move and remove databases
Move user and system databases
Move databases within instances
Single-user mode

Chapter 7 Understand table features
Review table structures

General-purpose data types
Specialized data types
Data type precedence
Constraints
Sequence objects



User-defined data types and user-defined
types
Sparse columns
Computed columns

Special table types
System-versioned temporal tables
Memory-optimized tables
Graph tables

Store large binary objects
Understand FILESTREAM
FileTable

Table partitions
Horizontally partitioned tables and indexes
Vertical partitions

Capture modifications to data
Use change tracking
Use change data capture
Query change tracking and change data
capture
Compare change tracking, change data
capture, and temporal tables

Benefits of PolyBase for external data sources and
external tables

Unified data platform features
Install and configure PolyBase
More PolyBase examples, architectures
including S3 and URL queries
PolyBase examples with a generic ODBC
driver
Azure bulk operations examples

Part III: SQL Server management

Chapter 8 Maintain and monitor SQL Server



Detect, prevent, and respond to database
corruption

Set the database’s page verify option
Repair database data file corruption
Recover from database transaction log file
corruption
Database corruption in Azure SQL
Database

Maintain indexes and statistics
Change the fill factor when beneficial
Monitor index fragmentation
Maintain indexes

Manage database file sizes
Understand and find autogrowth events
Shrink database files

Monitor activity with DMOs
Observe sessions and requests
Understand wait types and wait statistics

Monitor with the SQL Assessment API
Use Extended Events

View Extended Events data
Use Extended Events to capture deadlocks
Use Extended Events to detect autogrowth
events
Use Extended Events to detect page splits
Secure Extended Events

Capture performance metrics with DMOs and data
collectors

Query performance metrics with DMVs
Capture performance metrics with
Performance Monitor
Monitor key performance metrics
Monitor key performance metrics in Linux
Monitor key performance metrics in Azure
portal



Protect important workloads with Resource
Governor

Configure the Resource Governor classifier
function
Configure Resource Governor resource
pools and workload groups
Monitor resource pools and workload
groups

Understand the SQL Server servicing model
Updated servicing model
Plan for the product support life cycle

Chapter 9 Automate SQL Server administration
Foundations of SQL Server automated
administration

Database Mail
SQL Server Agent

Maintain SQL Server
Basic care and feeding of SQL Server

Use SQL Server maintenance plans
Cover databases with the maintenance plan
Maintenance plan tasks
Maintenance plan report options
Build maintenance plans using the
Maintenance Plan designer in SSMS
Back up availability groups using a
secondary replica

Strategies for administering multiple SQL Servers
Master/Target servers for SQL Agent jobs
SQL Server Agent event forwarding
Policy-based management

Use PowerShell to automate SQL Server
administration

PowerShell basics
Install the PowerShell SQLServer module



Use PowerShell with SQL Server
Use PowerShell with availability groups

Chapter 10 Develop, deploy, and manage data
recovery

Prepare for data recovery
A disaster recovery scenario
Define acceptable data loss: RPO
Define acceptable downtime: RTO
Establish and use a runbook

Ransomware attacks
Understand different types of backups

An overview of SQL Server recovery
models
Full backups
Differential backups
The backup chain
File and filegroup backups
Additional backup options and
considerations

Understand backup devices
Back up to disk
Back up to URL
Backup and media sets
Back up to S3-compatible storage

Create and verify backups
Create backups
Verify backups

Restore a database
Restore a database using a full backup
Restore a database with differential and log
backups
Restore a database to a point in time
Restore a database piecemeal

Define a recovery strategy



A sample recovery strategy for our DR
scenario
Recovery strategies for hybrid and cloud
environments

Chapter 11 Implement high availability and disaster
recovery

Overview of high-availability and disaster-recovery
technologies

Compare HA and DR technologies
Understand log shipping
Understand the capabilities of failover
clustering
Understand the capabilities of availability
groups

Configure failover cluster instances
Understand FCI quorum
Configure a SQL Server FCI
Patch a failover cluster

Design availability groups solutions
Compare different cluster types
Create WSFC for use with availability
groups
Understand the database mirroring
endpoint
Recent improvements to availability groups
Choose the correct secondary replica
availability mode
Understand the impact of secondary
replicas on performance
Understand failovers in availability groups
Seeding options when adding replicas
Additional actions after creating an
availability group
Read secondary database copies



Query Store on replicas
Implement a hybrid availability group
topology

Understand the Azure SQL Managed Instance link
feature

Failover and failback to Azure SQL
Managed Instance with database portability
Provision and scale the Azure SQL
Managed Instance link feature
Failover and failback tooling and
automation

Configure availability groups in SQL Server on
Linux

Understand the differences between
Windows and Linux clustering
Set up an availability group in SQL Server
on Linux

Administer availability groups
Analyze DMVs for availability groups
Analyze wait types for availability groups
Analyze Extended Events for availability
groups
Alerts for availability groups

Part IV: Security

Chapter 12 Administer instance and database security
and permissions

Understand authentication modes
Windows Authentication
SQL Server Authentication
Azure Active Directory
Advanced types of server principals
Authentication to SQL Server on Linux
Contained database authentication



Grasp security principals
The basics of privileges
Configure login server principals
Database principals

Understand permissions and authorization
Permissions for controlling Data Definition
Language and Data Manipulation Language
How permissions accumulate
Understand authorization

Perform common security administration tasks
Orphaned SIDs
Create login with known SID
Migrate SQL Server logins and permissions
Dedicated administrator connection

Chapter 13 Protect data through classification,
encryption, and auditing

Privacy in the modern era
General Data Protection Regulation
(GDPR)

Microsoft Purview overview
Introduction to security principles and protocols

Secure your environment with defense in
depth
The difference between hashing and
encryption
A primer on protocols and transmitting data
Digital certificates

Protect the data platform
Secure the network with TLS
Data protection from the OS
The encryption hierarchy in detail
Use EKM modules with SQL Server
Master keys in the encryption hierarchy
Encrypt data with TDE



Protect sensitive columns with Always
Encrypted
Row-level security
Dynamic data masking
Protect Azure SQL Database with Microsoft
Defender for SQL

Ledger overview
Immutable storage
Ledger verification
Ledger considerations and limitations
Data storage requirements
Types of ledger tables

Audit with SQL Server and Azure SQL Database
SQL Server Audit
Auditing with Azure SQL

Secure Azure infrastructure as a service
Network security groups
User-defined routes and IP forwarding
Additional Azure networking security
features

Part V: Performance

Chapter 14 Performance tune SQL Server
Understand isolation levels and concurrency

Understand how concurrent sessions
become blocked
Change the isolation level
Understand and handle common
concurrency scenarios
Understand row version-based concurrency
Understand on-disk versus memory-
optimized concurrency

Understand durability settings for performance
Delayed durability database options



How SQL Server executes a query
Understand the query execution process
View execution plans
Understand execution plans
Understand parameterization and
parameter sniffing
Explore the procedure cache
Understand parallelism

Use advanced engine features to tune queries
Internal improvements in SQL Server 2022
Recent improvements to tempdb
Leverage the Query Store feature
Query Store hints
Automatic plan correction
Intelligent query processing

Chapter 15 Understand and design indexes
Design clustered indexes

Choose a proper rowstore clustered index
key
The case against intentionally designing
heaps
Understand the
OPTIMIZE_FOR_SEQUENTIAL_KEY
feature

Design rowstore nonclustered indexes
Understand nonclustered index design
Create filtered nonclustered indexes
Understand the missing indexes feature
Understand and provide index usage

Understand columnstore indexes
Design columnstore indexes
Understand batch mode
Understand the deltastore of columnstore
indexes



Demonstrate the power of columnstore
indexes

Understand indexes in memory-optimized tables
Understand hash indexes for memory-
optimized tables
Understand nonclustered indexes for
memory-optimized tables

Understand index statistics
Automatically create and update statistics
Manually create statistics for on-disk tables
Understand statistics on memory-optimized
tables
Understand statistics on external tables

Understand other types of indexes
Understand full-text indexes
Understand spatial indexes
Understand XML indexes

Part VI: Cloud

Chapter 16 Design and implement hybrid and Azure
database infrastructure

Cloud computing and Microsoft Azure
Database as a service
Managing Azure with the Azure portal and
PowerShell 7
Azure governance
Cloud-first
Resource scalability
Networking in Azure

Cloud models and SQL Server
Infrastructure as a service
Platform as a service
Hybrid cloud with Azure

Cloud security



Other data services in Azure
Azure Synapse Analytics
Non-relational Azure data offerings
Third-party fully managed data platforms

Chapter 17 Provision Azure SQL Database
Provision an Azure SQL Database logical server

Create an Azure SQL Database server
using the Azure portal
Create a server using PowerShell
Establish a connection to your server
Delete a server

Provision a database in Azure SQL Database
Create a database using the Azure portal
Create a database using PowerShell
Create a database using Azure CLI
Create a database using T-SQL
Scale up or down
Provision a named replica for a Hyperscale
database

Provision an elastic pool
Manage database space
Security in Azure SQL Database

Security features shared with SQL Server
2022
Server- and database-level firewall
Integrate with virtual networks
Azure Private Link for Azure SQL Database
Control access using Azure AD
Use Azure role-based access control
Audit database activity
Microsoft Defender for SQL

Prepare Azure SQL Database for disaster recovery
Understand default disaster recovery
features



Manually export database contents
Enable zone-redundant configuration
Configure geo-replication
Set up failover groups
Use Azure Backup for long-term backup
retention

Chapter 18 Provision Azure SQL Managed Instance
What is Azure SQL Managed Instance?

Differences between SQL Server and Azure
SQL Managed Instance

Create a SQL managed instance
Select a service tier and service objective
Use the Azure portal to provision a SQL
managed instance
Use PowerShell to provision a SQL
managed instance

Delete a SQL managed instance
Establish a connection to a SQL managed instance

Create the endpoints via the Azure portal
Create a VPN gateway via PowerShell
Network requirements for SQL managed
instances

Migrate data to Azure SQL Managed Instance
Link feature for Azure SQL Managed
Instance
Azure Data Migration Service
Migrate with backup and restore
Managed instance pools

Azure SQL Managed Instance administration
features

High availability
Replication
Scale up or down
Monitor SQL managed instances



Link feature for Azure SQL Managed
Instance

Azure SQL Managed Instance security features
Azure Active Directory

Azure SQL Managed Instance data protection
features

Prevent data exfiltration
Isolation
Auditing
Data encryption
Row-level security
Dynamic data masking

Chapter 19 Migrate to SQL Server solutions in Azure
Migration services options

Microsoft Assessment Planning toolkit
Total Cost of Ownership calculator
Database Experimentation Assistant
Azure Data Migration Assistant
Azure Database Migration Service
SQL Server Migration Assistant
Data Access Migration Toolkit

Resolve common migration failures using Database
Migration Service

Large object columns with data larger than
32 KB
Final notes for migration
Open source PowerShell migration with
dbatools

Migrate with Azure Data Factory
Azure integration runtime
Self-hosted integration runtime
Self-hosted IR servers and nodes
Azure-SSIS integration runtime



Best practices for security and resilience during
migration

Network security
Cloud requirements for application
resilience

Index



About the Authors

Randolph West (they/them) lives in Calgary, Alberta, Canada, with a
husband and two dogs. After being a consultant for millennia,
Randolph now writes full-time at Microsoft Docs, still yelling at the
screen. Occasional voice actor. Occasional blogger at bornsql.ca.
Not to be trusted around chocolate. Yes, this is a short bio.



William Assaf (he/him) is a senior content developer for Microsoft,
writing Learn content for SQL Server, Azure SQL Database, Azure
Synapse Analytics, and more. A long-time Baton Rougean, William
and his adventure buddy Christine moved to Seattle during the
pandemic. They love their new home but are still New Orleans
Saints fans. Before joining Microsoft, William was a Data Platform
MVP, SQL Saturday and SQL community organizer, and a long-time
DBA and data consultant. As a consultant for 13 years, he worked
with clients across the U.S. on SQL Server and Azure SQL platform
optimization, management, data integration, disaster recovery, and
high availability, and led a multi-city team of senior consulting SQL
DBAs. William has written for Microsoft SQL certification exams
since 2011 and was the team lead author of the 2017 and 2019
editions of SQL Server Administration Inside Out by Microsoft Press.



Elizabeth Noble is a Director of Database Development, the author
of Pro T-SQL 2019, and a Microsoft Data Platform MVP. Ze has
spoken at several SQL Saturdays across the United States and at
PASS Summit. Most of zir topics focus on DevOps, collaboration
with other IT departments, and automated database deployments.
Zir passion is to help others improve the quality and speed of
deploying database changes through automation. When ze is not
trying to automate all things, ze can be found spending time with zir
dogs, playing disc golf, or paddleboarding (if the weather is right).



Meagan Longoria is a Microsoft Data Platform MVP living in
Denver, Colorado. She is an experienced consultant and trainer who
has worked with the Microsoft Data Platform for over 15 years. She
enjoys creating solutions in Azure, SQL Server, and Power BI that
make data useful for decision makers and make the lives of
information workers a little bit easier. Meagan enjoys sharing her
knowledge with the technical community by speaking at
conferences, blogging (DataSavvy.me), and sharing tips and helpful
links on Twitter (@mmarie).



Joseph D’Antoni is a Principal Consultant at Denny Cherry &
Associates Consulting. He is recognized as a VMWare vExpert and
a Microsoft Data Platform MVP, and has over 20 years of experience
working in both Fortune 500 and smaller firms. He has worked
extensively on database platforms and cloud technologies and has
specific expertise in performance tuning, infrastructure, and disaster
recovery.



Louis Davidson has over 20 years as a data architect and technical
writer. Recently he joined Redgate as the editor of the Simple Talk
website after 20-plus years working for a nonprofit, where he was the
lead SQL Server architect and programmer. Louis has been the
principal author on many technical books about SQL Server,
including six editions of a book on database design. Louis’ blog,
located at simple-talk.com for many years, provides information
about technical issues and upcoming presentations, including
previewing the thought process that goes into writing presentations,
books, and blogs.

Melody Zacharias is a Microsoft MVP for the data platform and
Microsoft Regional Director. She has co-written several books on
data, including SQL Server 2019 Administration Inside Out by
Microsoft Press. She speaks at conferences on data, technology,
women in Tech, professional development, and more. You can find
her on her blog at sqlmelody.com, on Twitter @SQLMelody, and as
/melodyzacharias on LinkedIn.

http://simple-talk.com/
http://sqlmelody.com/


William F. Carter (he/him) is a technologist and Microsoft SQL
Server consultant with 25 years of experience dating back to SQL
Server 6.5. Bill is passionate about helping individuals and
organizations use technology and data to drive change and bring
about successful outcomes. When not managing data and
architecting solutions, he loves to model and 3D print props for the
local high school’s theater department. You can connect with him on
LinkedIn at www.linkedin.com/in/william-f-carter/.

http://www.linkedin.com/in/william-f-carter/


Josh Smith has held several titles over the last 20 years, including
Stage Manager, Art Director, Teacher, Case Manager, and—for the
last 10 years—Database Administrator. They currently infrequently
write at accitentionaldba.com and post more often but with much
less focus on Twitter as @sqldeployhelmet. They are team pineapple
on pizza, have a completely reasonable fear of spiders, and are the
current president of the Inland Northwest Data Professionals
Association in Spokane, Washington.

http://accitentionaldba.com/


Acknowledgments

Randolph West
It may take a village to raise a child, but it takes a small country to
write a book. Five books in, and I still don’t understand how it comes
together at the end. Thank you to Loretta and Charvi at Microsoft
Press, and to William Assaf, for long and thoughtful conversations.
My co-authors and technical editors, obviously. To Marinus, thank
you for begrudgingly letting me do another book even though I still
don’t sit at the desk you bought me. Thanks to Trixie for the slower
walks, our new puppy Tilley for keeping me on my toes, and Apple
for making a quiet laptop.

A lot of us wouldn’t be here without the tireless efforts of medical
professionals during the global pandemic. Join me in thanking your
healthcare friends when you get a chance. Thank your teachers.
Thank your first responders. Thank the people who keep the lights
on and the water flowing. Hug a queer person.

I would like to extend a special acknowledgment to Melody
Zacharias, who has been a major contributor to the Microsoft Data
Platform community for a number of years. Melody selflessly
introduced me to the community in Canada and even included me as
one of the authors in her Let Them Finish book. She has helped so
many people in our community and also deserves a special mention
in the production of this book.

William Assaf



Becoming an empty nester has allowed me to spend more time than
ever with my best friend and adventure buddy. Thanks, Christine, for
tolerating endless nights of writing, rewriting, and editing this book
instead of hiking, exploring, or snuggling.

I’d like to thank Loretta Yates, our intrepid and tactful editor
throughout our Microsoft Press experience. I’d also like to thank the
mentors and managers and colleagues in my professional career
heretofore, who affected my trajectory, and to whom I remain grateful
for technical and nontechnical lessons learned. I’d like to thank
Connie Murla, David Alexander, Darren Schumaker, Ashagre
Bishaw, Charles Sanders, Todd Howard, Chris Kimmel, Richard
Caronna, Mike Huguet, Mike Carter, Jason Prell, James Sampson,
Jason Roth, and finally Patrick Leblanc, a fellow Baton Rouge native,
whose friendship has repeatedly challenged me and furthered my
career. I’d also like to thank my father, a rare stamped mechanical
and electrical engineer (and a HAM), and both my older brothers
who are brilliant software engineers, for letting me play games on
their 386s all summer long. I’d finally like to thank the STEM
educators, nonprofit volunteers, and organizers in my hometown of
Baton Rouge, Louisiana. They are doing the hard work of developing
our future coworkers and coauthors among my home state’s
perpetually underfunded, underappreciated, and underestimated
public school youth.

Elizabeth Noble
I would like to thank Randolph West and William Assaf for inviting
me to collaborate on this book. I also want to thank the entire team
that made this book possible. You all were kind, supportive, and
encouraging. I’d also like to thank my many mentors (mostly
unofficial) including Phil Pledger, Mike Lawell, Ed Watson, and Rob
Volk. You each have provided encouragement and guidance over
the years. Rie Merritt, thank you for welcoming me to my second
user group meeting. If it weren’t for you, I would not have come back
to my third meeting or have met this wonderful community. I want to



thank my family for giving me the time and space to work on this
book. To Mom, thank you for being my cheerleader. To Dad, thank
you for nudging me every so often to see how the book was going.
Also, in memory of Khari, my forever companion, thank you for
making sure that I remembered to take care of myself.

Meagan Longoria
First, I’d like to thank the co-authors and co-editors who collaborated
on this book. It was a pleasure to work with them and learn from
them. I would also like to thank my coworkers at Denny Cherry &
Associates Consulting for their technical advice and support. I also
want to acknowledge my laptop bag for safely carrying my computer
through many states and a couple of countries while I worked on this
book. I think everyone should consider a nice laptop bag. Finally, I’d
like to thank my dog Izzy for being understanding when dinner was a
little late due to writing or editing, and for reminding me to take
breaks to go on walks. Life is better with a dog.

Joey D’Antoni
I would like to thank my wife Kelly, and my coworkers at Denny
Cherry & Associates Consulting, for helping me and giving me time
to work on this project. Also, thanks to the team at Microsoft for
answering dumb questions when I had them.

Louis Davidson
I would like to acknowledge the rest of the team on this book for their
wonderful work that makes tech editing the chapters I worked on
some of the easiest technical book work I have ever participated in.



Melody Zacharias
I really want to thank William Assaf and Randolph West for their
push/encouragement to do another book with them. It is always a
pleasure to work with some of the best professionals in the industry.
There have been a few who are special in the community who made
this possible: Argenis Fernandez who introduced me to #SQLFamily,
John Morehouse who mentored and encouraged me to do my first
presentation, Dave Kawula for encouraging me to write my first
book, and Rie Merritt for keeping me going and inspired to inspire
others year after year. I would not be doing this if not for your
encouragement. Thank you all for each experience that changed my
life for the better. No family is perfect, but my #SQLFamily is an
amazingly supportive and inclusive family, and I am so proud to be a
member. Thank you to Marsha Pierce and Rob Ludeman, for
bringing me into the Pure Family, and for letting me share my crazy
obsession with SQL Server with Pure. Most of all, thank you to my
family for understanding when I go back into my office after dinner
and on weekends to work on this book and all the presentations and
other community work I do. Thank you for accepting me as I am.

William Carter
I want to thank my children, Kadence and Kayla, for inspiring me to
continue to grow and embrace change. I’d like to thank my mom and
dad and my personal village of family, friends, and teachers who
instilled in me the passion and perseverance to pursue my dreams.
Finally, I want to thank Joel Whittington, Fred Seals, and William
Assaf, three of my mentors who I respect and admire a great deal.
Each of you directly impacted my professional and personal growth,
sharing your wisdom and humor along the way.

Josh Smith



I’d like to thank those in the SQL Server community who have taken
the time to provide me with opportunities to learn and grow in my
career, including the authors of this book for taking a chance and
inviting me to join the other technical editors. I am eternally grateful
for the patience of my family throughout the last 10 years, but over
this past summer in particular, as we’ve attempted to do ALL THE
THINGS at the same time. Sara, hopefully by the time I am showing
you this in print, we’ve finished unpacking.



Foreword
The world of data is getting more complicated. As threats and
technologies evolve, businesses may fall behind.

As a consultant before joining Microsoft, I walked into an industrial
plant where the sysadmins did not know what SQL Server backup
was. To them, a file system backup or virtual machine (VM) storage
snapshot was enough. (It is not enough.) I worked with a small
regional bank that thought a 3 TB+ SQL Server transaction log file
was just the cost of doing business. I helped a healthcare broker that
was being actively probed via SQL injection attacks. In each case,
the seeds of business-crippling disaster were planted, waiting to
sprout.

As a reader of this book, you likely know the basics of what is
necessary to secure your data platform from disaster, whether it is
malicious actors or natural disaster. (If not, we have you covered
there too.)

As the latest team brought together to write this Microsoft SQL
Server Administration Inside Out series book, we have always tried
to present to you a complete, practical, field-tested picture of
administration tasks, including wisdom and tips collected from our
own experience as administrators and architects. Just as the authors
of this book have brought a collective effort to guide and advise, it
has never been more important to organize collective effort across
the entire IT department.

In terms of the basics of cybersecurity, Microsoft’s own Digital
Defense Report makes it clear. The primary protections companies
can take are to “patch systems regularly and keep software up to
date, and to use MFA” (Microsoft Digital Defense Report, October
2021, https://go.microsoft.com/fwlink/p/?LinkID=2173952).

https://go.microsoft.com/fwlink/p/?LinkID=2173952


Patching is just the basics. What else?

Led by Microsoft’s Zero Trust model, enable the use of
integrated, multifactor, passwordless authentication wherever
possible, including to our SQL Server instances and Azure SQL
platforms.

Use multifactor authentication (MFA) everywhere possible,
including for access to your Active Directory–authenticated
resources on desktops, mobile devices, and collaboration
applications.

Immediately replicate database backups to offsite,
heterogenous systems to protect them from ransomware
encryption attacks.

Separate day-to-day accounts from administrative accounts to
ensure that commonly entered user credentials don’t have all
the keys to the kingdom.

Protect from software supply-chain attacks by using secure
admin workstations (SAWs) and privileged administrative
workstations (PAWs). (See “Protecting high-risk environments
with secure admin workstations,” May 2018, at
https://www.microsoft.com/insidetrack/protecting-high-risk-
environments-with-secure-admin-workstations.)

Secure network connections by default, and in this new era of
widespread fully remote work, consider the security of VPN and
virtualized networking software and hardware. Microsoft’s Zero
Trust model has led the company to move away internally from
a ubiquitous, always-connected global VPN to mitigate the
impact of a single compromised device.

“Antimalware and detection and response technologies should
be deployed across the ecosystem […] from virtual machines
and containers to machine learning (ML) algorithms,
databases, and applications.” (Microsoft Digital Defense
Report, October 2021.)

https://www.microsoft.com/insidetrack/protecting-high-risk-environments-with-secure-admin-workstations


As data platform professionals, we need modern tools and skills to
secure data from attack and recover data in case attacks are
successful. Disaster recovery checklists around the world are not
only being triggered by annual “100-year” flood events, but by
cybercrime and malicious activity, such as ransomware attacks. The
landscape of digital security affects the entire enterprise, and your
database platform is the crown jewel for attackers.

When it comes to your Microsoft data platform, in the cloud, on-
premises, hybrid, as a service, or otherwise, we want to provide you
with the tools to administer with confidence. Chapter 10, “Develop,
deploy, and manage data recovery,” dives deep into a disaster
recovery scenario and the runbook every SQL Server administrator
should have ready. New features of Microsoft SQL Server 2022
make it easier than ever to span a durable, secured data
infrastructure across hybrid environments, including a new feature to
sync bidirectionally between on-premises SQL Server instances and
Azure SQL managed instances (see Chapter 18, “Provision Azure
SQL Managed Instance”). Not only is what used to be a one-way
ticket into Azure SQL Managed Instance now reversible, but failover
and failback from SQL Server 2022 to Azure SQL Managed Instance
is now possible.

In addition to covering all the new features coming with SQL Server
2022, this book contains more than four years of new features that
roll out to Azure SQL platforms outside of the year-numbered SQL
Server product. We’ll be sure to point out the new capabilities of
Azure SQL Managed Instance, for example, that have arrived in the
November 2022 feature wave in conjunction with SQL Server 2022.
Many new features simplify our job of securing the data estate, such
as the introduction of Windows Authentication to Azure SQL
Managed Instance using Azure Active Directory and Kerberos, an
important feature that arrived in August 2022.

Like Azure’s infrastructure approach, the authors of this book aim to
make it easier for businesses to protect their technology platform
and avoid preventable disasters. We want to make it less likely that
you will leave your data estate vulnerable due to ignorance. We draw



from 100+ years of combined experience across this author team,
which consists of Microsoft employees, Data Platform MVPs,
consultants, entrepreneurs, leaders, on-call DBAs, data architects,
and day-to-day SQL Server administrators. We want to inform you of
low-hanging fruit to be picked, and of practical, easy wins. We hope
this approach gives you—and your data—more confidence and
reassurance.

—William Assaf, Database Docs, Microsoft



Introduction

Who this book is for
Data platform administration was never the narrow niche skillset that
employers or recruiters might have suspected. The job description
continues to broaden, with support for new operating systems and
platforms: cloud-based and serverless in addition to on-premises,
hybrid environments, even on-premises to cloud failover. We wrote
this book for data professionals who are unafraid to add these new
skillsets and features to their utility belt, and to give courage and
confidence to those who are still hesitant. Data platform
administrators should read this book to become more prepared and
so they are aware of features when talking to their colleagues in
application development, data analytics, and system administration.

How this book is organized
This book gives you a comprehensive look at the various features
you will use. It is structured in a logical approach to all aspects of
Microsoft SQL Server and Azure SQL administration, whether you
are architecting, implementing, developing, or supporting
development.

Part I: Introduction
Chapter 1, “Get started with SQL Server tools,” gives you a tour of
modern tooling for SQL Server administrators, from the installation
media and all tooling, including SQL Server Management Studio and



Azure Data Studio, to performance and reliability monitoring tools,
tools for writing PowerShell, and more.

Chapter 2, “Introduction to database server components,” introduces
the working vocabulary and concepts of database administration,
starting with hardware-level topics such as memory, processors,
storage, and networking. We then move into high availability basics
(much more on those later), security, and hardware and OS
virtualization.

Chapter 3, “Design and implement an on-premises database
infrastructure,” introduces the architecture and configuration of SQL
Server, including deep dives into transaction log virtual log files
(VLFs), data files, in-memory online transaction processing (OLTP),
accelerated database recovery (ADR), and other new features of
SQL Server 2022. We also spend time with tempdb and its optimal
configuration and server-level configuration options. Finally, we
introduce you to Kubernetes.

Part II: Deployment
Chapter 4, “Install and configure SQL Server instances and
features,” reviews installation of SQL Server for Windows platforms
when SQL Server Setup is needed to install SQL Server. We discuss
volume settings and layout for a SQL Server instance, editions,
Smart Setup and unattended setup configuration, and setup logging.
Look here also for post-installation checklists and configuration
guidance, and for configuration and guidance for other features
including SSIS, SSAS, and SSRS, as well as PolyBase.

Chapter 5, “Install and configure SQL Server on Linux,” reviews
configuration of SQL Server on Linux instances, including feature
differences between Windows and Linux. We’ll provide guidance and
caveats on Linux distributions, Linux-specific monitoring and storage
considerations, and tooling for setup and administration.

Chapter 6, “Provision and configure SQL Server databases,” reviews
creation and configuration of SQL Server databases on any SQL



Server platform, including strategies for migrating and moving
databases. Database options and properties are discussed, as are
database collations.

Chapter 7, “Understand table features,” completes the drill down
from instances to databases to tables, covering table design, data
types, keys, and constraints. The use of IDENTITY and sequences,
computed columns and other column properties, as well as special
table types, are discussed. We review special types of tables
including temporal tables, introduce memory-optimized tables (more
on these in Chapter 14), and graph tables. We review FILESTREAM
and FileTable for storing blobs, table partitioning for storing and
switching large amounts of data, and strategies for tracking data
changes. Finally, we dive deep into PolyBase, the powerful SQL
Server feature for virtualization of third-party or non-relational data
sources.

Part III: SQL Server management
Chapter 8, “Maintain and monitor SQL Server,” covers the care and
feeding of SQL Server instances on both Windows and Linux,
including monitoring for database corruption, monitoring index
activity and fragmentation, and maintaining and monitoring indexes
and index statistics. We dive into Extended Events, the superior
alternative to traces, and cover Resource Governor, used for
insulating your critical workloads. We review monitoring and data
collection strategies based in Windows, Linux, and Azure, as well as
the SQL Assessment API. Finally, we discuss the current Microsoft
servicing model for SQL Server.

Chapter 9, “Automate SQL Server administration,” introduces
automating activities for SQL Server, including maintenance plans,
but also custom solutions involving PowerShell, including the latest
features available in PowerShell. We also review built-in tools and
features needed to automate tasks to your SQL Server, including
database mail, SQL Server Agent jobs, proxies, SQL Server Agent
alerts, event forwarding, and Policy-Based Management.



Chapter 10, “Develop, deploy, and manage data recovery,” covers
the fundamentals of SQL Server database backups in preparation for
disaster recovery scenarios, including a backup and recovery
strategy appropriate for your environment. We use a memorable
narrative to explain various factors, features, and failures in a
fictional disaster recovery scenario. We discuss how backups and
restores in a hybrid environment, Azure SQL Database recovery,
and geo-replication are important assets for the modern DBA.

Chapter 11, “Implement high availability and disaster recovery,” goes
beyond backups and into strategies for disaster recovery, from log
shipping to availability groups, as well as monitoring and
troubleshooting availability groups. We compare HA and DR
strategies and dive into proper architecture for maximizing SQL
Server uptime.

Part IV: Security
Chapter 12, “Administer instance and database security and
permissions,” begins with the basics of authentication: the
configuration, management, and troubleshooting of logins and users.
Then, we dive into permissions, including how to grant and revoke
server and database-level permissions and role membership, with a
focus on moving security from server to server.

Chapter 13, “Protect data through classification, encryption, and
auditing,” takes the security responsibilities of the SQL Server DBA
past the basics of authentication and permissions and discusses
advanced topics including the various features and techniques for
encryption, such as transparent data encryption (TDE) and Always
Encrypted, as well as protecting data in motion with TLS. We cover
modern strategies for row-level security and protection of sensitive
data. We discuss security measures to be taken for SQL Server
instances and Azure SQL databases as well as the SQL Server
Audit feature.

Part V: Performance



Chapter 14: “Performance tune SQL Server,” dives deep into
isolation and concurrency options, including read committed
snapshot isolation (RCSI), and why your developers shouldn’t be
using NOLOCK. We discuss various strategies for memory-
optimized data, including delayed durability. We review graphical
execution plans analysis, the important Query Store feature, and
automatic plan correction. We also review important performance-
related dynamic management objects (DMOs) and new SQL Server
2022 performance features in the intelligent query processing family,
including degree of parallelism (DOP) feedback, cardinality
estimation (CE) feedback, and enhancements to memory grant
feedback.

Chapter 15: “Understand and design indexes,” tackles performance
from the angle of indexes, including their creation, monitoring, and
tuning. We review all the various forms of indexes at our disposal,
past rowstore clustered and nonclustered indexes and into other
types of indexes including columnstore and memory-optimized
hashes. We review statistics and statistics options, including how
they work on a variety of index and table types, such as the new
XML compression feature in SQL Server 2022.

Part VI: Cloud
Chapter 16, “Design and implement hybrid and Azure database
infrastructure,” discusses the infrastructure options for Azure-based
SQL Server databases, including platform as a service (PaaS)
options of Azure SQL Database, Azure SQL Managed Instance, and
infrastructure as a service (IaaS) options of Azure VMs running SQL
Server instances. We discuss the resource scalability options for
Azure SQL Database, which have dramatically expanded recently.
We discuss management and governance in the Azure SQL data
platform using the Azure portal and PowerShell.

Chapter 17, “Provision Azure SQL Database,” covers the cloud-first
database service without peer in the marketplace. This platform
powers many web-based applications and services, scalable from a



basic $5/month plan, to 128-vCore powerhouses, to hyperscale
hardware. You will learn about the Azure SQL Database platform,
compatibility, security, and availability. You will also learn how to
create servers, databases, and elastic pools, and how to perform
important management tasks for your databases.

Chapter 18, “Provision Azure SQL Managed Instance,” details the
powerful Azure SQL Managed Instance offering, including
provisioning, managing, and scaling the instance. We review the
service objectives, limitations and advantages, and security features
of the managed instance.

Chapter 19, “Migrate to SQL Server solutions in Azure,” covers
various strategies for Azure migrations, including the Microsoft tools
provided for testing and migrating SQL Server workloads. We review
differences and limitations for on-premises feature migration
strategies to Azure platforms, including how to migrate SSIS
packages to the integration runtime. Finally, we review post-
migration steps, best practices for security and resiliency during
migration, and the common causes for migration failures.

Conventions
This book uses special text and design conventions to make it easier
for you to find the information you need.

Text conventions
The following conventions are used in this book:

Boldface type is used to indicate text that you should type
where directed.

For your convenience, this book uses abbreviated menu
commands. For example, “Select Tools > Track Changes >
Highlight Changes” means you should select the Tools menu,



point to Track Changes, and then select the Highlight Changes
command.

Elements with the Code typeface are meant to be entered on a
command line or inside a dialog box. For example, “type cd
\Windows to change to the Windows subdirectory” means that
you should be entering cd \Windows with your keyboard or text
input device.

The first letters of the names of menus, dialog boxes, dialog
box elements, and commands are capitalized—for example,
the Save As dialog box.

Italicized type indicates new terms.

Book features
In addition to the text conventions, this book contains sidebars to
provide additional context, tips, or suggestions.

Inside OUT
These are the book’s signature tips. In these tips, you’ll get
the straight scoop on what’s going on with the software or
service—inside information about why a feature works the
way it does. You’ll also find field-tested advice and guidance
as well as details that give you the edge on deploying and
managing like a pro.

Reader Aids
Reader aids are exactly that—Notes, Tips, and Cautions
provide additional information on completing a task or specific
items to watch out for.



Errata, updates, and book support
We’ve made every effort to ensure the accuracy of this book and its
companion content. You can access updates to this book in the form
of a list of submitted errata and their related corrections at:

www.MicrosoftPressStore.com/SQLServer2022InsideOut/downloads

If you discover an error that is not already listed, please submit it to
us at the same page.

For additional book support and information, please visit:

MicrosoftPressStore.com/Support

Please note that product support for Microsoft software and
hardware is not offered through the preceding addresses. For help
with Microsoft software or hardware, go to support.microsoft.com.

http://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads
http://microsoftpressstore.com/Support
http://support.microsoft.com/


Part I

Introduction



Chapter 1

Get started with SQL Server
tools

SQL Server setup
Tools and services installed with the Database Engine
Performance and reliability monitoring tools
SQL Server Reporting Services (SSRS)
SQL Server Management Studio (SSMS)
Azure Data Studio
SQL Server Data Tools
SQL Server on Azure Arc–enabled servers
Microsoft Purview
Discontinued and deprecated features

This chapter provides information about where to find many of the
Microsoft tools used to manage and work with the Microsoft SQL Server
platform. It also walks you through the installation, configuration, and
basic utility of each tool, including an overview of the two main tools for
working with SQL Server: SQL Server Management Studio (SSMS) and
Azure Data Studio (ADS).

Note



Although SQL Server 2022 also runs on Linux, some of the
administration tools that work with the Windows Server version do
not work with the Linux version. We note the specific cases for which
platform-specific tools are available.

SQL Server setup
You can install SQL Server 2022 natively on Windows and Linux. All SQL
Server containers rely on SQL Server on Linux images from Ubuntu or
Red Hat. These images can be deployed to desktop machines using
Docker or Kubernetes whether you are running Windows, macOS, or
Linux for development purposes. For production support, you can only
deploy those containers to a Linux machine running Docker or Kubernetes
with full support.

The following section covers installing SQL Server natively on Microsoft
Windows.

 For more details on how to set up and configure SQL Server, read
Chapter 4, “Install and configure SQL Server instances and
features.”

Install SQL Server with the Installation Center
The SQL Server Installation Center is the application you use to install
and add features to an instance of SQL Server. If you are installing SQL
Server manually, this is the application that opens when you run the
Setup.exe file for SQL Server. As illustrated in Figure 1-1, it can also
serve as a launch point for downloading the installation packages for Data
Migration Assistant (which replaced the SQL Server Upgrade Advisor),
SQL Server Management Tools, SQL Server Reporting Services, and
SQL Server Data Tools.



Figure 1-1 Installation Center components.

It might seem a bit confusing, but on the Installation tab, the installers for
SQL Server Reporting Services, SQL Server Management Tools, and
SQL Server Data Tools are merely links that redirect to a download
location on a Microsoft website for each of these components’ installation
files. You also can download and install the tools independently without
using Installation Center. These links are available as a sort of backward-
compatibility option. Prior to SQL Server 2017, these installers were
included in the Installation Center.

Note
As a best practice, you should install SQL Server Management
Studio and Data Tools only on client machines, not the production
instance. This ensures a smaller installation and administration
footprint on the server. It is therefore uncommon to use the
Installation Center on client machines.

Inside OUT
How do you install SQL Server 2022 on Linux?



SQL Server is fully supported on Red Hat Enterprise Linux
(RHEL), SUSE Linux Enterprise Server (SLES), and Ubuntu, using
the built-in package manager for each distribution.

The main SQL Server installation feature is the Database Engine.
You can install the command line tools, SQL Server Agent, Full-
Text Search, and SQL Server Integration Services (SSIS) as
optional packages.

For more information about installing SQL Server on Linux, see
Chapter 5, “Install and configure SQL Server on Linux,” or visit
Microsoft Docs at https://learn.microsoft.com/sql/linux/sql-server-
linux-setup.

Plan before an upgrade or installation
When you first start the SQL Server Installation Center, it opens with the
Planning tab preselected. This tab has two tools that you might find useful
before installing or upgrading a SQL Server instance to SQL Server 2022:
Configuration Checker and Data Migration Assistant.

Configuration Checker
The Configuration Checker tool checks for conditions that might prevent a
successful SQL Server 2022 installation. When you choose
Configuration Checker, a wizard runs on the local server. There is no
option to choose an alternate computer location. The wizard returns an
HTML report listing all installation requirement rules (facets) and the
results of each test. Most of these rules are universal to all Windows
configurations, and you can easily remedy most of them.

AclPermissionsFacet. Checks if the SQL Server registry keys are
consistent. Certain registry keys are required to install SQL Server
and some registry key values must match. If these matching values
are not present and consistent, SQL Server will not be successfully
installed or upgraded.

FacetDomainControllerCheck. We recommend that you do not
install SQL Server 2022 on a domain controller, for two reasons.

https://learn.microsoft.com/sql/linux/sql-server-linux-setup


First, it can compromise the security of both Active Directory and the
SQL Server instance. Second, it can cause resource contention
between the two services. Microsoft also recommends against
installing SQL Server on a domain controller. For more information,
see https://learn.microsoft.com/sql/sql-server/install/security-
considerations-for-a-sql-server-installation#Install_DC.

IsDotNetInstalled. This rule determines if the Microsoft .NET
Framework 4.7.2 or newer is installed on the system.

MediaPathLength. The path for the location from which SQL Server
2022 is being installed must be fewer than 260 characters in length.

RebootRequiredCheck. No installation reboots can be pending.

SetupCompatibilityCheck. No subsequent incompatible versions of
SQL Server can be installed on the computer.

ThreadHasAdminPrivilegeCheck. The account running SQL
Server must have administrative rights on the computer.

WmiServiceStateCheck. This checks whether the Windows
Management Instrumentation (WMI) service is started and running
on the computer.

Note
The minimum version of Windows Server for SQL Server 2022 is
Windows Server 2016.

Data Migration Assistant (DMA)
There is a link on the Planning tab in the Installation Center to download
the Data Migration Assistant installation package.

Note
The Data Migration Assistant is now continually updated by
Microsoft. You can download the most recent version from
https://www.microsoft.com/download/details.aspx?id=53595.

https://learn.microsoft.com/sql/sql-server/install/security-considerations-for-a-sql-server-installation#Install_DC
https://www.microsoft.com/download/details.aspx?id=53595


This application is really two tools in one, which you can use to create two
project types:

An assessment of upgrade or migration readiness

A migration of data between versions of SQL Server and/or Azure
SQL Database

For the assessment project type, the source server can be either a SQL
Server instance or Amazon Web Services (AWS) Relational Database
Service (RDS) for SQL Server instance. For the migration project type, the
source server must be a SQL Server instance. The following target server
choices accommodate both assessment and migration:

Azure SQL Database

Azure SQL Managed Instance

SQL Server on Azure Virtual Machines

SQL Server

Assessment
The assessment project type of the Data Migration Assistant detects
database-specific compatibility issues between origin and destination SQL
Server versions during pre-upgrade discovery. It is common between
versions for there to be deprecation and feature differences, and this is
especially true if the target server type is an Azure SQL Database. If not
addressed, some of these items might affect database functionality during
or after upgrade. The tool neatly outlines all findings and makes
recommendations.

The assessment project type examines the following aspects of upgrading
or migrating SQL Server:

Feature parity. The assessment project provides a comprehensive
set of recommendations, alternative approaches available in Azure,
and mitigating steps.

Compatibility issues. The assessment project provides partially
supported or unsupported features that would block migration.



Compatibility issues are categorized as breaking changes, behavior
changes, or deprecated features.

Note
You can find a list of T-SQL differences between SQL Server and
Azure SQL Database at https://learn.microsoft.com/azure/sql-
database/sql-database-transact-sql-information.

Migration
Using the migration project type of the Data Migration Assistant, an
administrator can move a database’s schema, data, and other objects
such as database roles from a source server to a destination server. The
wizard associated with this feature works by providing a user with the
option to select a source and destination server and to choose one or
more databases for migration.

The Migration Scope setting allows you to choose what to migrate. You
can choose between the database schema only, the data only, or both the
schema and data.

Move to SQL Server
For SQL Server migrations, there must be a backup location that is
accessible by both the source and the destination server—generally a
UNC path, such as \\server01\folder\subfolder\. If this is a network
location, the service running the source SQL Server instance must have
write permissions for the directory. In addition, the service account running
the destination SQL Server instance must have read permissions to the
same network location.

If this poses a challenge, there is a Copy The Database Backups To A
Different Location That The Target Server Can Read And Restore
From check box that you can select to break up the process into steps
and utilize the (hopefully) elevated permissions of the administrator
running the wizard.

When you select this option, the security privileges of the account of the
individual running the Data Migration Assistant are used to perform the

https://learn.microsoft.com/azure/sql-database/sql-database-transact-sql-information


copy of the file from the backup location to the restore location. The user
must have access to each of these locations with the needed read and
write permissions for this step to succeed.

The wizard also gives the user the option to specify the location to restore
the data files and log files on the destination server.

As a final step, the wizard presents the user with a list of logins for
migration consideration, with conflicting login names or logins that already
exist identified. Where possible, the wizard attempts to map orphaned
logins and align login security IDs (SIDs).

Move to Azure SQL Database
The Data Migration Assistant tool performs an Azure SQL Database
migration in two phases:

1. Schema. First, it generates a script of the database schema (you can
save this script before deployment for archival and testing purposes),
which you deploy to the destination database.

2. Data. If you choose to move the data, another step is added after the
creation of the tables on the destination database. This gives you the
opportunity to verify that all tables exist in the destination database
after the initial schema migration. Data migration uses Bulk Copy
Program (BCP) under the hood. Any trusted constraints from the
source database should be trusted in the database after data is
copied, but it is a best practice to validate that constraints did not
become untrusted in the copy process.

The schema migration is required; the data migration is optional.

Install or upgrade SQL Server
When it comes to administration and development tools used to work with
SQL Server, the other important tab in the Installation Center is the
Installation tab. This tab contains a link to install the Database Engine (the
SQL Server service). A few of the utilities discussed in this chapter are
installed as options only during a full Database Engine installation and
cannot be downloaded and installed independently.



During an in-place upgrade of an existing SQL Server instance, you can
neither add nor remove components. The process will simply upgrade
existing components.

Caution
An in-place upgrade to SQL Server 2022 will uninstall SQL Server
Reporting Services if it is installed.

If you have multiple versions installed on the same server (instance
stacking), several shared components will be upgraded automatically,
including SQL Server Browser and SQL Server VSS Writer.

 You can read more about multiple instances and versions of SQL
Server at https://learn.microsoft.com/sql/sql-server/install/work-
with-multiple-versions-and-instances-of-sql-server.

Tools and services installed with the
Database Engine
SQL Server 2022 provides optional tools and services that you can select
during the installation process. We look at some of them in the sections
that follow. (Note that this list is not exhaustive and that some of these
components might not be available in SQL Server 2022 on Linux.)

Inside OUT
What feature improvements should you know about outside
of the Database Engine?

SQL Server Analysis Service (SSAS) 2022 introduces Horizontal
Fusion, a query execution plan optimization that reduces the
number of queries required against a data source to return results.
It also supports parallel execution plans for DirectQuery, which
takes advantage of the scalability that large data sources may be
able to provide. You can find more improvements by visiting

https://learn.microsoft.com/sql/sql-server/install/work-with-multiple-versions-and-instances-of-sql-server


https://learn.microsoft.com/analysis-services/what-s-new-in-sql-
server-analysis-services.

Additionally, SQL Server Reporting Services (SSRS) 2022
includes an updated web portal, security enhancements, browser
performance improvements, accessibility fixes, and enhanced
Windows Narrator support. For more information about
improvements and deprecated features, see
https://learn.microsoft.com/sql/reporting-services/what-s-new-in-
sql-server-reporting-services-ssrs.

 For more in-depth information about configuring features, see
Chapter 4.

Machine Learning Services
Starting with SQL Server 2016, Microsoft has created an extensibility
framework for executing external code on SQL Server. Machine Learning
Services now support the following external languages:

R (introduced in SQL Server 2016)

Python (introduced in SQL Server 2017)

Java (introduced in SQL Server 2019)

Machine Learning Services is available for both Windows and Linux.

A Database Engine instance is required for Machine Learning Services in
SQL Server 2022. Support for the previously available standalone
Machine Learning Server, which supported R and Python, ended on July
1, 2022.

Beginning with SQL Server 2022, runtimes for R, Python, and Java are no
longer installed with SQL Setup. You must run the SQL Setup Wizard to
install Machine Learning Services and Language Extensions. Then you
must install your desired R, Python, or Java runtime(s) and packages.

Note

https://learn.microsoft.com/analysis-services/what-s-new-in-sql-server-analysis-services
https://learn.microsoft.com/sql/reporting-services/what-s-new-in-sql-server-reporting-services-ssrs


After installing your desired runtime(s), be sure to enable the
external scripting feature using the following TSQL command:
Click here to view code image

EXEC sp_configure  'external scripts enabled';

Then restart the SQL Server service.

 There are separate Microsoft Docs articles for installing Machine
Learning Services on SQL Server 2019 and prior and for SQL
Server 2022. For installation on SQL Server 2022 on Windows,
see https://learn.microsoft.com/sql/machine-learning/install/sql-
machine-learning-services-windows-install-sql-2022. For
information about installing Machine Learning Services for SQL
Server 2022 on Linux, see https://learn.microsoft.com/sql/linux/sql-
server-linux-setup-machine-learning-sql-2022.

Data Quality Services
Standardizing, cleaning, and enhancing data is critical to validity when
performing analytical research. SQL Server Data Quality Services allows
for both homegrown knowledgebase datasets and cloud-based reference
data services by third-party providers.

Data Quality Services is a product that facilitates important data quality
tasks, including the following:

Knowledgebase-driven correction

De-duplication

Additional metadata enrichment

Data Quality Services has two parts: the Data Quality Server and the Data
Quality Client. Data Quality Server has a dependency on the Database
Engine. Apart from that, you can install these two components on the
same computer or on different computers. The tools are completely
independent, and you can install them in any order. (In other words, it
doesn’t matter which one you install first.)

https://learn.microsoft.com/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022
https://learn.microsoft.com/sql/linux/sql-server-linux-setup-machine-learning-sql-2022


To be functional, the Data Quality Client tool needs only to be able to
connect to a Data Quality Server. In addition, there are certain operations
the Data Quality Client can perform that require an installation of Microsoft
Excel local to the client installation. It is commonplace to have the Data
Quality Client on one or more workstations, but not the computer running
SQL Server.

Data Quality Server
To install Data Quality Server, you must first select its check box during
SQL Server 2022 setup. This copies an installer file to a drive you specify.
After you install SQL Server 2022, you can install Data Quality Server. To
start, in your Windows Start menu, expand Microsoft SQL Server 2022,
and then select SQL Server 2022 Data Quality Server Installer. This
runs the DQSInstaller.exe file. The installation asks you to type and
confirm a database master key password. It then creates three new
databases into the SQL Server instance chosen as the host server:
DQS_Main, DQS_Projects, and DQS_Staging_Data.

Data Quality Client
The Data Quality Client is an application used in conjunction with master
data management (not to be confused with Master Data Services), data
warehousing, or just plain data cleaning. It is typically used by a data
steward who has a deep understanding of the business and domain
knowledge about the data itself. You can use this tool to create
knowledgebases surrounding data element rules, conversions, and
mappings to help manage and align data elements. You can also use it to
create and run data quality projects and to perform administrative tasks.

To sign into a Data Quality Server using the Data Quality Client tool, you
must be either a member of the sysadmin server role or of one of these
three roles in the DQS_Main database:

dqs_administrator

dqs_kb_editor

dqs_kb_operator



Command line interface
You can use and administer SQL Server from a command line. This is
especially relevant with Linux as a supported operating system (OS) for
SQL Server. Utilities such as SQLCMD and BCP run on Windows, Linux,
and macOS, with some minor differences.

SQLCMD
The SQLCMD utility is used to run T-SQL statements, stored procedures,
or script files, using an ODBC connection to a SQL Server instance.

Inside OUT
What does ODBC mean?

ODBC stands for Open Database Connectivity, which is an open-
standard application programming interface (API) for
communicating from any supported OS to any supported
Database Engine.

Although some people might consider the SQLCMD utility “old school”
because it has been around since SQL Server 2005, it is still very popular
because of its utility in automating scripts. You can invoke SQLCMD from
any of the following:

Windows, Linux, or macOS command line

Windows, Linux, or macOS script files

SQL Server Agent job step

Using PowerShell with the command line

Note
Both SQL Server Management Studio and Azure Data Studio can
invoke SQLCMD mode, which makes possible some very useful



functionality. Although it’s technically part of SQLCMD, it is not
strictly a command line tool. You can read more about it at
https://learn.microsoft.com/sql/relational-databases/scripting/edit-
sqlcmd-scripts-with-query-editor.

Inside OUT
What is mssql-cli?

mssql-cli is an interactive command line utility for querying SQL
Server that runs on Windows, macOS, and Linux. It offers
significant improvements over SQLCMD; however, it is not
installed with SQL Server by default.

Features of mssql-cli include:

IntelliSense for T-SQL

Syntax highlighting

Multi-line editing

Support for configuration files

mssql-cli is installed on Windows and macOS using pip (a
package manager for Python packages). On Linux, the Microsoft
repository must be registered before using a package manager to
install mssql-cli.

You can read more about mssql-cli at
https://learn.microsoft.com/sql/tools/mssql-cli.

BCP
If you think SQLCMD is “old school,” hold on to your hat. The Bulk Copy
Program (BCP), introduced in 1992 with the release of the very first
edition of SQL Server, makes SQLCMD look like the new kid on the block.

https://learn.microsoft.com/sql/relational-databases/scripting/edit-sqlcmd-scripts-with-query-editor
https://learn.microsoft.com/sql/tools/mssql-cli


It is quite a testament that to this day, BCP is still a practical way to work
with SQL Server to insert or export large quantities of data. It uses
minimal logging techniques and bulk data flows to its advantage.

If this reminds you of SQL Server Integration Services, be aware that BCP
is not nearly as powerful. You use BCP to move data between data files
(text, comma-delimited, or other formats) and a SQL Server table.

You can use BCP to import files into SQL Server tables or to export data
from SQL Server tables into data files. BCP requires the use of a format
file to designate the structure of the receiving table and the data types
allowed in each column. Fortunately, BCP helps you to create this format
file quite easily.

There are a few things about BCP that you must understand and do for
the tool to perform optimally:

Put the database into the simple or bulk-logged recovery model.

Drop any non-clustered indexes on the destination table.

Insert sorted data and use the sorted_data option if a clustered
index exists.

Run BCP on the same machine as the SQL Server.

Place source and destination files on separate physical drives.

Manually grow SQL data files in advance if growth is expected.

Take advantage of instant file initialization.

Use sp_tableoption to set table lock on bulk load (TABLOCK) to
ON.

 For more information, go to https://learn.microsoft.com/sql/tools/bcp-
utility.

Inside OUT
How do you download the most recent command line tools?

https://learn.microsoft.com/sql/tools/bcp-utility


The versions of SQLCMD and BCP installed with SQL Server
2022 on Windows are updated through a separate package called
Line Utilities for SQL Server, available at
https://learn.microsoft.com/sql/tools/sqlcmd-utility.

For features like Always Encrypted and Azure Active Directory
authentication, SQLCMD requires a minimum of version 13.1. It is
entirely possible (and likely) to have more than one version of
SQLCMD installed on a server, so be sure to check that you are
using the correct version by running sqlcmd -?.

Separate installers for Linux and macOS versions of these
command line tools are available and regularly updated.

SQL Server PowerShell Provider
If you love to use a command line or if you have begun to use PowerShell
to help manage and maintain your SQL Servers, Microsoft offers the
PowerShell Provider for SQL Server. It can be installed with Windows
PowerShell and PowerShell 7.

Note
There are two PowerShell modules for SQL Server: SQLPS and
SQLServer. SQLPS is an older module included in SQL Server for
backward compatibility but is no longer updated. You should use the
SqlServer module, which is installed separately via the PowerShell
Gallery and is regularly updated. SqlServer also provides
functionality to run SQLCMD scripts by using the invoke-sqlcmd
cmdlet.

The SQL Server PowerShell Provider uses SQL Server Management
Objects (SMO), which are included when you install the SqlServer
PowerShell module. These objects were designed by Microsoft to provide
for the management of SQL Server programmatically. There are many
ways that developers and administrators can use PowerShell to automate
their work in SQL Server, especially when dealing with multiple server
environments.

https://learn.microsoft.com/sql/tools/sqlcmd-utility


 To learn more about automation in SQL Server using PowerShell,
see Chapter 8, “Maintain and monitor SQL Server.”

SQL Server Configuration Manager
SQL Server Configuration Manager is a tool that uses the Microsoft
Management Console as a shell. To launch SQL Server Configuration
Manager, locate SQL Server 2022 Configuration Manager on the
Windows Start menu under Apps or search for
SQLServerManager16.msc.

Note
SQL Server on Linux has its own set of configuration tools, which
you can read about in Chapter 5.

Administrators use SQL Server Configuration Manager to manage SQL
Server services. These services include the Database Engine, the SQL
Server Agent, SQL Server Integration Services, the PolyBase Engine, and
others. SQL Server Configuration Manager provides a graphical user
interface (GUI) to perform the following tasks associated with SQL
Server–related services:

Start or stop a service

Alter the start mode (manual, automatic, disabled)

Change startup parameters, including trace flags

Create server aliases

Change the service Log On As accounts

Manage client protocols, including TCP/IP default port, keep alive,
and interval settings

Manage FILESTREAM behavior

Inside OUT



Can you manage SQL Server services from Windows Services
Manager?

Although you can perform most of these same tasks using the
default Windows Services Manager (Control Panel >
Administrative Tools > Services), we do not recommend doing so.

Windows Services Manager (services.msc) does not provide all
the various configuration options found in SQL Server
Configuration Manager. More importantly, it omits adjusting
important registry settings that need to be changed, which will
compromise the stability of your SQL Server environment.

You must always change SQL Server services using SQL Server
Configuration Manager. This is especially true for managing SQL
Server service accounts.

Performance and reliability monitoring
tools
The Database Engine Tuning Advisor, Extended Events, and Profiler tools
are installed with the Database Engine and do not require additional
installation steps. This section explores each of these tools in more detail.

Database Engine Tuning Advisor
Among the many administrative tools Microsoft provides to work with SQL
Server is the Database Engine Tuning Advisor. You can start it either from
the Start menu or from within SQL Server Management Studio (SSMS) by
selecting Tools > Database Engine Tuning Advisor. Using this tool, you
can analyze a server-side trace captured by SQL Server Profiler. It
analyzes every statement that passes through the SQL Server and
presents various options for possible performance improvement.

Note
The Database Engine Tuning Advisor is not supported on Azure
SQL Database or Azure SQL Managed Instance.



The suggestions made by the Database Engine Tuning Advisor focus
solely on indexing, statistics, and partitioning strategies. The Database
Engine Tuning Advisor simplifies the implementation of any administrator-
approved changes it suggests. You need to scrutinize these changes to
ensure that they will not negatively affect the instance.

Caution
You should not run the Database Engine Tuning Advisor directly on
a production server because it can leave behind hypothetical
indexes and statistics that can persist without a DBA’s knowledge.
These will require additional resources to maintain. Use the
is_hypothetical column in the sys.indexes system view to find
hypothetical indexes for manual removal.

Extended Events
Technically, the Extended Events GUI (client only) is installed with and is a
built-in part of SSMS, but we discuss it here with the other performance-
specific tools for categorical reasons.

 You can read more about how Extended Events are supported in
Azure SQL Database, with some differences, at
https://learn.microsoft.com/azure/sql-database/sql-database-
xevent-db-diff-from-svr.

SQL Server Extended Events (or XEvents) is an event-handling system
created to replace SQL Server Profiler. Think of it as the “new and
improved” version of Profiler. It is more lightweight, full-featured, and
flexible, all at once. Extended Events offer a way to monitor what’s
happening in SQL Server with much less overhead than an equivalent
trace run through the SQL Profiler. This is because Extended Events are
asynchronous.

You access Extended Events through SSMS by connecting to a SQL
Server instance, navigating to the Management folder, and expanding the
Extended Events node to display Sessions. Right-click Sessions; then,
on the shortcut menu that opens, select New Session Wizard. You can

https://learn.microsoft.com/azure/sql-database/sql-database-xevent-db-diff-from-svr


use this wizard to schedule events to run at server startup or immediately
after the event has been created.

Note
SQL Server Management Studio provides a simple Extended Events
viewer called XEvent Profiler. It is meant to replace the standalone
Profiler tool for monitoring activity in real time on a SQL Server
instance.

Scripting Extended Events sessions via T-SQL can be a much quicker
and more consistent way to create a library of Extended Event sessions
for reuse in multiple environments. This gives you the flexibility to start
and stop them as needed, even as a job in SQL Server Agent.

 For more information on using Extended Events, see Chapter 8.

Scenarios for use
You can use Extended Events in a wide range of scenarios. There are
more than 1,700 events available in SQL Server 2022. Here are some of
the most common uses for Extended Events:

Troubleshooting

Diagnosing slowness

Diagnosing deadlocks

Diagnosing recompiles

Debugging

Login auditing

Baselining

By scripting out an event session and using automation, you have a stock
set of sessions that you can use to troubleshoot depending on the
problem. You can deploy these solutions on any server that needs a
closer examination into performance issues.



You can also use Extended Event trace to provide a baseline from which
you can track code improvements or degradation over time.

Management Data Warehouse
The Management Data Warehouse (MDW), introduced in SQL Server
2008, collects data about the performance of a SQL Server instance and
feeds the information back to an administrator in a Visual Analytic–style
format.

MDW has not seen significant new feature development since it was
released. It has not been broadly adopted and has mostly been
supplanted by Query Store and other third-party monitoring tools.

MDW has its own relational database containing tables that are the
recipient (target) of specific Extended Events collection activities. Upon
installation, MDW provides three reports: Server Active History, Query
Statistics History, and System Disk Usage. You can create additional
reports and add them to the MDW collection. Using this three-report
configuration makes it possible for a database administrator to do basic
performance baselining and to plan for growth. It also allows for proactive
tuning activities.

 For more information on configuring a Management Data
Warehouse, see https://learn.microsoft.com/sql/relational-
databases/data-collection/configure-the-management-data-
warehouse-sql-server-management-studio.

SQL Server Reporting Services (SSRS)
Starting with SQL Server 2017, SQL Server Reporting Services (SSRS) is
a separate download outside the SQL Server installer. You can use SSRS
to create reports on a variety of data sources. It includes a complete set of
tools for creating, managing, scheduling, and delivering reports. The
reports can include charts, maps, data matrixes, and more.

SSRS provides a web portal interface to manage and organize reports
and other items. Internet Information Services (IIS) is not required to use
SSRS.

https://learn.microsoft.com/sql/relational-databases/data-collection/configure-the-management-data-warehouse-sql-server-management-studio


Installation
You must download SSRS separately, either by following the stub on the
main Installation Center screen or by going to
https://learn.microsoft.com/sql/reporting-services/install-windows/install-
reporting-services.

Completing the installation of SSRS results in the following:

Installation of the Report Server Service, which consists of the
following:

Report Server Web Service

Web portal (for viewing and managing reports and report
security)

Report Server Configuration Manager

Configuration of the Report Service and web portal URLs

The establishment of the service accounts needed for SSRS to
operate

 You can read more about configuring SSRS in Chapter 4.

After the installation is complete, using administrative rights, browse to the
following directories to verify that the installation was successful and that
the service is running:

localhost/Reports

localhost/ReportServer

If you are running a named instance of SQL Server, you need to use the
Web Portal URL tab in the Report Server Configuration Manager dialog
box to determine the exact path of both the web service URL and the web
portal URL, as illustrated in Figure 1-2.

https://learn.microsoft.com/sql/reporting-services/install-windows/install-reporting-services


Figure 1-2 Web Portal URL setting in Report Server Configuration
Manager.

Report Server Configuration Manager
The Report Server Configuration Manager simplifies the customization of
the behavior of features and capabilities offered by SSRS. You can use it
to perform the following tasks and more:

Create or select existing Report Server databases.

Define the URLs used to access the Report Server and Report
Manager.

Configure the Report Server service account.

Modify the connection string used by the Report Server.



Set up email distribution capability.

Integrate with a Power BI service.

Inside OUT
How do you configure SSRS?

The Configuration Manager in SSRS comes with no shortage of
customization options. Beyond the defaults, you can alter the
configuration of almost any setting using the GUI, through SSMS,
directly via web.config files, and even in some cases the Windows
Registry. Customizing accounts, IP addresses, ports, or behaviors
can be quite an endeavor, the scope of which is far beyond what
we can cover in this chapter.

You can find more information at
https://learn.microsoft.com/sql/reporting-services/install-
windows/reporting-services-configuration-manager-native-mode.

To configure an SSL certificate to secure your SSRS installation,
see https://learn.microsoft.com/sql/reporting-
services/security/configure-ssl-connections-on-a-native-mode-
report-server.

SQL Server Management Studio (SSMS)
SQL Server Management Studio (SSMS) is the de facto standard SQL
Server database development and management tool. It provides a rich
graphical interface and simplifies the configuration, administration, and
development tasks associated with managing SQL Server and Azure SQL
Database environments. SSMS also contains a robust T-SQL script editor,
and comes stocked with many templates, samples, and script-generating
features.

https://learn.microsoft.com/sql/reporting-services/install-windows/reporting-services-configuration-manager-native-mode
https://learn.microsoft.com/sql/reporting-services/security/configure-ssl-connections-on-a-native-mode-report-server


Inside OUT
Does SSMS support other operating systems?

SSMS is a Windows-only application. It does not work in Linux or
macOS environments. Instead, you can use the free cross-
platform Azure Data Studio to connect to SQL Server, Azure SQL
Database, and Azure Synapse Analytics (formerly Azure SQL
Data Warehouse) from Windows, Linux, and macOS.

For more information about Azure Data Studio, read the section
“Azure Data Studio” later in this chapter.

Releases and versions
Since the release of SQL Server 2016, SSMS has been a freestanding
toolset that you can download and install independent of the Database
Engine.

Install SQL Server Management Studio
As of this writing, the latest major version of SQL Server Management
Studio (SSMS) is 19.x. It can be installed alongside previous major
versions of SSMS, including those bundled with earlier versions of SQL
Server.

Caution
We recommend that you do not install SSMS on a computer running
a production instance of SQL Server. Instead, install SSMS on a
workstation and connect that to the production instance through a
secure connection. Aside from reducing the temptation to use
Remote Desktop to connect to a production instance, it has the
added benefit of limiting the attack surface area.

To install SSMS, first download the latest version of the product here:
http://aka.ms/ssms. After you download the executable file, install it.

http://aka.ms/ssms


There’s not much more to it than that. The installation finishes with a
Setup Completed message. In some cases, you may be prompted to
restart your computer.

At this point, you can start the application by opening your Start menu
and browsing to Microsoft SQL Server Tools 19 > Microsoft SQL
Server Management Studio 19. For ease of access, you might want to
pin the program to your Start menu or copy the icon to your desktop.

Azure Data Studio (ADS) is installed with SSMS by default. If you have
ADS installed on the same computer, you can invoke ADS features, such
as queries or notebooks, from inside SQL Server Management Studio.

 Read about integration between SSMS and ADS in the “Azure
Data Studio” section later in this chapter.

Inside OUT
Can you prevent ADS from being installed with SSMS?

While ADS is installed by default when you install SSMS, there is
currently an option to prevent this installation. To do so, run the
SSMS installer from the command line and use the
DoNotInstallAzureDataStudio option. For example, if you have
navigated to the folder where the SSMS installer is located, you
would use the following command:

Click here to view code image

SSMS-Setup-ENU.exe /Passive DoNotInstallAzureDataStudio=1

Upgrade SQL Server Management Studio
SSMS will notify you if an update is available. You can also manually
check whether one is available. To do so, select Tools > Check For
Updates. The different versions of the SSMS components—the installed
version and the latest available version—will display. If any updates are



available, you can select the Update button to open a webpage from
which you can download and install the latest recommended version.

Now that the tools used to manage SQL Server are completely
independent of the Database Engine, upgrading SSMS is easy. It is also
much safer to upgrade; there is no longer any concern about accidentally
affecting your production environment because you upgraded your SSMS
toolset.

Features of SQL Server Management Studio
The power of SSMS is in the many ways in which you can use it to
interact with one or more SQL Server instances. This section highlights
some useful features.

Object Explorer and Object Explorer Details
Object Explorer is the default SSMS view, providing both a hierarchical
and tabular view of each instance of SQL Server and the child objects
within those instances (including databases, tables, views, stored
procedures, functions, and so on).

Note
Object Explorer uses its own connection to the database server, and
can block certain database-level activities, just like any other SSMS
query.

Object Explorer presents two panes (see Figure 1-3): the Object Explorer
pane (left) and the Object Explorer Details pane (right). The Object
Explorer pane is strictly hierarchical, whereas the Object Explorer Details
pane is both hierarchical and tabular. As such, the latter provides
additional functionality over its companion pane; for example, object
search and the selection and scripting of multiple noncontiguous objects.
To display the Object Explorer Details pane, choose View > Object
Explorer Details or press F7.



Figure 1-3 The Object Explorer view in SQL Server Management
Studio.

Server Registration
The Server Registration feature within SSMS can both save time and
make it easier to manage a complex environment by saving a list of
commonly accessed instances. Registering connections in advance for
future reuse provides the following benefits:

Preservation of connection information

Creation of groups of servers

Aliasing of servers with more meaningful names

Ability to add detailed descriptions to both servers and server groups

Import and export of registered server groups for sharing between
machines or teammates



To access the Server Registration feature within SSMS, select View >
Registered Servers or press Ctrl+Alt+G.

You can use SSMS to register and manage four different types of servers
and services:

Database Engine

Analysis Services

Reporting Services

Integration Services

Note
Server Registration for SQL Server Integration Services is included
only for backward compatibility for versions prior to SQL Server
2012.

Database Engine
When you use the Server Registration feature to work with Database
Engines, two nodes appear: Local Server Groups and Central
Management Servers. Each of these has some very useful features.

Local Server Groups node
The Local Server Groups node allows for the addition of either
freestanding individual server registrations or the creation of server
groups. Think of server groups as folders within the Local Server Groups
node. Each of these folders can contain one or more individual servers.
Figure 1-4 shows one of the many ways in which you can use the Local
Server Groups feature to organize and save frequently used Database
Engine connections.



Figure 1-4 Local Server Groups.

From the Local Server Groups node, you can access the following tools:

Export Registered Server Wizard. To access the Export Registered
Servers Wizard, right-click the Local Server Groups folder node or
any folder or server nested within this node. Then, on the shortcut
menu, select Tasks > Export. From there, you have quite a bit of
freedom. You can choose to export from any level within the tree
structure as well as whether to include usernames and passwords. In
the preceding case, if you want to export only the Development
Servers node and any servers within it, you can do so by choosing
within this wizard where to save the created file and then build out an
XML document with the extension .regsrvr.

Importing Registered Servers. To access the Import Registered
Servers Wizard, right-click the Local Server Groups folder node or
any folder or server nested within this node. Then, on the shortcut



menu, select Tasks > Import. This opens the Import Registered
Servers dialog box, which you can use to select a previously created
.regsrvr file, as demonstrated in Figure 1-5.

Figure 1-5 Importing registered servers.

From here you can choose the folder in which you would like the
imported object or object tree to reside. If you select a folder that
already contains the same structures you are attempting to import, a
message will appear asking you to approve an update/overwrite to
the existing object structure.

Central Management Servers node



As mentioned, the second node available in the Database Engine feature
is Central Management Servers. At first glance, this might appear to be
almost the same thing as the Local Server Groups node. It allows you to
add servers and create folders with descriptive names to which you can
add servers. However, the Centralize Management Servers node includes
some very significant differences.

First, when using this feature, you must choose a SQL Server instance to
play the role of a Central Management Server (CMS). You can alias the
server with a new name, but the server itself must exist. After you have
chosen a server to play this role and have created a CMS, you can create
new server groups or individual server registrations using the same
methods explained in the “Local Server Groups node” section.

Here is where things become interesting. If you right-click any level (a
server, a group, or the CMS itself), you are presented with multiple
options:

New Query

Object Explorer

Evaluate Policies

Import Policies

Anything that is run will be run against each of the servers in the chosen
group’s tree. Running a query on the CMS itself will result in the query
being run on every server hierarchically present in all trees within the
CMS. This is a very handy feature, but of course, with great power comes
great responsibility!

The default behavior of CMS is that multiple server results are merged
into one result set. You can change and customize this behavior by
choosing Tools > Options > Query Results > SQL Server > Multiserver
Results and enabling the Merge Results setting. Other behavior options
available here include Add Login Name and Add Server Name to the
result set from a CMS query.

When you create a CMS on an existing SQL Server, others can access
and use the structure setup, so there is no need to export or import to



keep folders and structures synchronized. This is great for team
collaboration and efficiency.

Filtering objects
In the default Object Explorer view, SSMS lists items within each category
in alphabetical order, starting with the schema name. There are several
main groups, or tree categories, that are common across all versions of
SQL Server. These include the following:

Databases. This provides a full list of databases (including system
databases) on the SQL Server instance. Database snapshots also
appear here.

Security. This contains a diverse list of object types, including logins,
server roles, credentials, cryptographic providers, and audits.

Server Objects. These include backup devices, endpoints, linked
servers, and server-level triggers.

Replication. This provides information about publishers and
subscriptions.

Always On High Availability. This includes Failover Clustering and
Availability Groups.

Management. This category covers diverse features and tools,
including Policy Management, Data Collection, Resource Governor,
Extended Events, Maintenance Plans, Database Mail, DTC
(Distributed Transaction Coordinator), and SQL Server error logs.

SQL Server Agent. Includes jobs, alerts, operators, proxies, and
error logs of its own.

Integration Services Catalogs. This contains the SQL Server
Integration Services package catalog, depending on the SQL Server
version.

By default, SSMS lists all objects alphabetically beneath each tree
category. When working with databases that have a large quantity of
objects, this can become quite aggravating, as the user may be subject to



long list load times and must expend energy scrolling and watching the
screen very closely for the object in question.

Fortunately, SSMS has a filtering feature. You can apply filters to many
object categories, such as user databases, tables, views, stored
procedures, table-valued functions, user-defined functions, and even
database users.

You can independently configure filter settings in either the Object
Explorer pane or the Object Explorer Details pane. The available filters
change based on the type of item selected (databases, tables, stored
procedures, etc.). Table 1-1 lists the available filtering options for tables.

Table 1-1 SQL Server Management Studio filters and options

Filter Options
Name Contains

Equals
Does Not Contain

Schema Contains
Equals
Does Not Contain

Owner Equals
Does Not Equal

Durability Type Equals
Does Not Equal

Is Memory Optimized Equals
Creation Date Equals

Less Than
Less Than or Equal
More Than
More Than or Equal
Between
Not Between



After you have selected a filter, the suffix (filtered) appears in the Object
Explorer or Object Explorer Details tree above your filtered list.

To clear an applied filter and display all objects in a tree again, right-click a
filtered category and choose Filter > Remove Filter.

Multi-Select
In the Object Explorer pane, you can select only one object at a time. The
Object Explorer Details pane, however, provides a multi-select feature that
enables you to work on multiple objects (tables, views, jobs, and so on) at
the same time.

Following the standard in the Windows environment, the Shift key allows
for the selection of contiguous objects, whereas the Ctrl key allows for the
selection of objects one by one. You can initiate actions on multiple
objects using the GUI or you can choose to script multiple objects at once.
Scripting each object into its own file or merging all object scripting into
one larger file are both available options. Merging object scripting is
helpful for both creating and deleting multiple objects at once.

Inside OUT
What are some of the changes released with SQL Server
Management Studio (SSMS) v19?

SSMS v19 provides user-interface improvements for data
classification as well as the Query Tuning Assistant. It also
improves support for ledger tables so you can see columns that
have been dropped. However, this version of SSMS does not
contain the Stretch Database Wizard or any references to the SQL
Server Native Client (SQLNCLI or SNAC), as those features are
deprecated.

Additional tools in SQL Server Management Studio
SSMS provides time-saving tools and techniques to make you more
productive. This section provides just a few highlights.



IntelliSense tools
IntelliSense is a ubiquitous Microsoft technology found in many of its
products to help with code completion. IntelliSense effectively reduces the
amount of typing you do by offering shortcuts and autocompleting
keywords and object names. This also makes your code more accurate.

Additionally, SSMS comes with snippets to help you code more easily.
Snippets are preconfigured code fragments that you can quickly drop into
(using the Insert Snippet command) or around (using the Surround With
command) an existing block of code. You also can create your own
snippets—you build them using XML—but that is beyond the scope of this
discussion.

Note
You can manage code snippets from the Tools menu, via the Code
Snippets Manager option.

Let’s look at some use cases for snippets.

One of the options in SQL Server 2012 and later versions is to include a
snippet for an IF statement. After testing a block of code, you can quickly
add the IF statement (including the BEGIN/END statements) by highlighting
your code and choosing a snippet.

There are three ways to access snippets:

Use a keyboard shortcut, such as Ctrl+K followed by Ctrl+S
(Surround With), and Ctrl+K followed by Ctrl+X (Insert Snippets).

Right-click and choose an option from the context menu that opens.

Choose Edit > IntelliSense and select a snippets option—for
example, Surround With. (See Figure 1-6.)



Figure 1-6 Accessing the Surround With snippet from the Edit menu.

When you choose Surround With, a snippet surrounds the highlighted
code with the snippet template code. You can even insert “placeholder”
text for replacing later.

There are only a few stock Surround With snippet options, but there are
many Insert Snippet options. You can find these by choosing Edit >
IntelliSense > Insert Snippet. You can also double-click the Function
folder to see the available snippets and use them the same way you do
the Surround With snippets (except that the code is placed at the current
location of the cursor within a block of code rather than around selected
code).

Inside OUT
Did someone say keyboard shortcuts?

SQL Server Management Studio offers a large range of keyboard
shortcuts for increasing productivity. By far the most popular is F5,
which runs a query; you can also use Ctrl+E to do that.

You can show and hide the results pane of a query by using
Ctrl+R. Accessing the Code Snippets Manager is as easy as



Ctrl+K followed by Ctrl+B. Do you want to include the Actual
Query Plan in a query? Use Ctrl+M. Ctrl+F5 parses a query
before you run it to ensure that the syntax is correct.

You can find the full list of SSMS keyboard shortcuts at
https://learn.microsoft.com/sql/ssms/sql-server-management-
studio-keyboard-shortcuts.

Guided upgrades using the Query Tuning Assistant
SSMS 18.0 introduced the Query Tuning Assistant (QTA), which works
with the Query Store to help guide SQL Server upgrades from SQL Server
2016 and SQL Server 2017 to SQL Server 2019 and above. Note that the
QTA does not support Azure SQL Database, Azure SQL Managed
Instance, or Azure SQL Analytics.

 The QTA is covered in more detail in Chapter 14, “Performance
tune SQL Server.” You can also read the official documentation at
https://learn.microsoft.com/sql/relational-
databases/performance/upgrade-dbcompat-using-qta.

Customize menus and shortcuts
SSMS is based on the Visual Studio integrated development environment
(IDE), which means that it is customizable and extensible. Adding
extensions is beyond the scope of this book, but the next few sections
describe how to customize elements such as the toolbars and keyboard
shortcuts.

Customize toolbars
By default, SSMS displays only the standard toolbar at the top. However,
there are many other toolbars available for use. To access these options,
on the toolbar, select Tools > Customize. This opens the Customize
dialog box, which has two tabs:

Toolbars. On this tab, you can select the toolbars that are useful in
your work environment. Among the many choices are toolbars for

https://learn.microsoft.com/sql/ssms/sql-server-management-studio-keyboard-shortcuts
https://learn.microsoft.com/sql/relational-databases/performance/upgrade-dbcompat-using-qta


working with database diagrams, Extended Events, and XML.

S. You can use this tab to set up a custom toolbar or to edit the drop-
down menus and functionality of an existing toolbar.

Tool options
You also can customize the appearance of your SSMS interface. Select
Tools > Options to adjust the color, font, keyboard hotkeys, length of
strings in results, location of results, scripting preferences, international
settings, theme, autorecovery timeframe, and more.

One very handy option in the Options dialog box is Keyboard > Query
Shortcuts. SSMS comes with several shortcuts already turned on (see
Figure 1-7), but you can use this setting to tailor them to your needs.
Many long-time DBAs make heavy use of this setting to reduce the
number of keystrokes required to carry out common procedures.

Figure 1-7 Managing query shortcuts.



Using shortcuts in SSMS, you can highlight text and then activate the
keyboard shortcut to run the associated stored procedure, supplying a
parameter of the highlighted text. For instance, to see the name, created
date, and a list of columns and associated data types in a view, you can
use the sp_help system procedure. As you can see in Figure 1-7, this
procedure is called by the keyboard shortcut Alt+F1. This shortcut is not
modifiable, but several others are.

If you populate a query window with the name of a view, and then use the
keyboard shortcut Alt+F1, you will see results like the ones shown in
Figure 1-8.

Figure 1-8 Using query shortcuts in SSMS.

Error logs
Each SQL Server instance maintains a distinct set of relevant SQL Server
Error Log messages that are accessible in two places:

The Management > Error Logs node

The context menu that appears when you right-click an instance in
the Registered Servers window

These log files contain information about the SQL Server instance when
coming online, what configuration settings were applied (or failed to
execute), when backups occurred, when corruption is detected, when I/O



is taking too long, partial stack dumps, and lots of other useful data. It’s a
great place to go to when troubleshooting stability or performance
problems and to look for things that might cause trouble in the future.

To keep the log information to a reasonable and searchable size, the
information is kept in a series of files rather than in one single file. It is
possible to close one file and start a new, blank file. Unfortunately,
however, the default settings for cycling the log are not very useful.

Note
It is not currently possible to change the number of error log files in
SQL Server on Linux.

By default, SQL Server keeps the six most-recent error log files. To
configure the number of log files to maintain, follow these steps:

1. Open the Management folder in the SSMS Object Explorer.

2. Right-click SQL Server Logs and select Configure.

3. In the dialog box that opens, select the Limit The Number Of Error
Log Files Before They Are Recycled check box.

4. In the Maximum Number Of Error Log Files box, type a value. This
value must be between 6 and 99.

5. Select OK to continue.

 For more about this and other post-installation checklist items, see
Chapter 4.

Every time the SQL Server service is restarted, it cycles the log file. This
creates a brand-new, empty log file and moves the previous log file down
one spot in the list. Any log file older in sequence than the maximum
specified number of files to keep is deleted.

You also can choose to manually cycle the log file by using the
sp_cycle_errorlog command. Or you can automate this process by using
a SQL Server Agent job. When working with SQL Server instances that
are quite large and remain online for a long time, this can prevent any
single log file from becoming overly large and unwieldy.



No matter which method you use, the resulting action is the same: The
current file is closed, and a new, blank file is opened. If this causes the file
count to exceed the maximum number of files, the oldest file is deleted.

Activity Monitor
Activity Monitor provides information about what is currently running on
the SQL Server and how that code might be affecting the instance. It lets
you easily view common hardware-specific performance metrics and a list
of recently used queries (with metrics, code, and execution plans). You
can sort all the grids, and even filter some of them. Out of the box, this is
the place to begin if you need to do rudimentary troubleshooting and
baselining.

To open the Activity Monitor window, right-click the SQL Server instance in
the Object Explorer pane and select Activity Monitor from the context
menu that appears.

The Activity Monitor window consists of six distinct parts:

Overview. This displays a basic version of what you might already
be familiar with viewing in the Task Manager window, but with a SQL
Server flair in the form of four distinct graphs (discussed in the next
section).

Processes. By default, this displays all non-system processes with
open connections to the SQL Server instance. However, you can
also select a process and right-click to view the associated SQL
script or live execution plan, among other options.

Resource Waits. This displays the wait events of active, open
connections.

Data File I/O. This displays the difference between two interval
readings of the storage subsystem.

Recent Expensive Queries. This displays information about the
most expensive queries from the past 30 seconds.

Active Expensive Queries. This displays a more detailed view of
the most expensive queries running at that moment, based on the
column you have selected to sort on.



You can expand each of these parts to show more information, with the
Overview section expanded by default. If you want to sort or filter the
results, select the column header of any of the columns in each section.

The next several sections discuss these Activity Monitor Window
components in more detail.

Overview
Four graphs in the Overview relay the most basic overview of the
instance. The % Processor Time graph is an average combined value for
all logical processors assigned to the instance (see the section “Allocate
CPU cores with an affinity mask” in Chapter 3, “Design and implement an
on-premises database infrastructure”). The other three graphs are Waiting
Tasks (an instance-level value), Database I/O (all databases, measured in
MB/sec) and Batch Requests/sec (all databases).

Each graph displays information in near-real time, refreshing every 10
seconds by default. You can configure the refresh interval by right-clicking
any of the graphs and choosing an option from the context menu that
appears. The refresh interval can be as short as 1 second to as long as 1
hour. The graph settings are adjusted as a unified set; all four graphs use
the same interval setting, so changing one interval changes them all.
Likewise, selecting Pause on any of the graphs pauses the entire set.

Processes
The Processes section of Activity Monitor displays all non-system
processes (also known as tasks) with open connections to the SQL
Server instance, regardless of whether the process is actively running a
query. It provides the following types of important metadata:

Session ID. The session process identifier (SPID) of the current
process

User Process. Displays a 1 if this is a user process and a 0 if it is a
system process (this list is filtered to show only user processes by
default)

Login. The login name of the user running this process



Database. The name of the database

Task State. Populated from the list of possible tasks in the
task_state column of the sys.dm_os_tasks dynamic management
view

Command. Populated from the list of command types in the command
column of the sys.dm_exec_requests dynamic management view

Application. The name of the application

Wait Time (ms). The amount of time this task has been waiting, in
milliseconds

Wait Type. The current wait type for this task

Wait Resource. The resource for which this task is waiting

Blocked By. If this task is being blocked by another process, this
shows the SPID of the blocking process

Head Blocker. If there is a chain of blocking processes, this is the
SPID of the process at the start of the blocking chain

Memory Use (KB). How much memory this process is using

Host Name. The host name of the machine that made this
connection

Workload Group. The name of the Resource Governor workload
group that this process belongs to (you can read more about the
Resource Governor in Chapter 3)

Each column allows you to filter to specific values. For example, right-click
any row in the Processes pane to see the detailed T-SQL query being run
(last T-SQL command batch), trace the process in SQL Profiler, or kill the
process.

Resource Waits
The Resource Waits section of the Activity Monitor displays the wait
events of active, open connections, sorted by default by the cumulative
wait time (in seconds).



This can be very useful when you’re trying to determine the root cause of
a performance issue. Having a baseline for these counters when things
are good is very useful later, when you’re trying to gauge whether a
problem you’re experiencing is new or normal.

Understanding the meaning of certain wait times can help you diagnose
the root cause of slowness, be it storage, memory pressure, CPU,
network latency, or a client struggling to receive and display a result set.
Following are the wait statistics provided by this section:

Wait Category

Wait Time (ms/sec)

Recent Wait Time (ms/sec)

Average Waiter Count

Cumulative Wait Time (sec)

 You can read more about Resource Waits at
https://learn.microsoft.com/sql/relational-databases/system-dynamic-
management-views/sys-dm-os-wait-stats-transact-sql or by referring
to the “Understand wait types and wait statistics” section in Chapter 8.

Data File I/O
The Data File I/O section of the Activity Monitor displays the difference
between two readings taken from the metadata stored in the
sys.dm_io_virtual_file_stats dynamic management view. For this
reason, when you first expand this section, you might not see results for a
short while. The server needs at least two readings, so, for example, if
your interval is 10 seconds, you’ll wait 10 seconds before data appears.

The information displayed shows each of the data files for all of the
databases on the SQL Server, the file location and name, megabytes per
second read (MB/sec read), megabytes per second written (MB/sec
written), and average response time in milliseconds (ms).

Generally, average response times of 5 milliseconds or less allow for
acceptable performance, the occasional outlying peak notwithstanding.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql


Recent Expensive Queries
The Activity Monitor’s Recent Expensive Queries section displays
information about the most expensive queries that have run on the SQL
Server instance in the past 30 seconds. It includes both queries in flight
and queries that have finished.

To see the full query text or the execution plan currently in use, right-click
any of the queries listed. Here are the fields returned in this pane:

Query

Executions/min

CPU (ms/sec)

Physical Reads/sec

Logical Writes/sec

Logical Reads/sec

Average Duration (ms)

Plan Count

Database

Active Expensive Queries
If you’re trying to determine what is running at this precise moment that
might be causing performance issues, the Active Expensive Queries part
of the Activity Monitor is the place to look. It is more granular than the
aggregated “past 30 seconds” view provided in the Recent Expensive
Queries section. In addition, the list of queries in this part shows some
very interesting details that are available at only a granular level:

Session ID

Database

Elapsed Time



Row Count

Memory Allocated

Again, you can see the full query text and the execution plan by right-
clicking, but here you get an additional feature: Show Live Execution Plan.
This might differ if a query is running long.

Inside OUT
Does Activity Monitor use considerable resources?

Activity Monitor does use resources, as there is overhead
associated with any monitoring tool. When you expand any of the
detail areas in Activity Monitor, it must query the system metadata
in real time to populate the columns and/or graphs on the screen.
When you collapse the area, these queries stop.

After you have finished viewing a section, we recommend that you
collapse that section or close the Activity Monitor tab to avoid
unnecessary “observer overhead.”

SQL Server Agent
SQL Server Agent is a service on both Windows and Linux that you can
use to schedule automated tasks, called jobs, as illustrated in Figure 1-9.
These jobs mostly run routine maintenance (backups, index
defragmentation, statistics updates, and integrity checks), but you can
also use them to periodically run custom code.



Figure 1-9 The SQL Server Agent tree view.

Note
You can filter SQL Server Agent nodes. This was described earlier in
this chapter in the section “Filtering objects” in the discussion of
Object Explorer.



Windows Server has built-in functionality for job notifications to email the
status of a job to a person or group using the Database Mail feature. The
setup provides a few straightforward configuration options that apply to
notifications that are sent: Success, Failure, and Completion.

 For more information on configuring Database Mail, and on
configuring SQL Agent to use Database Mail, see Chapter 9,
“Automate SQL Server administration.”

Job Activity Monitor
Job Activity Monitor provides a snapshot view of all jobs on a server.
Using this feature, you can quickly see many attributes of the jobs
scheduled on a SQL Server instance, and you can use many of these
attributes to narrow the list of jobs displayed. Table 1-2 lists the attributes.

Table 1-2 Job activity attributes

Job activity attribute Values Can use to filter?
Name  X
Enabled No

Yes
X

Status Between Retries
Executing

X

Last Run Outcome Idle
Not Idle
Performing Completed Action
Suspended
Waiting for Step to Finish
Waiting for Worker Thread

X

Last Run  X
Next Run  X
Category  X
Runnable Yes

No
X



Job activity attribute Values Can use to filter?

Scheduled Yes
No

X

Category ID   

Notify operators with alerts
You can configure alerts to notify you when a specific event occurs. Unlike
jobs that run on a schedule, alert notifications can be sent in reaction to a
scenario that has been set off. Examples include emailing the DBA team
when a data or log file experiences auto growth, or when Target Server
Memory drops below a certain threshold on a virtual machine.

SQL Server Agent’s alerting feature gives administrators the ability to
create three different types of alerts:

Event alerts. These are raised by SQL Server’s Error and Severity
mechanism. You can specify this for all databases or for a single
database. You can use an error number or a severity level to set off
an alert. Text within the system message can be parsed to only alert
in specific scenarios.

Performance condition alerts. These alerts use the entire library of
SQL Server Performance Monitor counters. Any counter object can
be chosen, the sub counter object specified, the counter instance
noted (if applicable), and a threshold (falls below, becomes equal to,
or rises above) provided at which an alert should fire. Figure 1-10
shows the configuration of a performance condition alert definition to
notify an administrator if the Page Life Expectancy metric on a SQL
Server instance drops below 5 minutes.



Figure 1-10 Creating a performance condition alert.

Windows Management Instrumentation (WMI) alerts. A WMI alert
uses the Windows Management Instrumentation Event Provider to
allow for more complicated actions upon the detection of an event
that sets off an alert. One example is to use the alerting system to
detect a deadlock and then save the XML deadlock graph
information to a table for later analysis. Another is to detect any DDL
or system configuration changes that occur and to document them
for later review. Because the WMI Provider has access to many
server event classes and properties, this feature is quite versatile. It
does come with several catches, however:

It requires Service Broker to be enabled in the msdb database of
the instance.

If your code queries objects within a particular database on the
server, Service Broker must be enabled on that database also.

It is not very GUI-friendly and requires a bit more programming
know-how than the other alert options.

It is not supported on SQL Server on Linux or Docker
containers.



 You can read more about creating WMI alerts in Chapter 8, as well as
at https://learn.microsoft.com/sql/ssms/agent/create-a-wmi-event-
alert.

A response to an alert can be to run a job, notify a list of operators, or
both.

Operators
Operators are users or groups designated as points of contact to receive
notifications from the SQL Server Agent. They are most commonly
defined with email addresses, but there are additional delivery methods
available.

Inside OUT
Does Azure SQL Database come with SQL Server Agent?

If you use SQL Server Management Studio to connect to an Azure
SQL Database, you might notice the absence of SQL Server
Agent.

Although at first this might seem puzzling, it makes perfect sense.
SQL Server Agent is an OS service. Azure SQL Database is a
database as a service (DBaaS), which is essentially a sole
database (à la carte) minus the server and OS pieces of the
platform.

The Azure environment comes with its own Azure Automation
services and elastic jobs, which you can use to schedule routines
similar to what DBAs are used to with SQL Server Agent. But
remember, with Azure SQL databases, point-in-time recovery is
included automatically.

Another option is to use Azure SQL Managed Instance, which is
covered in Chapter 18, “Provision Azure SQL Managed Instance.”

https://learn.microsoft.com/sql/ssms/agent/create-a-wmi-event-alert


Azure Data Studio
Azure Data Studio (ADS) is an exciting addition to the administration and
development toolkit for the database platform, including SQL Server,
Azure SQL Database, Azure Synapse Analytics (formerly Azure SQL Data
Warehouse), and PostgreSQL.

Think of ADS as more of a developer-focused tool compared to SSMS.
While ADS performs many of the same tasks as SSMS, it is more focused
on development than administration, and can run cross-platform on
Windows, macOS, and Linux.

Often, but not always, when ADS is missing native features required for
database administration, there is an extension built by Microsoft or by a
partner that fills that need.

While ADS is installed along with SSMS by default, you can install it
separately. If a version you have installed is newer than the version being
installed/upgraded with SSMS, the newer version will not be overwritten.

 You can download the latest version of Azure Data Studio from
https://aka.ms/azuredatastudio.

Inside OUT
Is Azure Data Studio open-source software?

Azure Data Studio—like Visual Studio Code, which it is based on
—is an open-source software (OSS) project based on the Electron
shell and on Node.js, a JavaScript runtime. It is free for use, and
anyone can contribute to the project.

For more information about the project, and to contribute your own
code, see https://github.com/microsoft/azuredatastudio.

User interface

https://aka.ms/azuredatastudio
https://github.com/microsoft/azuredatastudio


Azure Data Studio is based on the same shell as Visual Studio Code.
Thus, it shares a similar development environment and is fully extensible.
In other words, you can easily install third-party plugins and extensions to
improve your workflow, or even write your own and contribute them to the
main product codebase. Many of the extensions for Visual Studio Code
will run on Azure Data Studio.

The main interface for Azure Data Studio is made up of viewlets and tiles,
similar in concept to the docked windows in SSMS. These elements
present information to monitor and administer your database environment.
(See Figure 1-11.)

Figure 1-11 The Azure Data Studio user interface.

The Interface is fully customizable, with a dashboard that shows:

Insights, performance metrics, and telemetry

Recent connections

An Object Explorer (like SSMS; see Figure 1-12)



Figure 1-12 The Object Explorer view in Azure Data Studio.



A query window for code

A results grid that can be exported to CSV, Excel, JSON, and XML

Note
Whereas SSMS uses dialog boxes that pop up in the center of the
application interface, the Azure Data Studio dialog boxes, or flyouts,
appear from the right of the user interface until the necessary action
is performed. This takes some getting used to for people who are
more familiar with the SSMS interface.

Highlighted features in Azure Data Studio
Azure Data Studio includes many of the same core features for
administering and developing on a SQL Server that you would expect to
find in SSMS. These include:

Managing registered servers

Viewing server and database reports

Writing queries

Managing security

Generating scripts

Viewing and analyzing query plans

Performing tasks such as database consistency checks

Maintaining indexes and statistics

Running backups and restores

Certain dialog boxes in SSMS can be run from inside Azure Data Studio
(and vice versa), as long as the latest versions of both applications are
installed on the same Windows computer. This allows an integrated
experience through the seamless use of different features across both
applications from within the tool of your choice.



For example, you can select a database, right-click, and choose Generate
Scripts to open the familiar Generate Scripts wizard from SSMS. (See
Figure 1-13 and Figure 1-14.)

Figure 1-13 The Generate Scripts option for a database in Azure Data
Studio.



Figure 1-14 The SSMS Generate Scripts wizard, opened from ADS.

Since the release of SQL Server 2019, many significant features have
been added to Azure Data Studio. For example:

Support for Always Encrypted and Always Encrypted with secure
enclaves was added.

The SQL Assessment API extension was published.

The SQL Database Projects extension was published with schema
compare functionality.

The SQL Server Import extension became generally available.

Support was added for KQL in notebooks.

The Table Designer UI was added.



The Query Plan Viewer was added.

The Azure Arc extension was updated.

The Azure SQL Migration extension became generally available.

Object Explorer was updated to add support for SQL ledger objects.

Inside OUT
What is KQL?

KQL is the abbreviated name for Kusto Query Language. KQL is
the open-source language used to query tables in Azure Data
Explorer, including logs collected from Azure resources such as
SQL Server and Azure SQL Database that are stored in a Log
Analytics workspace.

You can learn more about Kusto queries and how Kusto compares
to SQL at https://learn.microsoft.com/azure/data-
explorer/kusto/query.

Extend the features of Azure Data Studio
Azure Data Studio allows for additional features that are not part of the
base product, directly from the interface, on the Extensions pane. To
access the Extensions pane, select View > Extensions, or press
Shift+Ctrl+X (Windows and Linux) or Shift+Cmd+X (macOS).

Extensions recommended by Microsoft are identified by a white star on a
blue background at the top left of the extension item. (See Figure 1-15.)

https://learn.microsoft.com/azure/data-explorer/kusto/query


Figure 1-15 The Extensions Marketplace.

To install an extension, select its Install button. When the extension is
installed, you may be prompted to reload the application; select the
Reload button, and Azure Data Studio will reopen with the extension
enabled.



Note
Some extensions may need to be installed manually. You do this by
choosing File > Install Extension from VSIX Package. Take care
when trusting third-party extensions installed in this manner.

Access the command line
One extremely useful feature in Azure Data Studio (and Visual Studio
Code) is the built-in command line interface. This terminal allows you to
interact with the underlying OS from within the application using familiar
terminal types like PowerShell or the command prompt, or other terminal
types like Git Bash. This improves productivity because you don’t need to
switch away from the Azure Data Studio interface to manipulate files or
execute external scripts.

To access the terminal, choose View > Terminal or use Ctrl+` (backtick)
on Windows and Linux or Cmd+` on macOS.

Notebooks in Azure Data Studio
One of the fundamental ways in which Azure Data Studio is helpful to data
professionals is through its support of notebooks, based on Project
Jupyter (pronounced Jupiter).

Notebooks already support many languages, including R, Python, and
PowerShell, which makes them a natural addition to the data scientist’s
toolkit. But their use has expanded to data analysts and big data
developers as well.

Inside OUT
What is Project Jupyter?

Much like this book, technical documentation and code is
traditionally static. It appears in fixed type, sometimes with
diagrams, to assist you in understanding a topic. Any code
included in that documentation must usually be typed in by hand or



copied and pasted into an execution environment to be run. In
contrast, web pages make documentation and code easier to work
with due to their interactive nature.

Project Jupyter uses web technology to address the problem of
static code by presenting notebooks as interactive web
applications. Code can now be executed from within the
documentation, which itself is written in Markdown format. Find out
more about Project Jupyter at https://jupyter.org/.

Notebooks as runbooks
One particularly interesting feature for data professionals is SQL kernel
support. This enables you to create powerful interactive and shareable
notebooks with SQL Server and PostgreSQL as supported environments.

In this book, we refer to these notebooks as SQL notebooks. As of version
1.16.0 (released in March 2020), SQL notebooks support creating and
saving charts.

The structure of SQL notebooks makes them an ideal format for
runbooks. A runbook is a set of standardized written procedures for
completing repetitive tasks. SQL notebooks allow you to mix cells
containing text explanations for steps in a task with the cells containing
SQL to be run to execute a task. The results of an executed SQL script
can be saved in the notebook as well. This is helpful for showing expected
results of a task.

Using the Markdown language, you can convert existing scripts and
documentation into SQL notebooks. Because these documents are plain
text files that render as web pages, they can be treated like source code
and checked into a source control system. This gives you a lot more
control over versioning, especially around runbooks.

 See Chapter 10, “Develop, deploy, and manage data recovery,” for
a practical use case for runbooks.

Inside OUT

https://jupyter.org/


What is Markdown?

Markdown (commonly written in lowercase as markdown) is a
plain text markup language created by John Gruber and Aaron
Swartz in 2004. It was originally designed to output HTML pages.
Markdown differs from other markup languages such as RTF,
HTML, and PDF formats because its syntax makes the documents
easier for humans to read.

Markdown has been adopted by many organizations, including
GitHub (a Microsoft subsidiary), and is the language in which
Jupyter notebooks are written. Microsoft Docs are also composed
in Markdown and are open source on GitHub.

SQL Server Data Tools
SQL Server Data Tools (SSDT) provides developers with a set of tools for
working with SQL Server, as well as SQL Server Integration Services
(SSIS), Reporting Services (SSRS), and Analysis Services (SSAS).

SQL Server Data Tools is a built-in workload within Visual Studio 2022 or
later. In contrast, the SSIS, SSRS, and SSAS project templates must be
downloaded from within Visual Studio using Extension Manager. You will
need to use the built-in workload to work with database projects.

Note
Despite having similar names, Visual Studio is an entirely different
product from Visual Studio Code. SSDT is not supported in Visual
Studio Code.

SQL Server Integration Services
SQL Server Integration Services (SSIS) is a versatile platform for
importing, transforming, and exporting data. Frequently used for extract,
transform, load (ETL) processes, SSIS can integrate with many external
systems using standard tasks, interfaces, and protocols.



SSIS manages these solutions using packages, which you create and
modify using a GUI. Packages feature a control flow and data flow in their
design, so you can include both orchestration and data manipulation logic.

SSIS packages can be executed in SSIS on a Windows or Linux server
running SQL Server. In Azure, Azure Data Factory can execute SSIS
packages on a Windows server in Azure running an Azure-SSIS
Integration Runtime. Regardless of the service being used to execute an
SSIS package, these packages are built using the SSIS project template
in Visual Studio.

SSIS contains other functionality in addition to SSIS packages. This
includes the SSISDB Upgrade Wizard, the Import and Export Wizard, and
the Data Profiling Task and Viewer. These features are discussed next.

SQL Server Integration Services Package Upgrade
Wizard
The SQL Server Integration Services Package Upgrade Wizard is a tool
that you can use to upgrade SSIS packages created in versions earlier
than SQL Server 2022. Although you most commonly access this tool
from SQL Server Data Tools, you can also find and launch it from SSMS
and from the Windows command prompt. Part of the upgrade wizard in all
these scenarios involves the automated backup of the original packages.

To launch this wizard from SQL Server Data Tools:

1. Open an Integration Services Project.

2. Right-click SSIS Packages.

3. Select Upgrade All Packages.

To launch it from SSMS:

1. Connect to Integration Services.

2. Expand Stored Packages.

3. Right-click the File System or MSDB node.

4. Select Upgrade Packages.



To launch it from the Windows command prompt:

1. Navigate to the Microsoft SQL Server\160\DTS\Binn folder.

2. Locate and run the SSISUpgrade.exe file.

SQL Server Import and Export Wizard
The Import and Export Wizard simplifies the act of copying of data from a
source to a destination. It uses SQL Server Integration Services to copy
data by creating a package in memory. You can choose to save the
package the wizard creates for future reuse. The variety of source and
destination platforms supported by the wizard is generous. In some cases,
you might need to download and install additional drivers and providers
from a vendor or from a Microsoft Feature Pack. Table 1-3 lists examples
of compatible data sources.

Table 1-3 Data sources in the Import and Export Wizard

Type Details
Enterprise databases SQL Server, Oracle, DB2
Text files CSV or any other delimiter
Excel/Access May require Access Runtime
Azure Azure Storage
Open source PostgreSQL, MySQL
Others ODBC, .NET Framework, OLEDB

You can launch the Import and Export Wizard from the following places:

The Start menu

The command prompt

SQL Server Management Studio

SQL Server Data Tools

Data Profiling Task and Viewer



You can use the Data Profiling Task within SQL Server Integration
Services to clarify data patterns (normal versus abnormal) and identify
data quality issues before they reach a particular destination (usually a
data warehouse). This tool provides visibility into the data quality by
calculating and documenting the following metadata and statistical
metrics:

Column Length Distribution Profile. Reports the distinct lengths of
strings in a selected column and the percent of total rows in the table
that each string length represents. This helps you identify invalid
values.

Column Null Ratio Profile. Reports the percentage of null values in
a selected column. This helps you identify unexpectedly high ratios
of missing values.

Column Pattern Profile. Reports a set of regular expressions that
cover the specified percentage of values in a selected column. This
helps you identify values that are invalid or not in the correct format.

Column Statistics Profile. Reports minimum, maximum, average,
and standard deviation for a selected numeric column, or minimum
and maximum for a selected datetime column. This helps you
identify values that may be outside of the expected range.

Column Value Distribution Profile. Reports the distinct values in a
selected column and the percentage of rows in a table that the value
represents. This helps you identify unexpected values, especially
when you know the number of distinct values expected.

The Data Profiling Task creates an XML output file. You can view this file
by using the Data Profile Viewer, which is a standalone application and
does not require Visual Studio or SQL Server Integration Services to run.

Figure 1-16 presents an example of the Data Profile Viewer. It displays
the XML created by a Data Profile Task, pointed at Microsoft’s
WideWorldImporters sample database and analyzing the Sales.Customers
table.



Figure 1-16 The Data Profile Viewer, showing column distribution.

SQL Server on Azure Arc–enabled
servers
Azure Arc is a bridge that allows you to build applications and services
with the flexibility to run across datacenters, at the edge, and in multi-
cloud environments. You can manage your instances of SQL Server from
Azure with SQL Server on Azure Arc–enabled servers.

Beginning with SQL Server 2022, you can now install the Azure Arc agent
with the Azure extension for SQL Server when you install SQL Server on
Windows. When you install the Azure Arc agent with the SQL Server
extension, you can automatically enable the instance for Azure Arc. This
will register the SQL Server instance as a resource in Azure so you can
attach additional Azure management services to it.

There are some limitations to this new and evolving product. For example,
Azure Arc–enabled servers do not currently support SQL Server failover
cluster instances (FCIs).

 Find out more about SQL Server on Azure Arc–enabled servers at
https://learn.microsoft.com/sql/sql-server/azure-arc/overview.

https://learn.microsoft.com/sql/sql-server/azure-arc/overview


Inside OUT
What does “the edge” mean regarding databases?

Whereas cloud computing means that data is processed on
servers in a private or public cloud such as Azure, edge computing
means that data is processed in remote locations of a network.
This processing occurs either on an IoT device or a local server. If
data needs to be further aggregated or processed by a central
server, only the important data is transmitted, which minimizes
latency.

Edge computing makes possible near–real time processing of
large volumes of data. This includes use cases like retail stores
across the country instantly processing payments from wireless
point-of-sale devices and sending data back to a primary
datacenter. Another use case is an irrigation system on a farm that
adjusts the amount of water it uses in real time based on the
amount of moisture detected in the soil.

Microsoft offers Azure SQL Edge to support data streaming and
machine learning as part of an edge computing solution. You can
read more about Azure SQL Edge at
https://learn.microsoft.com/azure/azure-sql-edge/overview.

Microsoft Purview
Microsoft Purview is a unified data-governance service that helps you
manage your on-premises, multi-cloud, and software-as-a-service (SaaS)
data. It allows you to map and classify data across your organization with
automated data discovery, data sensitivity classifications, and data
lineage.

The data catalog functionality of Microsoft Purview helps you find trusted
data sources by browsing and searching your data assets. Data Estate
Insights gives you an overview of your data estate to help you discover
what kinds of data you have and where. Data Sharing allows you to
securely share data internally or with other organizations.

https://learn.microsoft.com/azure/azure-sql-edge/overview


 Learn more about Microsoft Purview at
https://learn.microsoft.com/azure/purview/overview.

Azure SQL and SQL Server databases can be registered as data sources
and scanned by Microsoft Purview. To enable this functionality on a SQL
Server in a private network, you need to install the Azure Extension for
SQL Server (the same extension used with Azure Arc). You’ll also need a
self-hosted integration runtime to perform the scan.

 Find out more about connecting to and managing on-premises
SQL Server instances in Microsoft Purview at
https://learn.microsoft.com/azure/purview/register-scan-on-
premises-sql-server.

Discontinued and deprecated features
Every new version of SQL Server introduces some exciting new features
while deprecating or even discontinuing features from earlier versions of
SQL Server. Deprecated features may be removed from a future version
of the product, so you should not use them for new development.
Discontinued features have already been removed and might block
upgrades to the latest database compatibility level or migrations to Azure
SQL Database.

Several chapters in this book reference features that have been
deprecated or discontinued. But the easiest way to stay up to date is to
check the Microsoft documentation. As of this writing, three features were
deprecated between SQL Server 2019 and SQL Server 2022: Distributed
Replay, Machine Learning Server, and Stretch Database. SQL Server Big
Data Clusters was also retired.

You can also access the list of deprecated features by using the following
T-SQL query. It returns a list of more than 250 features that are
deprecated, along with a count of the number of occurrences on your SQL
Server instance. This sample script helps you identify and resolve specific
occurrences of deprecated feature use in your instance.
Click here to view code image

SELECT object_name, counter_name, instance_name, cntr_value, 
cntr_type 

https://learn.microsoft.com/azure/purview/overview
https://learn.microsoft.com/azure/purview/register-scan-on-premises-sql-server


FROM sys.dm_os_performance_counters 
WHERE object_name = 'SQLServer:Deprecated Features';

In addition to the deprecated features, three features were discontinued:
SQL Server Big Data Clusters, SQL Server PolyBase scale-out groups,
and installation of Machine Learning Services packages.

 For more discontinued features, see
https://learn.microsoft.com/sql/database-engine/discontinued-
database-engine-functionality-in-sql-server.

https://learn.microsoft.com/sql/database-engine/discontinued-database-engine-functionality-in-sql-server


Chapter 2

Introduction to database
server components

Memory
Central processing unit
Data storage
Connect to SQL Server over the network
High-availability concepts
Secure SQL Server
Understand virtualization and containers

One of the best ways to develop a better understanding of SQL
Server is to understand the infrastructure that supports the database.
Having a better grasp of hardware, networking, availability options,
security, and virtualization enables you to design, implement, and
provision solutions that benefit your organization. Learning these
concepts enables you to make good decisions to help create a stable
environment for your databases. These decisions can affect anything
from performance to uptime.

SQL Server runs on Windows and Linux, as well as in Linux
containers. Microsoft has crafted the Database Engine to work the
same way on other platforms as it does on Windows. The saying “it’s



just SQL Server” applies, but here we highlight places where there
are differences.

We first discuss hardware. No matter which configuration you end up
using, there are four basic components in a database infrastructure:

Memory

Processor

Permanent storage

Network

We then introduce high availability (HA) offerings, including new
functionality for availability groups introduced in SQL Server 2022.
When considering strategies for SQL Server HA and disaster
recovery (DR), you design according to the organization’s
requirements for business continuity in terms of a Recovery Point
Objective (RPO) and Recovery Time Objective (RTO).

We next provide an overview of security, including Active Directory,
service principal names, federation and claims, and Kerberos. We
cover ways to access the Database Engine, either on-premises or in
Azure. As data theft has become more prevalent, you need to
consider the security of the database itself, the underlying OS and
hardware (physical or virtual), the network, and database backups.

Finally, we look at the similarities and differences between virtual
machines (VMs) and containers, and when you should use them.
Whether running on physical or virtual hardware, databases perform
better when as much of the data as possible can be cached in
memory and backed by fast, persistent storage that is redundant, with
low latency and high random input/output operations per second
(IOPS).

Memory



SQL Server is designed to use as much memory as it needs, and as
much as you give it. By default, the upper limit of memory that SQL
Server can access is limited only by the physical random-access
memory (RAM) available to the server or to the edition of SQL Server
you’re running (whichever is lower). SQL Server on Linux has
additional memory limits to avoid out-of-memory (OOM) errors.

Understand the working set
The physical memory made available to SQL Server by the operating
system (OS) is called the working set. This working set is broken up
into several sections by the SQL Server Memory Manager. The two
largest and most important sections are the buffer pool and the
procedure cache, also known as the plan cache.

In the strictest sense, working set applies only to physical memory.
However, as you will soon see, the buffer pool extension blurs the
lines because it uses non-volatile storage.

We look deeper into default memory settings in Chapter 3, “Design
and implement an on-premises database infrastructure,” in the
“Configuration settings” section.

Cache data in the buffer pool
For best performance, SQL Server caches data in memory, because
it is orders of magnitude faster to access data directly from memory
than from traditional storage.

The buffer pool is an in-memory cache of 8 KB data pages that are
copies of pages in the database file. Initially, the copy in the buffer
pool is identical. Any changes to data are first applied to this buffer
pool copy (and the transaction log) and then asynchronously applied
to the data file.

When you run a query, the Database Engine requests the data page
it needs from the buffer manager. (See Figure 2-1.) If the data is not
already in the buffer pool, a page fault occurs. (This is an OS feature



that informs the application that the page isn’t in memory.) The buffer
manager fetches the data from the storage subsystem and writes it to
the buffer pool. When the data is in the buffer pool, the query
continues.

Figure 2-1 The buffer pool and the buffer pool extension.

The buffer pool is usually the largest consumer of the working set
because it’s where your data is. If the amount of data requested for a
query exceeds the capacity of the buffer pool, the data pages spill to
a drive, using either the buffer pool extension or a portion of tempdb.

The buffer pool extension uses non-volatile storage to extend the size
of the buffer pool. It effectively increases the database working set,
forming a bridge between the storage layer where the data files are
located and the buffer pool in physical memory.

For performance reasons, this non-volatile storage should be solid-
state storage, directly attached to the server.

 To learn how to turn on the buffer pool extension, read the
section “Configuration settings” in Chapter 3. To learn more



about tempdb, read the section “Data files and filegroups,”
also in Chapter 3.

Cached plans in the procedure cache
The procedure cache is usually smaller than the buffer pool. When
you run a query, Query Optimizer compiles a query plan to explain to
the Database Engine exactly how to run the query. To save time, it
keeps a copy of that query plan so it won’t need to compile the plan
each time the query runs. It is not quite as simple as this, of course—
plans can be removed, and trivial plans are not cached, for instance
—but it’s enough to give you a basic understanding.

The procedure cache is split into various cache stores by the Memory
Manager. This is also where you can see if there are single-use query
plans that are consuming memory.

 For more information about cached execution plans, read
Chapter 14, “Performance tune SQL Server” or visit
https://blogs.msdn.microsoft.com/blogdoezequiel/2014/07/30/t
oo-many-single-use-plans-now-what/.

Lock pages in memory
When you turn on the lock pages in memory (LPIM) policy, Windows
cannot trim (reduce) SQL Server’s working set.

Locking pages in memory ensures that Windows memory pressure
cannot take resources away from SQL Server or push SQL Server
memory into the Windows Server system page file, which
dramatically reduces performance.

Under normal circumstances, Windows doesn’t “steal” memory from
SQL Server flippantly; it is done in response to memory pressure on
the Windows Server. Indeed, all applications can have their memory
affected by pressure from Windows.

https://blogs.msdn.microsoft.com/blogdoezequiel/2014/07/30/too-many-single-use-plans-now-what/


However, without the ability to relieve pressure from other
applications’ or a virtual host’s memory demands, LPIM can prevent
Windows from deploying enough memory to remain stable. Because
of this, LPIM cannot be the only method used to protect SQL Server’s
memory allocation.

Note
The Linux kernel is far stricter with memory management and
forcibly terminates processes that use too much memory. With
SQL Server on Linux, a dedicated setting called
memory.memorylimitmb limits the amount of physical memory
SQL Server can see. (By default, this is 80 percent of physical
memory.) Chapter 5, “Install and configure SQL Server on
Linux,” covers this in more detail.

The controversy of the topic is stability versus performance, in which
the latter was especially apparent on systems with limited memory
resources and older operating systems. On larger servers with
operating systems since Windows Server 2008, there is a lesser
need for this policy to insulate SQL Server from memory pressure.

The prevailing wisdom is that the LPIM policy should be turned off by
default for SQL Server unless all the following conditions apply:

The server is virtual. See “Avoid overcommitting more memory
than you have” later in this chapter.

Physical RAM exceeds 16 GB (the OS needs a working set of
its own).

Max Server Memory has been set appropriately (SQL Server
can’t use everything it sees).

The Memory\Available Mbytes performance counter is
monitored regularly (to keep some memory free).



Use caution when enabling the LPIM policy, as it can adversely affect
performance when starting SQL Server.

 You can read more about enabling LPIM at
https://learn.microsoft.com/troubleshoot/sql/admin/non-
yielding-error-lock-pages-disable.

Editions and memory limits
Since SQL Server 2016 Service Pack 1, many Enterprise edition
features have found their way into the lower editions. Ostensibly, this
was done to enable software developers to have far more code that
works across all editions of the product.

Although some features are still limited by edition (high availability, for
instance), features such as columnstore and In-Memory OLTP are
turned on in every edition, including Express. Enterprise edition can
use all available physical RAM for these features, though other
editions are artificially limited.

Inside OUT
What are some considerations for using In-Memory
OLTP?

When implementing In-Memory OLTP, you should begin with
an overhead of at least double the amount of data for a
memory-optimized object. For example, if a memory-
optimized table is 5 GB, start with at least 10 GB of RAM
available for the exclusive use of that table. You should
monitor performance to determine if you need to adjust the
amount of RAM available for In-Memory OLTP objects. Keep
this in mind before turning on this feature in Standard edition
of SQL Server.

Take care, too, when using memory-optimized table-valued
functions (TVFs) in Standard edition, because each new

https://learn.microsoft.com/troubleshoot/sql/admin/non-yielding-error-lock-pages-disable


object requires resources. Too many TVFs could starve the
working set and cause SQL Server to crash.

You can learn more here:
https://learn.microsoft.com/sql/relational-databases/in-
memory-oltp/estimate-memory-requirements-for-memory-
optimized-tables.

Central processing unit
The central processing unit (CPU), often called the “brain” of a
computer, is the most important part of a system. CPU speed is
measured in hertz (Hz), or cycles per second, with the speed of
modern processors measured in GHz, or billions of cycles per
second. Modern systems can have more than one CPU, and each
CPU can in turn have more than one CPU core (which might
themselves be split up into virtual cores, or vCores).

For a typical SQL Server transactional workload, single-core speed
matters. It is better to have fewer cores with higher clock speeds than
more cores with lower speeds. That way, queries requiring fewer
resources will complete faster. This is useful on non-Enterprise
editions, especially when considering licensing.

Simultaneous multithreading
Some CPU manufacturers have split their physical cores into virtual
cores to try to eke out even more performance using a feature called
simultaneous multithreading (SMT). You can expect between 15 and
30 percent real-world performance improvement by enabling SMT,
depending on the type of SQL Server workload. Intel calls this Hyper-
Threading, so when you buy a single Intel Xeon CPU with 20 physical
cores, the OS will see 40 virtual cores because of SMT.

 To learn more about SQL Server and SMT, see David Klee’s
article “SQL Server and CPU Hyper-Threading in virtual

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/estimate-memory-requirements-for-memory-optimized-tables


environments” at https://www.davidklee.net/2020/04/10/sql-
server-and-cpu-hyper-threading-in-virtual-environments/.

SMT becomes especially murky with virtualization because the guest
OS might not have any insight into the physical versus logical core
configuration.

Note
Think of SMT as an increase in overall CPU capacity as
opposed to a performance boost. Performance depends on the
type of workload the CPU is processing, and in some cases,
SMT may be detrimental. Always test your workload against
different hardware configurations.

Security vulnerabilities in modern CPUs
In recent years, security vulnerabilities (known as speculative
execution vulnerabilities; see the upcoming Inside OUT box) were
discovered in CPUs that implement SMT. There are two Microsoft
Knowledge Base articles that go into more detail:

https://support.microsoft.com/help/4073225/

https://support.microsoft.com/help/4457951/

For Intel CPUs, our advice is to disable SMT (Hyper-Threading) for
both physical and virtual environments for all CPUs prior to 2019,
which is when the Whiskey Lake architecture became available. On
AMD CPUs, we recommend disabling SMT for virtual environments.
If any VMs are running untrusted code on the same host as your
production servers, your risk increases.

 For more information about allocating virtual CPUs, see
“Understand virtualization and containers” later in this chapter.

https://www.davidklee.net/2020/04/10/sql-server-and-cpu-hyper-threading-in-virtual-environments/
https://support.microsoft.com/help/4073225/
https://support.microsoft.com/help/4457951/


Inside OUT
How do speculative execution vulnerabilities affect you?

Modern microprocessors (including CPUs) use a type of
circuit called a branch predictor, which tries to guess the result
of an instruction before it happens. This improves overall
performance in the execution pipeline if that result occurs.
This is known as speculative execution.

When the instruction has a different result from the predicted
outcome, the branch containing the incorrectly predicted value
may reveal private information to attackers observing the
instructions as they occur before these results are discarded.

Because this is a hardware issue, affected CPU vendors have
issued firmware patches to work around this class of
vulnerability, but cannot completely defend against it without
seriously affecting performance. For full protection, newer
CPUs released since 2019 are required.

Unfortunately, it is not practical to replace every CPU
manufactured before this date. In these cases, you must
ensure that you have patched your operating system fully.
Additionally, you must check that any firmware released for
your CPUs (called microcode) has been applied, even if it
does affect performance. This is especially true for CPUs
used in VM hosts, where SMT should be disabled.

Ultimately, the type of threats you might expect to face in your
environment will dictate whether you decide to disable SMT or
patch against it.

Non-uniform memory access
CPUs are the fastest component of a system, so they spend a lot of
time waiting for data to come to them. In the past, all CPUs shared



one bank of RAM on a motherboard, using a shared bus. This caused
performance problems as more CPUs were added because only one
CPU could access the RAM at a time.

Multi-channel memory architecture tries to resolve this by increasing
the number of channels between CPUs and RAM to reduce
contention during concurrent access.

A more practical solution is for each CPU to have its own local
physical RAM, situated close to each CPU socket. This configuration
is called non-uniform memory access (NUMA). The advantages of
NUMA are that each CPU can access its own RAM, making
processing much faster. If a CPU needs more RAM than it has in its
local set, however, it must request memory from one of the other
CPUs in the system (called foreign memory access), which carries a
performance penalty.

SQL Server is NUMA-aware. In other words, if the OS recognizes a
NUMA configuration at the hardware layer, where more than one
CPU is plugged in, and if each CPU has its own set of physical RAM
(see Figure 2-2), SQL Server will split its internal structures and
service threads across each NUMA node.

Figure 2-2 Two-socket NUMA configuration.



Since the release of SQL Server 2014 Service Pack 2, the Database
Engine automatically configures NUMA nodes at an instance level,
using what it calls soft-NUMA. If more than eight CPU cores are
detected (including SMT cores), soft-NUMA nodes are created
automatically in memory.

Inside OUT
What is the relationship between core counts and
editions?

SQL Server Standard edition has an artificial limit of four
sockets or 24 CPU physical cores that it can use, whichever is
lower. For instance, if a system contains two 16-core CPUs,
for a total of 32 cores, Standard edition will need to be
licensed for all 32 cores, even though it won’t use eight of
them.

Additionally, the NUMA distribution will be unbalanced
because SQL Server will use the first 16 cores on the first
CPU and eight from the second CPU unless you configure the
SQL Server CPU usage using the affinity settings. (For
information on how to do this, see the section “Configuration
settings” in Chapter 3.)

Be careful when choosing the hardware and edition for your
SQL Server installation. If you plan to install several VMs on
one system, a better option would be Enterprise edition,
licensed for all physical cores on the server. This would
automatically cover all SQL Server VMs and containers that
you install on that hardware.

Disable power saving everywhere



Modern systems can use power-saving settings to reduce the amount
of electricity consumed by a server. Although this is good for the
environment, it is bad for query performance, because the CPU core
speed might be reduced to save energy.

For all operating systems running SQL Server, turn on High
Performance at the OS level, and double-check that High
Performance is set at the BIOS level, as well. Note that for dedicated
VM hosts, making this change at the BIOS level will require
downtime.

Data storage
When data is not in memory, it is at rest, and must be persisted
(saved) somewhere. Storage technology has evolved rapidly over the
past decade, so we no longer think of storage as a mechanical hard
drive containing one or more spinning metal disks with a magnetic
surface.

Note
Old habits die hard, and colloquially you may still refer to a non-
volatile storage subsystem as “the disk,” even if it might take
another form. We refer to it as a “drive.”

Irrespective of the underlying mechanism, a SQL Server storage
subsystem should have low latency, so that when the Database
Engine accesses the drive to perform reads and writes, those reads
and writes should complete as quickly as possible. The following list
presents some commonly used terms with respect to storage
devices.

Drive. The physical storage device. This might be a mechanical
drive, a solid-state drive with the same form factor as a
mechanical drive, or a card that plugs directly into the
motherboard.



Volume. A logical representation of storage, as viewed by the
OS. This might be one drive, part of a drive, or a logical section
of a storage array. On Microsoft Windows, a volume usually gets
its own drive letter or mount point.

Latency. The time it takes for data to be read from a drive
(seconds per read) and written (seconds per write) to a drive.
Latency is usually measured in milliseconds.

IOPS. Short for input/output operations per second. IOPS is the
number of reads and writes per second. A storage device might
have differing performance depending on whether the IOPS are
sequential or random. IOPS are directly related to latency by
means of the queue depth.

Queue depth. The number of outstanding read and write
requests in a storage device’s request queue. The deeper the
queue depth, the faster the drive.

SQL Server performance is directly related to storage performance.
The move toward virtualization and shared storage arrays has placed
more emphasis on random data access patterns. Low latency and
high random IOPS benefit the average SQL Server workload. The
next two chapters go into more detail about the preferred storage
configuration for SQL Server.

Types of storage
Non-volatile storage can be split up into three categories: mechanical,
solid-state, and persistent memory.

Mechanical hard drives
Traditional spinning disks have an inherent latency, called seek time,
due to their shape and physical nature. The read/write head is
mounted on an arm that scans the surface of the disk as it spins,
seeking a particular area at which to perform the I/O operation. If the



data on the spinning disk is fragmented, it can take longer to access,
because the head must skip around to find data or free space.

The standard interfaces for mechanical drives are Serial ATA (SATA)
and Serial Attached SCSI (SAS).

As spinning disks increase in capacity, the tracks between data
become narrower, which decreases performance and increases the
likelihood of mechanical failure or data corruption. The rotational
energy in the disk itself pushes the physical limits, so there is also a
limit to the speed of the motor. In other words, mechanical disks grow
bigger but slower and more prone to failure.

Solid-state drives
Solid-state technology, which uses flash memory, eliminates seek
time entirely because the path to each cell where the data is stored is
almost instantaneous. This is what makes solid-state storage so
much faster than mechanical storage.

Solid-state storage devices can take many different forms. The most
common in consumer devices is a 2.5-inch enclosure with a SATA
interface. This is also common with mechanical laptop drives, which
facilitate a drop-in replacement of mechanical storage by solid state
storage.

In server architecture, however, flash memory can take several forms.
For local storage, the Peripheral Component Interconnect Express
(PCIe) interface is used to plug directly into the motherboard. An
example of this is Non-Volatile Memory Express (NVMe).

As technology evolves, performance will only improve as capacity
grows. Solid-state storage is not perfect, though; data can be written
to a particular cell only a certain number of times before it fails. You
might have experienced this yourself with USB thumb drives, which
tend to fail after heavy usage. Algorithms to balance writes across
cells, a process called wear-leveling, help extend the lifespan of solid-
state devices.



Another problem with flash memory is write-amplification. On a
mechanical drive, if a file is overwritten, the previous file is marked for
deletion but is not actually deleted from the disk surface. When the
drive needs to write to that area again, it overwrites the location
without removing what was there before.

Solid-state drives must erase the location in question before writing
the new data. This has a performance impact. Compounding this
performance impact, the size of the cells might also require a larger
area to be erased than the file itself (if it is a small file). Various
techniques exist to mitigate write amplification, but this reduces the
lifespan of flash memory.

The performance problems with mechanical disks, and the lifespan
problems with both mechanical and solid-state drives, can be
mitigated by combining them into drive arrays. These reduce the risk
of failure (by balancing the load) and increase performance.

Persistent memory
Persistent memory allows data to remain in RAM without needing to
be persisted to traditional storage. It is provided in the same form
factor as RAM, which in turn is split evenly between traditional RAM
and solid-state components, with a backup power requirement.

Frequently accessed data is retained in the RAM portion as usual. If
there is a loss of main power, data in that RAM is immediately copied
to the solid-state component while on backup power. When the main
power supply returns, the contents of the solid-state component are
copied back into RAM when it is safe to do so. This improves
performance because SQL Server is optimized to use this
technology. We cover this in more detail in the section “Persistent
memory enlightenment.”

 See more about persistent memory at https://docs.pmem.io/.

Note

https://docs.pmem.io/


Persistent memory is limited by the capacity of the
motherboard, processor, and each memory module. At the time
of this writing, persistent memory modules are available in sizes
up to 512 GB.

Configure the storage layer
Non-volatile storage can stand alone, in the form of direct-attached
storage (DAS), or be combined in many ways to provide redundancy
or consolidation—perhaps even offering different levels of
performance to better manage costs. For example, archive data
might not need to be stored on the fastest available storage if it is
infrequently accessed.

Direct-attached storage
DAS is plugged directly into the system that is accessing it. Also
called local storage, it can comprise independent mechanical hard
drives, solid-state drives, tape drives for backups, CD and DVD-ROM
drives, or even enclosures containing storage arrays.

DAS has a lower latency than a storage area network (SAN) or
network-attached storage (NAS), both discussed in more detail later
in the chapter, because there is no network to traverse between the
system and the storage. DAS cannot be shared with other systems,
however, unless the local file system is shared across the network
using a protocol such as Server Message Block (SMB) 3.0.

For SQL Server, DAS comprising flash (solid-state) storage is
preferred for tempdb. DAS is also supported and recommended in
failover cluster instances. You can use DAS for the buffer pool
extension, too.

 To see how best to configure tempdb, see the section
“Configuration settings” in Chapter 3.

Storage arrays and RAID



Combining drives in an enclosure with a controller to access each
drive, without any thought to redundancy or performance, is called
JBOD (colloquially, “just a bunch of disks”). These drives might be
accessed individually or combined into a single volume.

When done correctly, combining drives into an array can increase
overall performance and/or lower the risk of data loss should one or
more of the drives in the array fail. This is called redundant array of
independent disks (RAID).

RAID offers several levels of configuration, which trade redundancy
for performance. More redundancy means less raw capacity for the
array, but it can also reduce the potential for data loss.

Striping without parity (RAID 0) uses multiple drives to improve raw
read/write performance, but with zero redundancy. If one drive fails,
there is a significant chance of catastrophic data loss across the
entire array. JBOD configurations that span across drives fall under
this RAID level.

Mirroring (RAID 1) uses two drives that are written to simultaneously.
Although there is a slight write penalty because both drives must
save their data at the same time, and one might take longer than the
other, read performance is nearly double that of a single drive
because both drives can be read in parallel (with a small overhead
caused by the RAID controller selecting the drive and fetching the
data). Usable space is 50 percent of raw capacity, and one drive in
the pair can be lost and still have all data recoverable.

Striping with parity (RAID 5) requires an odd number of three or more
drives. For every single write, one of the drives is randomly used for
parity (a checksum validation). There is a larger write penalty
because all drives must save their data, and parity must be calculated
and persisted. But if a single drive is lost from the array, the other
drives can rebuild the contents of the lost drive based on the parity—
although it can take some time to rebuild the array. Usable space is
calculated as the number of drives minus one. If there are three
drives in the array, the usable space is the sum of two of those drives,
with the space from the third used for parity (which is evenly



distributed over the array). Only one drive in the array can be lost and
still have full data recovery.

Combinations of the base RAID configurations are used to provide
more redundancy and performance, including:

RAID 1+0. With RAID 1+0, also called RAID 10, two drives are
configured in a mirror (RAID 1) for redundancy, and then each
mirror is striped together (RAID 0) for performance reasons.

RAID 0+1. With RAID 0+1, the drives are striped first (RAID 0),
and then mirrored across the entire RAID 0 set (RAID 1).

Usable space for RAID 0+1 and 1+0 is 50 percent of the raw
capacity. To ensure full recovery from failure in a RAID 1+0 or
0+1 configuration, an entire side of the mirror can be lost, or
only one drive from each side of the mirror can be lost.

RAID 5+0. With RAID 5+0, also called RAID 50, three or more
drives are configured in a RAID 5 set, which is then striped (with
no parity) with at least one other RAID 5 set of the same
configuration. Usable space is (x – 1) / y, where x is the number
of drives in each nested RAID 5 set and y is the number of RAID
5 sets in this array. If there are nine drives, six of them are
usable. Only one drive from each RAID 5 set can be lost with full
recovery possible. If more than one drive in any of the RAID 5
sets is lost, the entire 5+0 array is lost.

SQL Server requires the best possible performance from a storage
layer. In terms of RAID configurations, RAID 1+0 offers the best
performance and redundancy.

Note
RAID is not an alternative to backups because it does not
protect against other types of data loss. RAID does not interact
with the SQL Server transaction log, and transaction log
backups are typically required for an enterprise disaster
recovery solution. A common backup medium is digital tape,



due to its low cost and high capacity, but more organizations
are using cloud storage options, such as Microsoft Azure
Archive Storage and Amazon Glacier, for long-term, cost-
effective backup storage solutions. Be sure your SQL Server
backups are copied securely off-premises, and then tested
regularly by restoring those database backups and running
DBCC CHECKDB on them. We discuss backups in detail in
Chapter 11, “Implement high availability and disaster recovery.”

Centralized storage with a storage-area network
A storage-area network (SAN) is a network of storage arrays that can
contain tens, hundreds, or even thousands of drives (mechanical or
solid-state) in a central location, with one or more RAID
configurations, providing block-level access to storage. This reduces
wasted space and allows for easier management across multiple
systems, especially for virtualized environments.

Block-level means the OS can read or write blocks of any size and
any alignment. This offers the OS a lot of flexibility in making use of
the storage.

You can carve the total storage capacity of the SAN into logical unit
numbers (LUNs), and each LUN can be assigned to a physical or
virtual server. You can move these LUNs around and resize them as
required, which makes management much easier than attaching
physical storage to a server.

The disadvantage of a SAN is that you might be at the mercy of
misconfiguration or a slow network. For instance, the RAID might be
set to a level that has poor write performance, or the blocks of the
storage might not be aligned appropriately. Storage administrators
who do not understand specialized workloads like SQL Server might
choose a performance model that satisfies the rest of the
organization to reduce administration overhead, but that penalizes
you.



Inside OUT
What is the difference between Fibre Channel and iSCSI?

Storage arrays might use Fibre Channel (FC) or Internet
Small Computer Systems Interface (iSCSI) to connect
systems to their storage.

FC can support data transfer at a higher rate than iSCSI,
which makes it better for systems that require lower latency,
but it comes at a higher cost for specialized equipment.

iSCSI uses standard TCP/IP, which makes it potentially
cheaper because it can run on existing network equipment.
You can improve iSCSI throughput by isolating the storage to
its own dedicated network.

Network-attached storage
Network-attached storage (NAS) is usually a specialized hardware
appliance connected to the network, typically containing an array of
several drives, providing file-level access to storage.

Unlike the SAN’s block-level support, NAS storage is configured on
the appliance itself, and uses file-sharing protocols such as Server
Message Block (SMB), Common Internet File System (CIFS), and
Network File System (NFS) to share the storage over the network.

NAS appliances are common because they provide access to shared
storage at a much lower monetary cost than a SAN. When using
these appliances, however, you should keep in mind security
considerations regarding file-sharing protocols.

Storage Spaces
Windows Server 2012 and later versions support Storage Spaces,
which offer a way to manage local storage in a more scalable and



flexible manner than RAID.

Instead of creating a RAID set at the storage layer, Windows Server
can create a virtual drive at the OS level. It might use a combination
of RAID levels, and you can decide to combine different physical
drives to create performance tiers.

For example, a server might contain 16 drives—eight spinning disks
and eight solid-state disks. You can use Storage Spaces to create a
single volume with all 16 drives, keeping the active files on the solid-
state portion, increasing performance dramatically.

Azure Premium SSD v2, which became generally available in
October 2022, is poised to replace Storage Spaces in Azure. For
more information, visit https://aka.ms/premiumv2doc.

SMB 3.0 file share
SQL Server supports storage located on a network file share that
uses the SMB 3.0 protocol or higher because it is now fast and stable
enough to support the storage requirements of the Database Engine
(performance and resilience). This means you can build a failover
cluster instance (discussed in more detail later in the chapter) without
shared storage such as a SAN.

Network performance is critically important, though, so we
recommend a dedicated and isolated network for the SMB file share,
using network interface cards (NICs) that support remote direct
memory access (RDMA). This enables the SMB Direct feature in
Windows Server to create a low-latency, high-throughput connection
using the SMB protocol.

SMB 3.0 might be a feasible option for smaller networks with limited
storage capacity and a NAS or in the case of a failover cluster
instance without shared storage. For more information, read Chapter
11.

Persistent memory enlightenment

https://aka.ms/premiumv2doc


Instead of having to go through the slower channels of the file system
and underlying non-volatile storage layer, SQL Server 2022 can
access more efficient persistent memory (PMEM) operations directly
—a feature called enlightenment. This feature is available on both
Windows Server and Linux.

 For more information about persistent memory support on
Windows Server, visit
https://blogs.msdn.microsoft.com/sqlserverstorageengine/201
6/12/02/transaction-commit-latency-acceleration-using-
storage-class-memory-in-windows-server-2016sql-server-
2016-sp1/.

The hybrid buffer pool
SQL Server 2022 can leverage the hybrid buffer pool, which uses
persistent memory enlightenment to automatically bypass RAM, and
lets you access clean data pages directly from any database files
stored on a PMEM device. Data files are automatically mapped upon
SQL Server startup; when a database is created, attached, or
restored; or when the hybrid buffer pool is enabled. You enable this
feature at the instance level; if you don’t need to use it on individual
user databases, you can disable it at the database level.

The PMEM device must be formatted with a file system that supports
Direct Access Mode (DAX)—namely XFS, ext4, or NTFS. Data file
sizes should be in multiples of 2 MB, and if you are on Windows, a 2-
MB allocation size is recommended for NTFS. You should also
enable the LPIM option on Windows.

Note
As mentioned, the abbreviation for Direct Access Mode is DAX.
This should not be confused with Data Analysis Expressions in
SQL Server Analysis Services.

https://blogs.msdn.microsoft.com/sqlserverstorageengine/2016/12/02/transaction-commit-latency-acceleration-using-storage-class-memory-in-windows-server-2016sql-server-2016-sp1/


 For configuring DAX for SQL Server on Linux, visit
https://learn.microsoft.com/sql/linux/sql-server-linux-configure-
pmem.

Caution
You should not use the hybrid buffer pool on an instance with
less than 16 GB RAM.

This feature is considered hybrid because dirty pages must be copied
to the regular buffer pool in RAM before making their way back to the
PMEM device and marked clean during a regular checkpoint
operation.

 For more information about hybrid buffer pools, visit Microsoft
Docs at https://learn.microsoft.com/sql/database-
engine/configure-windows/hybrid-buffer-pool.

Connect to SQL Server over the
network
We have covered a fair amount about networking while discussing
the storage layer, but there is far more to it. This section looks at what
is involved when accessing the Database Engine over a network, and
briefly discusses virtual local area networks (VLANs).

Unless a SQL Server instance and the application accessing it are
entirely self-contained on the same server, database access is
performed over one or more network interfaces. This adds complexity
with authentication, given that attackers might be scanning and
modifying network packets in flight.

SQL Server 2022 requires strict rules with respect to network security.
This means older versions of the connectors or protocols used by
software developers might not work as expected.

https://learn.microsoft.com/sql/linux/sql-server-linux-configure-pmem
https://learn.microsoft.com/sql/database-engine/configure-windows/hybrid-buffer-pool


Transport Layer Security (TLS) and its forerunner Secure Sockets
Layer (SSL)—together known as TLS/SSL or just SSL—are methods
that allow network traffic between two points to be encrypted. Where
possible, you should use newer libraries that support TLS encryption.
If you cannot use TLS to encrypt application traffic, you should use
IPSec, which is configured at the OS level.

Caution
Ensure that all TCP/IP traffic to and from the SQL Server is
encrypted. On Windows Server, you should use the highest
version of TLS available to you, with TLS v1.3 support
introduced with SQL Server 2022. However, this isn’t required
when using the Shared Memory Protocol with applications
located on the same server as the SQL Server instance.

 For more information about encryption in SQL Server,
including the new TLS v1.3, see Chapter 13, “Protect data
through classification, encryption, and auditing.”

Protocols and ports
Connections to SQL Server are made over the Transmission Control
Protocol (TCP), with port 1433 as the default port for a default
instance. Some of this is covered in Chapter 1, “Get started with SQL
Server tools,” and again in Chapter 13. Any named instances are
assigned random ports by the SQL Server Configuration Manager,
and the SQL Browser service coordinates any connections to named
instances. It is possible to assign static TCP ports to named
instances by using the Configuration Manager.

You can use SQL Server Configuration Manager to change the
default port after SQL Server is installed. We do not recommend
changing the port for security reasons, however, because it provides
no security advantage to a port scanner—although some network
administration policies still require it.



Networking is also the foundation of cloud computing. Aside from the
fact that the Azure cloud is accessed over the Internet (itself a
network of networks), the entire Azure infrastructure is a virtual fabric
of innumerable components tied together through networking. This
fabric underlies both infrastructure-as-a-service (VMs with Windows
or Linux running SQL Server) and platform-as-a-service (Azure SQL
Database and Azure SQL Managed Instance) offerings.

Added complexity with Virtual Local Area
Networks
A VLAN gives network administrators the ability to logically group
machines together even if they are not physically connected through
the same network switch. This enables servers to share their
resources with one another over the same physical LAN, without
interacting with other devices on the same network.

VLANs work at a very low level (the data link layer, or OSI Layer 2),
and are configured on a network switch. A port on the switch might be
dedicated to a particular VLAN, and all traffic to and from that port is
mapped to a particular VLAN by the switch.

High-availability concepts
With each new version of Windows Server, terminology and
definitions tend to change or adapt according to the new features
available. With SQL Server on Linux, it is even more important to get
our heads around what it means when we discuss high availability
(HA).

At its most basic, HA means that a service offering of some kind (for
example, SQL Server, a web server, an application, or a file share)
will survive an outage of some kind, or at least fail predictably to a
standby state, with minimal loss of data and minimal downtime.

Everything can fail. An outage might be caused by a failed hard drive,
which could in turn be a result of excessive heat, cold, or moisture, or



a datacenter alarm that is so loud that its vibrational frequency
damages the internal components and causes a head crash.

Other things can go wrong, too, as noted in the following list:

A failed NIC

A failed RAID controller

A power surge or brownout causing a failed power supply

A broken or damaged network cable

A broken or damaged power cable

Moisture on the motherboard

Dust on the motherboard

Overheating caused by a failed fan

A faulty keyboard that misinterprets keystrokes

Failure due to bit rot

Failure due to a bug in SQL Server

Failure due to poorly written code in a file system driver that
causes drive corruption

Capacitors failing on the motherboard

Insects or rodents electrocuting themselves on components (this
also smells really bad)

Failure caused by a fire-suppression system that uses water
instead of gas

Misconfiguration of a network router causing an entire
geographical region to be inaccessible

Failure due to an expired SSL or TLS certificate



Human error, such as running a DELETE or UPDATE statement
without a WHERE clause

Domain Name System (DNS) error

The list is not exhaustive (and most of the time, the problem is DNS).
The bottom line is, it’s incredibly important to not make assumptions
about hardware, software, and network stability.

Why redundancy matters
Armed with the knowledge that everything can fail, you should build in
redundancy where possible. The sad reality is that these decisions
are governed by budget constraints. The amount of money available
is inversely proportional to the amount of acceptable data loss and
length of downtime. For business-critical systems, however, uptime is
paramount, and a highly available solution will be more cost effective
than being down, considering the cost-per-minute to the organization.

It is nearly impossible to guarantee zero downtime with zero data
loss. There is always a trade-off. The business needs to define that
trade-off, based on resources (equipment, people, money), and the
technical solution is in turn developed around that trade-off. This
strategy is driven by two values called the Recovery Point Objective
and Recovery Time Objective, which are defined in a Service-Level
Agreement (SLA).

Recovery Point Objective
A good way to think about the concept of a Recovery Point Objective
(RPO) is to ask two questions:

“How much data are you prepared to lose?”

“When a failure occurs, how much data will be lost between the
last transaction log backup and the failure?”

The answers are measured in seconds or minutes.



Note
If your organization differentiates archive data from current data,
this should form part of the discussion around RPO, specifically
as it relates to the maximum allowed age of your data. You may
not need to bring archived data online immediately after a
disaster as long as it is made available at some specified time
in the future.

Recovery Time Objective
The Recovery Time Objective (RTO) is defined as how much time is
available to bring the environment up to a known and usable state
after a failure. There might be different values for HA and disaster
recovery (DR) scenarios. This value is usually measured in hours.

Disaster recovery
HA is not DR. They are often grouped under the same heading
(HA/DR), mainly because there are shared technology solutions for
both. But HA is about keeping the service running, whereas DR is
what happens when the infrastructure fails. DR is like insurance: You
don’t think you need it until it’s too late. As for HA, it costs more
money the shorter the RPO.

Note
A disaster is any failure or event that causes an unplanned
outage.

Clustering
Clustering is the connecting of computers (nodes) in a set of two or
more nodes that work together and present themselves to the
network as one computer.



In most cluster configurations, only one node can be active in a
cluster. To ensure that this happens, a quorum instructs the cluster as
to which node should be active. It also steps in if there is a
communication failure between the nodes.

Each node has a vote in a quorum. However, if there is an even
number of nodes, to ensure a simple majority, an additional witness
must be included in a quorum to allow for a majority vote to take
place. You can see more about this process in the “Resolve cluster
partitioning with quorum” section later in this chapter.

Inside OUT
What is “Always On”?

Always On is not the name of a specific technology; rather, it’s
a marketing term for a group of features. Two separate
technologies fall under the Always On label; these are
addressed later in this chapter. Two important things to
remember: Always On does not mean availability groups, and
there is a space between Always and On.

Windows Server Failover Clustering
As the article titled “Failover Clustering Overview”
(https://learn.microsoft.com/windows-server/failover-
clustering/failover-clustering-overview) describes it:

A failover cluster is a group of independent computers that
work together to increase the availability and scalability of
clustered roles. […] If one or more of the cluster nodes fail,
other nodes begin to provide service (a process known as
failover). In addition, the clustered roles are proactively
monitored to verify that they are working properly. If they are
not working, they are restarted or moved to another node.

https://learn.microsoft.com/windows-server/failover-clustering/failover-clustering-overview


The terminology here matters. Windows Server Failover Clustering
(WSFC) is the name of the technology that underpins a failover
cluster instance (FCI). An FCI is created when two or more Windows
Server Failover Clustering nodes (computers) are connected in a
Windows Server Failover Clustering resource group and masquerade
as a single machine behind a network endpoint called a virtual
network name (VNN). A SQL Server service that is installed on an
FCI is said to be cluster aware.

Linux failover clustering with Pacemaker
Instead of relying on Windows Server Failover Clustering, SQL
Server on a Linux cluster can use any cluster resource manager.
When SQL Server 2017 was released, Microsoft recommended using
Pacemaker because it ships with several Linux distributions, including
Red Hat and Ubuntu. This advice still holds true for SQL Server 2022.

 You can read more about the Pacemaker recommendation
https://learn.microsoft.com/sql/linux/sql-server-linux-business-
continuity-dr.

Inside OUT
What happens when a Linux node fails?

If something goes wrong in a cluster, and a node is in an
unknown state after a set time-out period, that node must be
isolated from the cluster and restarted or reset. On Linux
clusters, this is called node fencing, following the STONITH
principle (“Shoot the Other Node in the Head”). If a node fails,
STONITH will provide an effective, if drastic, manner of
resetting or powering-off a failed Linux node.

Resolve cluster partitioning with quorum

https://learn.microsoft.com/sql/linux/sql-server-linux-business-continuity-dr


Most clustering technologies use the quorum model to prevent a
phenomenon called partitioning, or “split brain.” If there is an even
number of nodes, and half of these nodes go offline from the view of
the other half of the cluster, or vice versa, you end up with two halves
thinking that the cluster is still up and running, each with a primary
node (split brain).

Depending on connectivity to each half of the cluster, an application
continues writing to one half of the cluster while another application
writes to the other half. A best-case resolution for this scenario
requires rolling back to a point in time before the event occurred,
which would cause the loss of any data written after the event.

To prevent this, each node in a cluster shares its health with the other
nodes using a periodic heartbeat. If more than half do not respond in
a timely fashion, the cluster is considered to have failed. Quorum
works by having a simple majority vote on what constitutes “enough
nodes.”

In Windows Server Failover Clustering, there are four types of
majority vote: Node, Node and File Share, Node and Disk, and Disk
Only. In the latter three types, a separate witness that does not
participate directly in the cluster is used. This witness is given voting
rights when there is an even number of nodes in a cluster, and
therefore a simple majority (more than half) would not be possible.
The witness is ideally housed in a site separate from the cluster
nodes, so that it can be a reliable witness of the cluster’s health to all
nodes. If a separate site is not available, the witness should be
housed in whatever site currently hosts the primary node, requiring
some automation to move the witness for planned and unplanned
failovers.

Always On FCIs
You can think of a SQL Server FCI as two or more nodes with shared
storage—usually a SAN, because it is most likely to be accessed
over the network.



On Windows Server, SQL Server can take advantage of Windows
Server Failover Clustering to provide HA (the idea being minimal
downtime) at the server-instance level by creating an FCI of two or
more nodes. From the network’s perspective (application, end users,
and so on), the FCI is presented as a single instance of SQL Server
running on a single computer, and all connections point at the VNN.

When the FCI starts, one of the nodes assumes ownership and
brings its SQL Server instance online. If a failure occurs on the first
node (or there is a planned failover due to maintenance), there are at
least a few seconds of downtime during which the first node cleans
up as best it can, and then the second node brings its SQL Server
instance online. Client connections are redirected to the new node
after the services are up and running.

Inside OUT
How long does the FCI failover take?

During a planned failover, any dirty pages in the buffer pool
must be written to the drive; thus, the downtime could be
longer than expected on a server with a large buffer pool. You
can read more about checkpoints in Chapter 3 and Chapter 4,
“Install and configure SQL Server instances and features.”
You can also consider using SQL Server’s accelerated
database recovery (ADR) feature to improve failover times,
also discussed in Chapter 3.

On Linux, the principle is very similar. A cluster resource manager
such as Pacemaker manages the cluster. When a failover occurs, the
same process is followed from SQL Server’s perspective, in which
the first node is brought down, and the second node is brought up to
take its place as the owner. The cluster has a virtual IP address, just
as on Windows. However, you must manually add the VNN to the
DNS server.



 You can read more about setting up a Linux cluster in Chapter
10, “Develop, deploy, and manage data recovery.”

FCIs are supported on SQL Server Standard edition but are limited to
two nodes.

The versatility of log shipping
SQL Server transaction log shipping is an extremely flexible
technology that provides a relatively inexpensive and easily managed
HA and DR solution. The principle is as follows: A primary database
is in either the full or bulk logged recovery model, and transaction log
backups are taken regularly every few minutes. These transaction log
backup files are transferred to a shared network location, where one
or more secondary servers restore the transaction log backups to a
standby database.

If you use the built-in Log Shipping Wizard in SQL Server
Management Studio, on the Restore tab, select Database State
When Restoring Backups, and then select No Recovery Mode or
Standby Mode. (For more information, see
https://learn.microsoft.com/sql/database-engine/log-
shipping/configure-log-shipping-sql-server.)

If you are building your own log shipping solution, remember to use
the RESTORE feature with NORECOVERY, or RESTORE with STANDBY.

If a failover occurs, the tail of the log on the primary server is backed
up in the same way if available (guaranteeing zero data loss of
committed transactions), transferred to the shared location, and
restored after the latest regular transaction logs. The database is then
put into RECOVERY_PENDING state, which is where crash recovery takes
place, rolling back incomplete transactions and rolling forward
complete transactions.

 You can read more about crash recovery in Chapter 3.

As soon as the application is pointed to the new server, the
environment is back up again with zero data loss (if the tail of the log

https://learn.microsoft.com/sql/database-engine/log-shipping/configure-log-shipping-sql-server


was copied across) or minimal data loss (if only the latest shipped
transaction log was restored).

Log shipping works on all editions of SQL Server, on Windows and
Linux. Because Express edition does not include the SQL Server
Agent, Express can only be a witness, and you must manage the
process through a separate scheduling mechanism. You can even
create your own solution for any edition of SQL Server—for instance,
using Azure Storage and AzCopy.exe.

Always On availability groups
As mentioned, availability groups are generally what people mean
when they incorrectly say, “Always On.” (Similarly, they are not
“database availability groups,” or “DAGs.”) In shorthand, you can
refer to these as availability groups (AGs).

You can think of an AG as multiple copies of the same database, with
each copy associated with its own storage. Data is written to one of
the databases and then copied to the other databases in the AG,
synchronously or asynchronously. Having multiple instances in the
AG also provides redundancy in case a server becomes unavailable,
as well as automatic data corruption correction and the potential for
readable secondary replicas.

Inside OUT
What was database mirroring?

AGs replace database mirroring. Database mirroring worked
at the database level by maintaining two copies of a single
database across two separate SQL Server instances, keeping
them synchronized with a steady stream of active transaction
log records. This feature is now in maintenance mode. Unlike
a deprecated feature, it will not be removed from the product
in a future version. However, it is no longer supported on
Windows and has not been made available for Linux.



AGs give you the ability to keep a discrete set of databases highly
available across one or more nodes in a cluster. They work at the
database level as opposed to an entire server-instance level, the way
FCIs do. Unlike the cluster-aware version of SQL Server when it is
installed as part of an FCI, SQL Server on an AG is installed as a
standalone instance.

An AG operates at the database level only. On Windows Server, this
is through Windows Server failover clustering; on Linux it is through a
cluster resource manager like Pacemaker. As shown in Figure 2-3,
the AG is a set of one or more databases in a group (an availability
replica) that is replicated (using log shipping) from a primary replica.
There can be only one primary replica and a maximum of eight
secondary replicas, using synchronous or asynchronous data
synchronization.

Figure 2-3 A Windows Server Failover Clustering cluster with four
nodes.



Let’s take a closer look at synchronous and asynchronous data
synchronization:

Synchronous data synchronization. The log is hardened
(transactions are committed to the transaction log) on every
secondary replica before the transaction is committed on the
primary replica. This guarantees zero data loss, but with a
potential performance impact on a highly transactional workload
if network latency is high. You can have two synchronous-
commit replicas per AG.

Asynchronous data synchronization. The transaction is
considered committed as soon as it is hardened in the
transaction log on the primary replica. If something were to
happen before the logs are hardened on all the secondary
replicas, there is a chance of data loss, and the recovery point
would be the most recently committed transaction that
successfully made it to all of the secondary replicas. With
delayed durability enabled, this can result in faster performance,
but with a higher risk of data loss.

Inside OUT
What is delayed durability?

Delayed durability (also known as lazy commit) is a storage-
optimization feature that returns a successful commit before
transaction logs are persisted to the storage layer. Although
this can improve performance, the risk of data loss is higher
because the transaction logs are saved only when the logs
are flushed to a drive asynchronously. There is even a risk of
data loss when the SQL Server service is shut down. As such,
you should avoid delayed durability in a production
environment.

To learn more, see https://learn.microsoft.com/sql/relational-
databases/logs/control-transaction-durability.

https://learn.microsoft.com/sql/relational-databases/logs/control-transaction-durability


You can use read-only secondary replicas for reports and other read-
only operations to reduce the load on the primary replica. This
includes backups and database consistency checks; however, you
must also perform these on the primary replica when there is a low-
usage period or planned maintenance window.

If the primary replica fails, and automatic failover is configured, one of
the secondary replicas is promoted to the primary with a few seconds
of downtime. You can reduce this downtime by enabling accelerated
database recovery, discussed in Chapter 3.

Read-scale availability groups
SQL Server 2017 introduced a new architecture that allows for
multiple read-only secondary replicas, but does not offer HA: read-
scale AGs. The major difference is that a read-scale AG does not
have a cluster resource manager. Automated failover is not possible,
but manual failover is.

This allows for simpler setup and reduced contention on business-
critical workloads by using read-only routing or connecting directly to
a readable secondary replica without relying on a clustering
infrastructure on Windows or Linux. Many environments may not
choose to configure automatic failover anyway, and to instead
automate the failover of SQL Server and other layers of the
application infrastructure with external automation.

 For more information, see
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/read-scale-availability-groups.

Distributed availability groups
Instead of having an AG on one cluster, a distributed AG can span
two separate AGs, on two separate clusters (Windows Server
Failover Clustering or Linux, where each cluster can run on a different

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/read-scale-availability-groups


OS). These clusters can be geographically separated. You can
configure a distributed AG provided that the two AGs can
communicate with each other. This allows a more flexible DR
scenario, and it makes possible multi-site replicas in geographically
diverse areas.

Each AG in a distributed AG can contain the maximum number of
replicas, and you can mix major versions of SQL Server in the same
distributed AG.

The main difference from a normal AG is that the configuration is
stored in SQL Server, not the underlying cluster. With a distributed
AG, only one AG can perform data modification at any time, even
though both AGs have a primary replica.

Contained availability groups
One of the common challenges of managing AGs, including
automatic failovers, relates to managing server-level objects, like
logins and SQL Server Agent jobs. It is easy to set these up when the
AG is created, but managing these changes over time can be
tedious.

With the introduction of contained AGs in SQL Server 2022, you can
manage items that have historically only been available at the server
level within the contained AG. Each contained AG will have its own
master and msdb system database that are synchronized between
replicas, synchronizing system security and SQL Agent information
automatically.

 You can find additional information about contained AGs in
Chapter 11.

Basic availability groups
SQL Server Standard edition supports a single-database HA solution,
with a limit of two replicas. The secondary replica does not allow
backups or read access. Although these limits can be frustrating, they



do make it possible to offer another kind of HA offering with Standard
edition: basic AGs.

Basic AGs support and replace the use cases for existing legacy
database mirroring solutions and for scenarios requiring simple two-
node synchronization in Standard edition.

Note
You cannot upgrade a basic AG to a regular AG.

 For more information, see
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/basic-availability-groups-always-on-
availability-groups.

Availability groups on SQL Server on Linux
SQL Server on Linux supports AGs, though with a different
underlying infrastructure, using third-party cluster managers like
Pacemaker instead of the Windows Server Failover Cluster Manager.
There are different settings and configuration options with a cluster
manager not designed by Microsoft.

Some features are not fully supported for SQL Server on Linux,
including the Microsoft Distributed Transaction Coordinator (MSDTC).
Some of the automation around failover is different in SQL Server on
Linux.

One extra feature with SQL Server on Linux is the ability to add an
additional configuration-only replica to provide a third vote for the
cluster. This behaves differently from a WSFC-based cluster witness.

 Read more about AGs on Linux at
https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-overview. For a complete walkthrough of
AGs in SQL Server on Linux, see “Configure availability
groups in SQL Server on Linux” in Chapter 11.

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/basic-availability-groups-always-on-availability-groups
https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-overview


Query Store on replicas
Query Store has one feature within SQL Server that has made
managing and resolving performance issues much easier since its
introduction in SQL Server 2016. However, prior to SQL Server 2022,
you could only collect Query Store data from the primary replica in an
AG. Using the secondary node for heavy read activity is an important
use case, but until SQL Server 2022, the read-only workloads could
not benefit from the Query Store.

SQL Server 2022 introduces the ability to collect Query Store
information from all secondary replicas. This information is
asynchronously written back to Query Store on the primary replica,
where all query information can be analyzed together. Chapter 11
covers Query Store on replicas in more depth.

Secure SQL Server
Security is covered in more depth in Chapter 12, “Administer instance
and database security and permissions,” and in Chapter 13. So, what
follows is a basic overview of server access security, not a discussion
about permissions within SQL Server.

When connecting to SQL Server on Windows or Linux, or connecting
to Azure SQL, security is required to keep everyone out except the
people who need access to the database.

Active Directory (AD), using Integrated Authentication, is the primary
method for connecting to SQL Server on a Windows domain. When
you sign into an AD domain, you are provided a token that contains
your privileges and permissions. This is different from SQL Server
authentication, however, which is managed directly on the SQL
Server instance and requires a username and password to travel
over the network.

Integrated Authentication and Active Directory



AD covers several different identity services, but the most important is
Active Directory Domain Services (AD DS), which manages your
network credentials (your user account) and what you can do on the
network (access rights). Having a network-wide directory of users and
permissions facilitates easier management of accounts, computers,
servers, services, devices, file sharing, and so on.

In this type of environment, SQL Server would be managed as just
another service on the network, and the AD DS would control who
has access to that SQL Server instance. This is much easier than
having to manage individual user access per server, which is time
consuming, difficult to troubleshoot, and prone to human error.

New in SQL Server 2022 for both Windows and Linux, authentication
via Azure Active Directory (Azure AD) is supported for on-premises
instances. This provides for additional implementation of single sign-
on (SSO) and multifactor authentication (MFA) for accessing SQL
Server resources using various supported applications including SQL
Server Management Studio and Azure Data Studio. Currently,
configuring Azure AD integration with SQL Server is not part of SQL
Setup and is configured post-installation by registering the instance
with the Azure extension for SQL Server.

 For more information, see
https://learn.microsoft.com/sql/relational-
databases/security/authentication-access/azure-ad-
authentication-sql-server-overview#connect-sql-server-to-
azure-with-azure-ad.

Inside OUT
Is AD supported on Linux?

Yes! SQL Server on Linux supports AD authentication using
domain credentials and Kerberos. For more, read
https://learn.microsoft.com/sql/linux/sql-server-linux-active-
directory-auth-overview.

https://learn.microsoft.com/sql/relational-databases/security/authentication-access/azure-ad-authentication-sql-server-overview#connect-sql-server-to-azure-with-azure-ad
https://learn.microsoft.com/sql/linux/sql-server-linux-active-directory-auth-overview


Authenticate with Kerberos
Kerberos is the default authentication protocol used in a Windows AD
domain; it is the replacement of NT LAN Manager (NTLM).

Kerberos ensures that authentication occurs in a secure manner,
even if the network itself might not be secure, because passwords
and weak hashes are not transferred over the wire. Kerberos works
by exchanging encrypted tickets verified by a ticket granting server
(TGS)—usually the domain controller.

A service account that runs SQL Server on a particular server under
an AD service account must register its name with the TGS so that
client computers can connect to that service over the network. This is
called a service principal name (SPN).

Caution
NTLM is the authentication protocol on standalone Windows
systems and is used on older operating systems and domains.
You can also use NTLM as a fallback on AD domains for
backward compatibility.
The NTLM token created during the sign-in process consists of
the domain name, the username, and a one-way hash of the
user’s password. Unfortunately, this hash is considered
cryptographically weak and can be cracked (decrypted) in a few
seconds by modern cracking tools. It is incumbent on you to
use Kerberos where possible.

Understand the service principal name
When a client logs into a Windows domain, it is issued a ticket by the
TGS, as shown in Figure 2-4. This ticket is called a ticket granting
ticket (TGT), but it’s easier to think of it as the client’s credentials.
When the client wants to communicate with another node on the



network such as SQL Server, this node, or “principal,” must have an
SPN registered with the TGS.

Figure 2-4 How Kerberos authentication works.

The client uses this SPN to request access. After a verification step,
the TGS sends a ticket and session key to both the SQL Server and
the client, respectively. When the client uses the ticket and session
key on the SQL Server, the connection is authenticated by the SQL
Server using its own copy of the session key.

For SQL Server to use Kerberos authentication instead of the older
NTLM, the Windows domain account that runs the SQL Server
service must register the SPN with the domain controller. Otherwise,
the authentication will fall back to NTLM, which is far less secure. The
easiest way to achieve this is to grant the service account the Write
ServicePrincipalName permission in AD DS. To configure an SPN
manually, you must use the Setspn.exe tool, which is built into
Windows.

Note



You can also manage SPNs using the dbatools PowerShell
module, available from https://dbatools.io.

Access other servers and services with
delegation
Kerberos delegation enables an application such as SQL Server to
reuse end-user credentials to access a different server. This is
intended to solve the so-called double-hop issue, in which the TGS
verifies only the first hop, namely the connection between the client
and the registered server. In normal circumstances, any additional
connections (the second hop) would require reauthentication.

Delegation impersonates the client by sending the client’s TGT on the
client’s behalf. This in turn causes the TGS to send tickets and
session keys to the original server and the new server, allowing
authentication. Because the original connection is still authenticated
using the same TGT, the client now has access to the second server.

For delegation to work, the service account for the first server must
be trusted for delegation, and the second server must be in the same
AD forest or between forests with the appropriate trust relationship.

Azure Active Directory
Azure Active Directory (Azure AD) is concerned with identity
management for Internet-based and on-premises services, which use
HTTP and HTTPS to access websites and web services without the
hierarchy associated with on-premises AD.

You can employ Azure AD for user and application authentication—
for example, to connect to Azure SQL services or Microsoft Office
365. There are no organizational units or group policy objects. You
cannot join a machine to an Azure AD domain, and there is no NTLM
or Kerberos authentication. Instead, protocols like OAuth, OpenID
Connect (based on OAuth 2.0), SAML, and WS-Federation are used.

https://dbatools.io/


You can authenticate (prove who you are), which then provides
authorization (permission, or claims) to access certain services, and
these services might not be controlled by the service that
authenticated you. Think back to network credentials. On an on-
premises AD, your user credentials know who you are (your
authentication) and what you can do (your authorization).

Protocols like OpenID Connect blur these lines by extending an
authorization protocol (what you can do) into an authentication
protocol (who you are). This works in a similar manner to Kerberos,
whereby an authorization server allows access to certain Internet
services and applications, although permissions are granted with
claims.

Assert your identity with claims
Claims are a set of “assertions of information about the subject that
has been authenticated” (https://learn.microsoft.com/azure/active-
directory/develop/access-tokens#claims-in-access-tokens).

Think of your user credentials as a security token that indicates who
you are, based on how you were authenticated. This depends on the
service you originally connected to (i.e., Facebook, LinkedIn, Google,
Office 365, or Twitter).

Inside that user object is a series of properties, or attributes, usually
in the form of key-value pairs. The specific attributes, or claims,
depend on the authentication service used.

Authentication services like Azure AD might restrict the amount of
information permissible in a user object to provide the service or
application just enough information about you to prove who you are,
and to give you access to the service you’re requesting, without
sharing too much about you or the originating authentication service.

Federation and single sign-on

https://learn.microsoft.com/azure/active-directory/develop/access-tokens#claims-in-access-tokens


Federation is a fancy word that means an independent collection of
websites or services that can share information between them using
claims. An authentication service enables you to sign in with one
entity (LinkedIn, GitHub, or Microsoft) and then use that identity for
other services controlled by other entities.

This is what makes claims extremely useful. If you use a third-party
authentication service, that third party will make certain information
available in the form of claims (key-value pairs in your security token)
that another service to which you’re connecting can access without
needing to sign in again, and without that service having access into
the third-party service.

For example, suppose you use LinkedIn to sign into a blogging
service so you can leave a comment on a post. The blogging service
does not have access to your LinkedIn profile, but the claims it
provides might include a URL to your profile image, a string
containing your full name, and a second URL back to your profile.
This way, the blogging service does not know anything about your
LinkedIn account, including your employment history, because that
information is not in the claims necessary to leave a blog post
comment.

Log into Azure SQL Database
Azure SQL Database uses three levels of security to allow access to
a database. First is the firewall, which is a set of rules based on origin
IP address or ranges and allows connections to only TCP port 1433.

The second level is authentication (proving who you are). You can
either connect by using SQL Authentication, with a username and
password (like connecting to a contained database on an on-
premises SQL Server instance), or Azure AD authentication.

Microsoft recommends using Azure AD whenever possible because it
does the following (according to https://learn.microsoft.com/azure/sql-
database/sql-database-aad-authentication):

https://learn.microsoft.com/azure/sql-database/sql-database-aad-authentication


Centralizes user identities and offers password rotation in a
single place

Eliminates the storage of passwords by enabling integrated
Windows authentication and other forms of authentication
supported by Azure AD

Offers token (claims-based) authentication for applications
connecting to Azure SQL Database

The third level is authorization (what you can do). This is managed
inside the Azure SQL database using role memberships and object-
level permissions, and works in a similar way to an on-premises SQL
Server instance.

 You can read more about SQL Server security in Chapters 12
and 13.

Kerberos for Azure SQL Managed Instance
Windows Authentication for Azure AD principals, which is in preview
as of this writing, enables you to connect traditional on-premises
applications to an Azure SQL Managed Instance. You can set up your
existing Azure AD tenant as a Kerberos realm. Then, on the AD
domain, you create an incoming trust for that Azure AD realm. When
a client sends a Kerberos ticket to the Azure SQL Managed Instance,
the ticket is exchanged by this feature for an Azure AD token. This
allows authentication for Azure AD without providing access to the
internal domain.

Understand virtualization and
containers
Hardware abstraction has been around for many years. In fact,
Windows NT was designed to be hardware independent. We can



take this concept even further by abstracting through virtualization
and containers.

Virtualization. Abstracts the entire physical layer behind what’s
called a hypervisor, or virtual machine manager (VMM), so that
physical hardware on a host system can be logically shared
between different VMs, or guests, running their own operating
systems.

Containers. Abstract away not just the hardware, but the entire
operating system as well. Because it does not need to include
and maintain a separate OS, a container has a much smaller
resource footprint—often dedicated to a single application or
service with access to the subset of hardware it needs.

A virtual consumer (a guest OS or container) accesses resources in
the same way as a physical machine. As a rule, it has no knowledge
that it is virtualized.

Inside OUT
What is the cloud?

You can think of the cloud as a massive, virtualized
environment. Millions of servers are sitting in datacenters all
over the world, running tens or hundreds of virtual consumers
(VMs and containers) on each server. The service fabric (the
software that controls and manages the environment) is what
differentiates each cloud vendor.

Going virtual
The move to virtualization and containers has come about because in
many organizations, physical hardware is not being used to its full
potential, and systems might spend hundreds of hours per year sitting



idle. By consolidating an infrastructure, you can share resources
more easily, reducing the amount of waste and increasing the
usefulness of hardware.

Certain workloads and applications are not designed to share
resources, however, and misconfiguration of shared resources by
system administrators might not take these specialized workloads
into account. SQL Server is an excellent example of this, because it
is designed to use all the physical RAM in a server by default.

If resources are allocated incorrectly from the host level, contention
between the virtual consumers takes place. This phenomenon is
known as the noisy neighbor, in which one consumer monopolizes
resources on the host, which negatively affects the other consumers.
With some effort on the part of the network administrators, this
problem can be alleviated.

The benefits far outweigh the downsides, of course. You can move
consumers from one host to another in the case of resource
contention or hardware failure. Some orchestrator software can even
do this without even shutting down the consumer.

It is also much easier to take snapshots of virtualized file systems
than physical machines, which you can use to clone VMs, for
instance. This reduces deployment costs and time when deploying
new servers, by “spinning up” a VM template and configuring the OS
and the application software that was already installed on that virtual
hard drive.

Expanding on the concept of VM templates, you can also get these
same benefits using containers. With containers, you can spin up a
new container, which includes all the software needed to run an
application, based on an image in much the same way.

Note
A container is an image that is composed from a plain text
configuration file. Docker containers, for example, are
composed using a Dockerfile.



Over time, the benefits become more apparent. New processors with
low core counts are becoming more difficult to find. Virtualization
makes it possible for you to move physical workloads to virtual
consumers (now or later) that have the appropriate virtual core count,
and gives you the freedom to use existing licenses, thereby reducing
cost.

 David Klee writes more about this in the article “Point
Counterpoint: Why Virtualize a SQL Server?” available at
http://www.davidklee.net/2017/07/12/point-counterpoint-why-
virtualize-a-sql-server.

While there are several OS-level virtualization technologies in use
today (including Windows containers), we focus on Docker containers
specifically. As for VM hypervisors, there are two main players in this
space: Microsoft Hyper-V and VMware.

Provision resources for virtual consumers
Setting up VMs or containers requires an understanding of their
anticipated workloads. Fortunately, as long as resources are
allocated appropriately, a virtual consumer can run almost as quickly
as a physical server on the same hardware, but with all of the
benefits that virtualization offers. It makes sense, then, to
overprovision resources for many general workloads.

Avoid overcommitting more memory than you
have
Suppose you have 10 VMs filling various roles—such as Active
Directory domain controllers, DNS servers, file servers, and print
servers (the plumbing of a Windows-based network, with a low RAM
footprint)—all on a single host with 64 GB of physical RAM.

Each VM might require 16 GB of RAM to perform properly. However,
in practice, you have determined that 90 percent of the time, each VM

http://www.davidklee.net/2017/07/12/point-counterpoint-why-virtualize-a-sql-server


can function with 4 to 8 GB RAM, leaving 8 to 12 GB of RAM unused
per VM. You could thus overcommit each VM with 16 GB of RAM (for
a total of 160 GB), but still see acceptable performance, without
having a particular guest swapping memory to the drive because of
low RAM, 90 percent of the time.

For the remaining 10 percent of the time, for which paging
unavoidably takes place, you might decide that the performance
impact is not sufficient to warrant increasing the physical RAM on the
host. You are therefore able to run 10 virtualized servers on far less
hardware than they would have required as physical servers.

Caution
Because SQL Server uses all the memory it is configured to use
(limited by edition), it is not good practice to overcommit
memory for VMs running SQL Server. It is critical that the
amount of RAM assigned to a SQL Server VM is available for
exclusive use by the VM, and that the Max Server Memory
setting is configured correctly (see Chapter 3). This is especially
critical if you use the LPIM policy.

Provision virtual storage
In the same way that you can overcommit memory, you can
overcommit storage. This is called thin provisioning, in which the
consumer is configured to assume that there is a lot more space
available than is physically on the host. When a VM begins writing to
a drive, the actual space used is increased on the host until it reaches
the provisioned limit.

This practice is common with general workloads, for which space
requirements grow predictably. An OS like Windows Server might be
installed on a guest with 127 GB of visible space, but there might be
only 250 GB of actual space on the drive shared across 10 VMs.



For specialized workloads like SQL Server, thin provisioning is not a
good idea. Depending on the performance of the storage layer and
on the data access patterns of the workload, it is possible that the
guest will be slow due to drive fragmentation (especially with storage
built on mechanical hard drives), or even run out of storage space.
This can occur for any number of reasons, including long-running
transactions, infrequent transaction log backups, or a growing
tempdb.

It is therefore a better idea to use thick provisioning of storage for
specialized workloads. That way, the guest is guaranteed the storage
it is promised by the hypervisor, and there is one less thing to worry
about when SQL Server runs out of space at 3 a.m. on a Sunday
morning.

Note
Most of the original use-cases around containers were web and
application server workloads, so early implementations did not
include options for persisting data across container restarts.
This is why container storage was originally considered to be
ephemeral. Now that containers can be used for SQL Server,
persistent storage is available using either bind points or named
volumes.

When processors are no longer processors
Virtualizing CPUs is challenging, because as discussed earlier in this
chapter, CPUs work by having a certain number of clock cycles per
second. For logical processors (the physical CPU core plus any
logical cores if SMT is enabled), each core shares time slices, or time
slots, with each VM. Every time the CPU clock ticks over, that time
slot might be used by the hypervisor or any one of the guests.

Just as it is not recommended to overprovision RAM and storage for
SQL Server, you should not overprovision CPU cores. If there are
four quad-core CPUs in the host (four CPU sockets populated with a



quad-core CPU in each socket), there are 16 cores available for use
by the VMs, or 32 when accounting for SMT.

Inside OUT
How is CPU virtualization affected by SMT (Hyper-
Threading)?

Even though it is possible to assign as many virtual CPUs
(vCPUs) as there are logical cores, we recommend that you
limit the number of vCPUs to the number of physical cores
available (in other words, excluding SMT) for two reasons:

First, the number of execution resources on the CPU itself is
limited to the number of physical cores. Second, CPUs
manufactured before 2019 may be susceptible to security
vulnerabilities (discussed previously in the “Security
vulnerabilities in modern CPUs” section). In this case, you
may want to disable SMT altogether, or just patch your OS
and CPU microcode if the risks are acceptable.

Virtual CPU
A virtual CPU (vCPU) maps to a logical core, but in practice, the time
slots are shared evenly over each core in the physical CPU. A vCPU
is more powerful than a single core because the load is parallelized
across each core.

One of the risks of mixing different types of workloads on a single
host is that a business-critical workload like SQL Server might require
all the vCPUs to run a large, parallelized query. If there are other
guests using those vCPUs during that specific time slot and the CPU
is overcommitted, those guests will need to wait.

There are certain algorithms in hypervisors that allow vCPUs to cut in
line and take over a time slot. However, this results in a lag for the



other guests, causing performance issues. For example, suppose a
file server has two virtual processors assigned to it. Further assume
that on the same host, a SQL Server has eight virtual processors
assigned to it. It is possible for the VM with fewer virtual logical
processors to “steal” time slots because it has a lower number
allocated to it.

There are several ways to deal with this, but the easiest solution is to
keep like with like. That is, any guests on the same host should have
the same number of vCPUs assigned to them, running similar
workloads. That way, the time slots are more evenly distributed, and it
becomes easier to troubleshoot processor performance. It might also
be practical to reduce the number of vCPUs allocated to a SQL
Server instance so that the time slots are better distributed.

Caution
A VM running SQL Server might benefit from fewer vCPUs. If
too many cores are allocated to the VM, it could cause
performance issues due to foreign memory access because
SQL Server might be unaware of the underlying NUMA
configuration. Remember to size your VM CPU core allocation
as a multiple of a NUMA node size.

The network is virtual, too
Before, certain hardware devices, such as NICs, routers, firewalls,
and switches, might have been used to perform discrete tasks. But
now, these tasks can be accomplished exclusively through a software
layer using virtual network devices.

Several VMs might share one or more physical NICs on a physical
host, but because it’s all virtualized, a VM might have several virtual
NICs mapped to that one physical NIC.

This enables several things that previously might have been
cumbersome and costly to implement. For example, software



developers can now test against myriad configurations for their
applications without having to build a physical lab environment using
all different combinations.

With the general trend of consolidating VMs and containers, virtual
networking facilitates combining and consolidating network devices
and services into the same environment as these virtual consumers,
lowering the cost of administration and reducing the need to purchase
separate hardware. You can replace a virtualized network device
almost immediately if something goes wrong, vastly reducing
downtime.



Chapter 3

Design and implement an
on-premises database
infrastructure

Introduction to SQL Server database architecture
Data files and filegroups
Record changes in the transaction log
Partition tables
Compress data
Manage the temporary database
Configuration settings

This chapter covers the architecture of an on-premises database
infrastructure, including the differences between data and transaction
log files, and how certain features work to ensure durability and
consistency even during unexpected events.

We cover what certain important configuration settings mean, both
from a performance and best-practice perspective. We also go into
detail about the different kinds of data compression and file system
settings that are most appropriate for your environment.



The sample scripts in this chapter, and all scripts for this book, are
available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

Introduction to SQL Server database
architecture
The easiest way to observe the implementation of a SQL Server
database is by its files. Every SQL Server database has at least two
main kinds of files:

Data. The data itself is stored in one or more filegroups. Each
filegroup in turn comprises one or more physical data files.

Transaction log. This is where all data modifications are saved
until committed or rolled back and then hardened to a data file.
There is usually only one transaction log file per database.

Note
There are several other file types used by SQL Server, including
logs, trace files, and memory-optimized filegroups, which we
discuss later in this chapter.

Data files and filegroups
When you create a user database without specifying any overriding
settings, SQL Server uses the model database as a template. This
provides your new database with its default configuration, including
ownership, compatibility level, file growth settings, recovery model
(full, bulk-logged, simple), and physical file settings.

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


By default, each new database has one transaction log file and one
data filegroup. This data filegroup is known as the primary filegroup,
comprising a single data file by default. It is known as the primary
data file, which has the file extension .mdf. (See Figure 3-1.)

Figure 3-1 The data files as they make up one or more filegroups
in a database.

Note
The file extensions used for SQL Server data and transaction
log files are listed by convention only and are not required.



You can have more than one file in a filegroup, which can provide
better performance through parallel reads and writes (but please test
this scenario before adding too many files). Secondary data files
generally have the file extension .ndf.

For large databases (more than 100 GB), you can separate your data
into multiple filegroups based on a business rule (one per year, for
instance). The real benefit comes with adding new filegroups and
splitting your logical data storage across those filegroups. This makes
it possible for you to do things like piecemeal backups and online
restores at a filegroup level in Enterprise edition. Only offline filegroup
restore is available in Standard edition.

Inside OUT
How do I manage partial recovery using filegroups?

When designing your database, we recommend that you
avoid using the primary filegroup for user data. Should a
disaster occur, you can restore your primary filegroup and
most current data immediately (using partial restore), which
brings the database online much more quickly than having to
restore everything from a single filegroup.

You can also age-out data into a filegroup that is set to read-only and
store it on slower storage than the current data, to manage storage
costs better.

If you use table partitioning (see the “Partition tables” section later in
the chapter), splitting partitions across filegroups makes even more
sense.

Group data pages with extents



SQL Server data pages are 8 KB in size. Eight of these contiguous
pages is called an extent, which is 64 KB in size.

There are two types of extents in a SQL Server data file:

Uniform extent. All eight 8-KB pages per extent are assigned to
a single object.

Mixed extent (rare). Each page in the extent is assigned to its
own separate object (one 8-KB page per object).

Mixed extents were originally created to reduce storage requirements
for database objects, back when mechanical hard drives were much
smaller and more expensive. As storage becomes faster and
cheaper, and SQL Server more complex, contention (a hotspot) can
occur at the beginning of a data file, especially if a lot of small objects
are being created and deleted.

Mixed extents are turned off by default for tempdb and user
databases, and are turned on by default for system databases. If you
want, you can configure mixed extents on a user database by using
the following command:
Click here to view code image

ALTER DATABASE <dbname> SET MIXED_PAGE_ALLOCATION ON;

Contents and types of data pages
All data pages begin with a header of 96 bytes, followed by a body
containing the data itself. At the end of the page is a slot array, which
fills up in reverse order, beginning with the first row, as illustrated in
Figure 3-2. It instructs the Database Engine where a particular row
begins on that particular page. Note that the slot array does not need
to be in any particular order after the first row.



Figure 3-2 A typical 8-KB data page, showing the header, the
data, and the slot array.

At certain points in the data file, there are system-specific data pages
(also 8 KB in size). These help SQL Server recognize and manage
the different data within each file.

Several types of pages can be found in a data file:

Data. Regular data from a heap or a clustered index at the leaf
level (the data itself; what you would see when querying a
table).



Index. Non-clustered index data at the leaf and non-leaf level,
as well as clustered indexes at the non-leaf level.

Text/image. Sometimes referred to as large object (LOB) data
types. These include text, ntext, image, nvarchar(max),
varchar(max), varbinary(max), Common Language Runtime
(CLR) data types, xml, and sql_variant where it exceeds 8 KB.
Overflow data can also be stored here (data that has been
moved off-page by the Database Engine), with a pointer from
the original page.

Global Allocation Map (GAM). Keeps track of all free extents in
a data file. There is one GAM page for every GAM interval
(64,000 extents, or roughly 4 GB).

Shared Global Allocation Map (SGAM). Keeps track of all
extents that can be mixed extents. It has the same interval as
the GAM.

Page Free Space (PFS). Keeps track of free space inside heap
and large object pages. There is one PFS page for every PFS
interval (8,088 pages, or roughly 64 MB).

Index Allocation Map (IAM). Keeps track of which extents in a
GAM interval belong to a particular allocation unit. (An allocation
unit is a bucket of pages that belong to a partition, which in turn
belongs to a table.) It has the same interval as the GAM. There
is at least one IAM for every allocation unit. If more than one
IAM belongs to an allocation unit, it forms an IAM chain.

Bulk Changed Map (BCM). Keeps track of extents modified by
bulk-logged operations since the last full backup. It is used by
transaction log backups in the bulk-logged recovery model to
see which extents should be backed up.

Differential Changed Map (DCM). Sometimes called a
differential bitmap. Keeps track of extents that were modified
since the last full or differential backup. Used for differential
backups.



Boot page. Contains information about the database. There is
only one boot page per database.

File header page. Contains information about the file. There is
only one per data file.

 To find out more about the internals of a data page, visit
https://learn.microsoft.com/sql/relational-databases/pages-and-
extents-architecture-guide and read Paul Randal’s post, “Inside
the Storage Engine: Anatomy of a page,” at
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-
anatomy-of-a-page.

Inside OUT
What about memory-optimized objects?

Even memory-optimized objects rely on the storage
subsystem and require significant IOPS. (For more about
storage, refer to Chapter 2, “Introduction to database server
components.”) For example, the transaction log must still be
written to, though in a highly efficient manner.

Memory-optimized objects do not map to 8-KB data pages on
disk the same way regular objects do. They use their own
filegroup called the memory-optimized filegroup and they are
implemented in a similar fashion as the FILESTREAM
filegroup, in that all objects are stored in folders on the
underlying file system.

All data files and delta file pairs for memory-optimized objects
are stored in this memory-optimized filegroup. The file pairs
record changes to the tables and are used during recovery
(including when the SQL Server is restarted) to repopulate the
objects in memory (if using the default SCHEMA_AND_DATA
durability). You can remove the memory-optimized filegroup
only by dropping a database.

https://learn.microsoft.com/sql/relational-databases/pages-and-extents-architecture-guide
https://www.sqlskills.com/blogs/paul/inside-the-storage-engine-anatomy-of-a-page


You must provide four times the drive space that your
memory-optimized tables require. We therefore recommend a
minimum of four storage containers for this filegroup, spread
across physical drives. For more information, visit
https://learn.microsoft.com/sql/relational-databases/in-
memory-oltp/the-memory-optimized-filegroup.

Verify data pages by using a checksum
By default, when a data page is read into the buffer pool, a checksum
is automatically calculated over the entire 8-KB page and compared
to the checksum stored in the page header on the drive. This is how
SQL Server keeps track of page-level corruption—by detecting when
the contents of a data page do not match the results the Database
Engine expects. This corruption can happen through storage failures,
physical memory corruption, or SQL Server bugs. If the checksum
stored on the drive does not match the checksum in memory,
corruption has occurred. A record of this suspect page is stored in the
msdb database, and you will see an error message when that page is
accessed.

The same checksum is performed when writing to a drive. If the
checksum on the drive does not match the checksum in the data
page in the buffer pool, page-level corruption has occurred.

Although the PAGE_VERIFY property on new databases is set to
CHECKSUM by default, it might be necessary to check databases that
have been upgraded from previous versions of SQL Server,
especially those created prior to SQL Server 2005 (compatibility level
90).

You can look at the checksum verification status on all databases by
using the following query:
Click here to view code image

SELECT name, page_verify_option_desc 
FROM sys.databases;

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/the-memory-optimized-filegroup


You can reduce the likelihood of data page corruption by using error-
correcting code (ECC) memory. Data page corruption on the drive is
detected by using DBCC CHECKDB and other operations.

 For information on how to proactively detect corruption, review
the sections on database corruption in Chapter 8, “Maintain
and monitor SQL Server.”

Record changes in the transaction log
The transaction log is the most important component of a SQL Server
database because it is where all units of work (transactions)
performed on a database are recorded, before the data can be
written (flushed) to the drive. The transaction log file usually has the
file extension .ldf.

Note
Although it is possible to use more than one file to store the
transaction logs for a database, we do not recommend this
because there is no performance or maintenance benefit to
using multiple files. To understand why and where it might be
appropriate to have more than one, see the section “Inside the
transaction log file” later in the chapter.

A successful transaction is said to be committed. An unsuccessful
and completely reversed transaction is said to be rolled back.

In Chapter 2, we saw that when SQL Server needs an 8-KB data
page from the data file, it usually (if the page doesn’t already exist in
the buffer pool) copies it from the drive and stores a copy of it in
memory in an area called the buffer pool while that page is required.
When a transaction needs to modify that page, it works directly on the
copy of the page in the buffer pool. If the page is subsequently
modified, a log record of the modification is created in the log buffer
(also in memory), and that log record is then written to the drive. This



process happens synchronously—a transaction is not considered
complete by the Database Engine until it is written into the transaction
log.

SQL Server uses a technique called write-ahead logging (WAL),
which ensures that no changes are written to the data file before the
necessary log record is written to the drive in a permanent form (in
this case, non-volatile storage).

However, you can use delayed durability (also known as lazy
commit), which does not save every change to the transaction log as
it happens. Instead, it waits until the log cache grows to a certain size
(or sp_flushlog runs) before flushing it to the drive.

Caution
If you turn on delayed durability for your database, the
performance benefit has a downside of potential data loss if the
underlying storage layer experiences a failure before the log
can be saved. Indeed, sp_flushlog should also be run before
shutting down SQL Server for all databases with delayed
durability enabled.

 You can read more about log persistence and how it affects
durability of transactions in Chapter 14, “Performance tune
SQL Server,” and at https://learn.microsoft.com/sql/relational-
databases/logs/control-transaction-durability.

A transaction’s outcome is unknown until a commit or rollback occurs.
An error might occur during a transaction, or the operator might
decide to roll back the transaction manually because the results were
not as expected. In the case of a rollback, changes to the modified
data pages must be undone. SQL Server will use the saved log
records to undo the changes for an incomplete transaction.

Only when the transaction log file is written to can the modified 8-KB
page be saved in the data file, though the page might be modified

https://learn.microsoft.com/sql/relational-databases/logs/control-transaction-durability


several times in the buffer pool before it is flushed to the drive using a
checkpoint operation.

Our guidance, therefore, is to use the fastest storage possible for the
transaction log file(s), because of the low-latency requirements.

Flush data to the storage subsystem with
checkpoints
Recall from Chapter 2 that any changes to data are written to the
database file asynchronously for performance reasons. This process
is controlled by a database checkpoint. As its name implies, this is a
database-level setting that can be changed under certain conditions
by modifying the recovery interval or running the CHECKPOINT
command in the database context.

The checkpoint process takes all the modified pages in the buffer
pool, as well as transaction log information that is in memory, and
writes it to the storage subsystem. This reduces the time it takes to
recover a database because only the changes made after the latest
checkpoint need to be rolled forward in the Redo phase (see the
“Restart with recovery” section later in the chapter).

Inside the transaction log file
A transaction log file is split into logical segments, called virtual log
files (VLFs). These segments are dynamically allocated when the
transaction log file is created and whenever the file grows. The size of
each VLF is not fixed, and is based on an internal algorithm, which
depends on the version of SQL Server, the current file size, and file
growth settings. Each VLF has a header containing a minimum log
sequence number and information indicating whether the VLF is
active.

Every transaction is uniquely identified by a log sequence number
(LSN). Each LSN is ordered, so a later LSN will be greater than an
earlier LSN. The LSN is also used by database backups and
restores.



 For more information see Chapter 8, and Chapter 10,
“Develop, deploy, and manage data recovery.”

Figure 3-3 illustrates how the transaction log is circular. When a VLF
is first allocated by creation or file growth, it is marked inactive in the
VLF header. Transactions can be recorded only in active portions of
the log file, so the Database Engine looks for inactive VLFs
sequentially. Then, as it needs them, the Database Engine marks
them as active to allow transactions to be recorded.

Figure 3-3 The transaction log file, showing active and inactive
VLFs.

The operation to make a VLF inactive is called log truncation, but this
operation does not affect the size of the physical transaction log file. It
just means that an active VLF has been marked inactive and can be
reused.

There are several reasons why log truncation can be delayed. After
the transactions that use an active VLF are committed or rolled back,
what happens next depends on several factors:

The recovery model

Simple. An automatic checkpoint is queued after the
recovery interval timeout is reached or if the log becomes
70 percent full.



Full or bulk-logged. A transaction log backup must take
place after a transaction is committed. A checkpoint is
queued if the log backup is successful.

Other processes that can delay log truncation:

Active backup or restore. The transaction log cannot be
truncated if it is being used by a backup or restore
operation.

Active transaction. If another transaction is using an
active VLF, it cannot be truncated.

Availability group replica. Availability group changes
must be synchronized before the log can be truncated. This
occurs in high-performance mode or if the mirror is behind
the principal database.

Replication. Transactions that have not yet been delivered
to the distribution database can delay log truncation.

Oldest page. If a database is configured to use indirect
checkpoints, the oldest page in the database might be
older than the log sequence number (LSN), which can
delay truncation.

Database snapshot creation. This is usually brief, but
creating snapshots (manually or through database
consistency checks, for instance) can delay truncation.

Log scan. Usually brief, but this, too, can delay a log
truncation.

Checkpoint operation. See the section “Flush data to the
storage subsystem with checkpoints” earlier in the chapter.

In-Memory OLTP checkpoint. A checkpoint for In-Memory
OLTP needs to be performed for memory-optimized tables.
An automatic checkpoint is created when the transaction
log is larger than 1.5 GB since the last checkpoint.



 To learn more, read “Factors that can delay log truncation” at
https://learn.microsoft.com/sql/relational-databases/logs/the-
transaction-log-sql-server#FactorsThatDelayTruncation.

After the checkpoint is issued and the dependencies on the
transaction log (as just listed) are removed, the log is truncated by
marking those VLFs as inactive.

The log is accessed sequentially in this manner until it gets to the end
of the file. At this point, the log wraps around to the beginning, and
the Database Engine looks for an inactive VLF from the start of the
file to mark active. If there are no inactive VLFs available, the log file
must create new VLFs by growing according to the auto growth
settings.

If the log file cannot grow, it will stop all operations on the database
until VLFs can be reclaimed or created.

Inside OUT
What do I do if I run out of space in the transaction log
file?

If a transaction log runs out of space because no inactive
VLFs are available, you first must take a transaction log
backup (if the database is in the full or bulk-logged recovery
model). Failing that, you can grow the transaction log file. If
there is insufficient space on the drive to grow the transaction
log file, you can assign a second log file to the database on a
different drive.

In many cases, a transaction log file runs out of space
because the database is in the full or bulk-logged recovery
model, and transaction log backups are not being created
regularly. We recommend that you allow transaction log files
to grow automatically, with a fixed auto growth size, and to
generate regular transaction log backups.

https://learn.microsoft.com/sql/relational-databases/logs/the-transaction-log-sql-server#FactorsThatDelayTruncation


If you find yourself running out of space on a regular basis
due to long-running transactions (or unfettered log growth in
simple recovery), consider using shorter transactions and
enabling accelerated database recovery. For more on
accelerated database recovery, see “A faster recovery with
accelerated database recovery” later in this chapter.

The Minimum Recovery LSN
When a checkpoint occurs, a log record is written to the transaction
log stating that a checkpoint has commenced. After this, the Minimum
Recovery LSN (MinLSN) must be recorded. The MinLSN is the
minimum of either the LSN at the start of the checkpoint, the LSN of
the oldest active transaction, or the LSN of the oldest replication
transaction that hasn’t been delivered to the transactional replication
distribution database. In other words, the MinLSN “…is the log
sequence number of the oldest log record that is required for a
successful database-wide rollback”
(https://learn.microsoft.com/sql/relational-databases/sql-server-
transaction-log-architecture-and-management-guide).

 To learn more about the distribution database, read about
replication in Chapter 11, “Implement high availability and
disaster recovery.”

This way, crash recovery knows to start recovery only at the MinLSN
and can skip over any older LSNs in the transaction log (if they exist).
This process minimizes the number of records to be processed at
database startup, after a restore.

The checkpoint also records the list of active transactions that have
made changes to the database. If the database is in the simple
recovery model, the unused portion of the transaction log before the
MinLSN is marked for reuse. All dirty data pages and information
about the transaction log are written to the storage subsystem, the
end of the checkpoint is recorded in the log, and (importantly) the

https://learn.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide


LSN from the start of the checkpoint is written to the boot page of the
database.

Note
In the full and bulk-logged recovery models, a successful
transaction log backup issues a checkpoint implicitly.

Types of database checkpoints
Checkpoints can be activated in a number of different scenarios. The
most common is the automatic checkpoint, which is governed by the
recovery interval setting (see the Inside OUT sidebar that follows to
see how to modify this setting) and by default takes place
approximately once every minute for active databases (those
databases in which a change has occurred at all).

Note
Infrequently accessed databases with no transactions do not
require a frequent checkpoint, because nothing has changed in
the buffer pool.

Other checkpoint events include the following:

Database backups (including transaction log backups)

Database shutdowns

Adding or removing files on a database

SQL Server instance shutdown

Minimally logged operations (for example, in a database in the
simple or bulk-logged recovery model)

Explicit use of the CHECKPOINT command



Inside OUT
How do you set the recovery interval?

The recovery interval “…defines an upper limit on the time
recovering a database should take. The SQL Server
Database Engine uses the value specified for this option to
determine approximately how often to issue automatic
checkpoints on a given database”
(https://learn.microsoft.com/sql/database-engine/configure-
windows/configure-the-recovery-interval-server-configuration-
option). You can also visit that page to learn how to configure
this setting.

We recommend that you do not increase this value unless you
have a very specific need. A longer recovery interval can
increase database recovery time, which can affect your
Recovery Time Objective (RTO).

Try to keep your transactions as short as possible. This will
also improve recovery time if you have a crash and have to
apply changes from the transaction log. Consider using
accelerated database recovery, which you can read about in
the “A faster recovery with accelerated database recovery”
section later in this chapter.

You can read more about coding efficient transactions at
https://learn.microsoft.com/sql/relational-databases/sql-server-
transaction-locking-and-row-versioning-guide.

Four types of checkpoints can occur:

Automatic. Issued internally by the Database Engine to meet
the value of the recovery interval setting at the instance level.
On SQL Server 2016 and higher, the default is 1 minute.

https://learn.microsoft.com/sql/database-engine/configure-windows/configure-the-recovery-interval-server-configuration-option
https://learn.microsoft.com/sql/relational-databases/sql-server-transaction-locking-and-row-versioning-guide


Indirect. Issued to meet a user-specified target recovery time at
the database level if the TARGET_RECOVERY_TIME has been set.

Manual. Issued when the CHECKPOINT command is run.

Internal. Issued internally by various operations, such as
backup and snapshot creation, to ensure consistency between
the log and the drive image.

 For more information about checkpoints, visit
https://learn.microsoft.com/sql/relational-
databases/logs/database-checkpoints-sql-server.

Restart with recovery
Whenever SQL Server starts, recovery (also referred to as crash
recovery or restart recovery) takes place on every single database
(on at least one thread per database, to ensure that it completes as
quickly as possible) because SQL Server does not know for certain
whether each database was shut down cleanly.

The transaction log is read from the latest checkpoint in the active
portion of the log, or the LSN it gets from the boot page of the
database (see the “The Minimum Recovery LSN” section earlier in
the chapter), and scans all active VLFs looking for work to do.

All committed transactions are rolled forward (Redo portion) and then
all uncommitted transactions are rolled back (Undo portion). This
process ensures that the data that was written to the transaction log,
but did not yet make it into the data files, is played back into the data
files. The total number of rolled forward and rolled back transactions
are recorded for each database with a respective entry in the SQL
Server Error Log file.

SQL Server Enterprise edition brings the database online
immediately after the Redo portion is complete. Other editions must
wait for the Undo portion to complete before the database is brought
online.

https://learn.microsoft.com/sql/relational-databases/logs/database-checkpoints-sql-server


 See Chapter 8 for more information about database corruption
and recovery.

The reason we cover this in such depth in this introductory chapter is
to help you to understand why drive performance is paramount when
creating and allocating database files.

When a transaction log file is created or file growth occurs, the
portion of the drive must be stamped with a known starting value.
(The file system literally writes the binary value 0xC0 in every byte in
that file segment.) This is commonly called zeroing out because the
binary value was 0x00 prior to SQL Server 2016.

As you can imagine, this can be time consuming for larger files, so
you need to take care when setting file growth options—especially
with transaction log files. You should measure the performance of the
underlying storage layer and choose a fixed growth size that
balances performance with reduced VLF count. Instant file
initialization does not apply to the initial allocation of transaction log
files during restore or recovery. A large transaction log file could
impact the duration.

Inside OUT
How can you verify that instant file initialization (IFI) is
enabled?

IFI is granted to a SQL Server service account via the Perform
Volume Maintenance Tasks permission in Local Security
Policy on the Windows server. But it’s straightforward to verify
whether IFI is in place for the SQL Server service, via the
sys.dm_server_services dynamic management view:

Click here to view code image

SELECT servicename, instant_file_initialization_enabled 
FROM sys.dm_server_services 
WHERE filename LIKE '%sqlservr.exe%';



MinLSN and the active log
As mentioned, each VLF contains a header that includes an LSN and
an indicator as to whether that VLF is active. The portion of the
transaction log from the VLF containing the MinLSN to the VLF
containing the latest log record is considered the active.

All records in the active log are required to perform a full recovery if
something goes wrong. The active log must therefore include all log
records for uncommitted transactions, too, which is why long-running
transactions can be problematic. Replicated transactions that have
not yet been delivered to the distribution database can also affect the
MinLSN.

Any type of transaction that does not allow the MinLSN to increase
during the normal course of events affects the overall health and
performance of the database environment, because the transaction
log file might grow uncontrollably.

When VLFs cannot be made inactive until a long-running transaction
is committed or rolled back, or if a VLF is in use by other processes
(including database mirroring, availability groups, and transactional
replication, for example), the log file is forced to grow. Any log
backups that include these long-running transaction records will also
be large. The recovery phase can therefore take longer because
there is a much larger volume of active transactions to process.

 You can read more about transaction log file architecture at
https://learn.microsoft.com/sql/relational-databases/sql-server-
transaction-log-architecture-and-management-guide.

A faster recovery with accelerated database
recovery

https://learn.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide


SQL Server 2019 introduced accelerated database recovery (ADR),
which can be enabled at the database level. If you are using Azure
SQL Database, ADR is enabled by default. At a high level, ADR
trades extra space in the data file for reduced space in the
transaction log, and for improved performance during manual
transaction rollbacks and crash recovery—especially in environments
where long-running transactions are common.

It is made up of four components:

Persisted version store (PVS). This works in a similar way to
read committed snapshot isolation (RCSI), recording a
previously committed version of a row until a transaction is
committed. The main difference is that the PVS is stored in the
user database and not in tempdb, which allows database-
specific changes to be recorded in isolation from other instance-
level operations.

Logical revert. If a long-running transaction is aborted, the
versioned rows created by the PVS can be safely ignored by
concurrent transactions. Additionally, upon rollback, the previous
version of the row is immediately made available by releasing all
locks.

Secondary log stream (sLog). The sLog is a low-volume in-
memory log stream that records non-versioned operations
(including lock acquisitions). It is persisted to the transaction log
file during a checkpoint operation and is aggressively truncated
when transactions are committed.

Cleaner. This asynchronous process periodically cleans page
versions that are no longer required. SQL Server 2022
introduces a multi-threaded version cleanup—beneficial when
you have a small number of large databases on a given server.
Beyond multi-threading the version cleaner process consumes
less memory and capacity.

SQL Server 2022 also introduces user transaction cleanup, which
clears pages in the version store that could not be cleaned up due to



table-level locks blocking the cleanup the process. Beyond these
changes, the ADR process has been better optimized to consume
fewer resources.

Where ADR shines is in the Redo and Undo phases of crash
recovery. In the first part of the Redo phase, the sLog is processed
first. Because it contains only uncommitted transactions since the last
checkpoint, it is processed extremely quickly. The second part of the
Redo phase begins from the last checkpoint in the transaction log, as
opposed to the oldest committed transaction.

In the Undo phase, ADR completes almost instantly by first undoing
non-versioned operations recorded by the sLog, and then performing
a logical revert on row-level versions in the PVS and releasing all
locks.

Customers using this feature may notice faster rollbacks, a significant
reduction in transaction log usage for long-running transactions,
faster SQL Server startup times, and a small increase in the size of
the data file for each database where this is enabled (on account of
the storage required for the PVS). As with all features of SQL Server,
we recommend that you do testing before enabling this on all
production databases.

Partition tables
SQL Server allows you to break up the storage of a table or index into
logical units, or partitions, for easier management and maintenance
while still treating it as a single table. All tables in SQL Server are
already partitioned if you look deep enough into the internals. It just
so happens that there is one logical partition per table by default.

 Chapter 7, “Understand table features,” goes into more detail
about table partitioning.

This concept is called horizontal partitioning. Suppose a database
table is growing extremely large, and adding new rows is time
consuming. You might decide to split the table into groups of rows,



based on a partitioning key (typically a date column), with each group
in its own partition. You can then store these in different filegroups to
improve read and write performance.

Breaking up a table into logical partitions can also result in a query
optimization called partition elimination, by which only the partition
that contains the data you need is queried. However, it was not
designed primarily as a performance feature. Partitioning tables will
not automatically result in better query performance; in fact,
performance might be worse due to other factors, specifically around
statistics.

Even so, there are some major advantages to table partitioning,
which benefit large datasets, specifically around rolling windows and
moving data in and out of the table. This process is called partition
switching, by which you can switch data into and out of a table almost
instantly.

Assume you need to load data into a table every month and then
make it available for querying. With table partitioning, you put the
data you want to insert into a separate table in the same database,
which has the same structure and clustered index as the main table.
Then, a switch operation moves that data into the partitioned table
almost instantly because no data movement is needed.

This makes it very easy to manage large groups of data or data that
ages out at regular intervals (sliding windows), because partitions can
be switched out nearly immediately.

Inside OUT
Should you use partitioned tables or partitioned views?

Because table partitioning is available in all editions of SQL
Server, you might find it an attractive option for smaller
databases. However, it might be more prudent to use
partitioned views instead.



Partitioned views use a database view that is a union query
against a group of underlying tables. Instead of querying a
partitioned table directly, you would query the view.

Using key constraints on the primary key for each base table
still allows the query optimizer to use a tactic like “partition”
elimination (base table elimination). Performance-wise,
moving data in and out of the partitioned view would be
almost instantaneous because you need to update only the
view itself to add or remove a particular base table.

Compress data
SQL Server supports several types of data compression to reduce
the amount of drive space required for data and backups, as a trade-
off against higher CPU utilization.

 You can read more about data compression
https://learn.microsoft.com/sql/relational-databases/data-
compression/data-compression.

In general, the amount of CPU overhead required to perform
compression and decompression depends on the type of data
involved, and in the case of data compression, the type of queries
running against the database, as well. Even though the higher CPU
load might be offset by the savings in I/O, we always recommend
testing before implementing this feature.

Table and index compression
SQL Server includes several options for compressing data stored in
tables and indexes. We discuss compressing rowstore data in this
section. You can read more about columnstore indexes in Chapter
15, “Understand and design indexes.”

https://learn.microsoft.com/sql/relational-databases/data-compression/data-compression


Note
SQL Server 2019 introduced a new collation type, UTF-8, which
may improve storage of Latin-based strings. See Chapter 7 for
more information.

Row compression
You turn on row compression at the table or index level, or on the
individual partition level for partitioned objects. Each column in a row
is evaluated according to the type of data and contents of that
column, as follows:

Numeric data types (such as integer, decimal, floating point,
datetime, money, and their derived types) are stored as variable-
length strings at the physical layer.

Fixed-length character data types are stored as variable-length
strings, where the blank trailing characters are not stored.

Variable-length data types, including large objects, are not
affected by row compression.

Bit columns consume more space due to associated metadata.

Row compression can be useful for tables with fixed-length character
data types and where numeric types are overprovisioned (e.g., a
bigint column that contains mostly int values). Unicode
compression alone can save between 15 and 50 percent, depending
on your locale and collation.

 You can read more about row compression at
https://learn.microsoft.com/sql/relational-databases/data-
compression/row-compression-implementation.

Page compression

https://learn.microsoft.com/sql/relational-databases/data-compression/row-compression-implementation


You enable page compression at the table or index level, but it
operates on all data pages associated with that table, including
indexes, table partitions, and index partitions. Leaf-level pages (look
ahead to Figure 3-4) are compressed using three steps:

1. Row compression

2. Prefix compression

3. Dictionary compression

Non-leaf-level pages are compressed using row compression only.
This is for performance reasons.

Inside OUT
What is the difference between leaf-level and non-leaf-
level pages?

Clustered and non-clustered rowstore indexes in SQL Server
are stored in a structure known as a B+ tree. The tree has a
root node, which fans out to child nodes, with the data itself at
the leaf level.

Any nodes that appear between the root and leaf levels are
called intermediate, or non-leaf-level nodes. Data in the leaf
level is accessed (through a seek or a scan operation) by
using page identifiers in the root and intermediate levels,
which contain pointers to the respective starting key values in
the leaf level. When the leaf level is reached, the slot array at
the end of each page contains a pointer to the exact row.

Figure 3-4 presents an example of a clustered index.



Figure 3-4 A small clustered index with leaf and non-leaf levels,
clustered on ColID.

 You can read more about indexes in Chapter 7, Chapter 14,
and Chapter 15. To learn more about index structures, visit
https://learn.microsoft.com/sql/relational-databases/sql-server-
index-design-guide.

Prefix compression works per column, by searching for a common
prefix in each column—for example, the values AAAB and AAAC. In this
case, the values of AAA would be moved to the header. A row is
created just below the page header, called the compression
information (CI) structure, containing a single row of each column
with its own prefix. If any of a single column’s rows on the page match
the prefix, its value is replaced by a reference to that column’s prefix.

Dictionary compression then searches across the entire page, looking
for repeating values (irrespective of the column), and stores these in

https://learn.microsoft.com/sql/relational-databases/sql-server-index-design-guide


the CI structure. When a match is found, the column value in that row
is replaced with a reference to the compressed value.

If a data page is not full, it will be compressed using only row
compression. If the size of the compressed page along with the size
of the CI structure is not significantly smaller than the uncompressed
page, no page compression will be performed on that page.

Compress and decompress Transact-SQL
functions
While page and row compression act on most data types, they do not
work well on binary large object (BLOB) data types, such as videos,
images, and text documents. With the ability to store JSON
documents in SQL Server 2016, Microsoft introduced the COMPRESS
and DECOMPRESS T-SQL functions, which use standard gzip
compression to compress the data itself.

In SQL Server 2022, there is a dedicated method for compressing off-
row XML data for both columns and indexes. XML compression is
defined as part of the CREATE TABLE and CREATE INDEX statements.

Backup compression
Whereas page-level and row-level compression operate at the table
and index level, backup compression applies to the backup file for the
entire database.

Compressed backups are usually smaller than uncompressed
backups. This means fewer I/O operations are involved, which in turn
reduces the time it takes to perform a backup or restore. For larger
databases, this can have a dramatic effect on how long it takes to
recover from a disaster.

The backup compression ratio is affected by the type of data
involved, whether the database is encrypted, and whether the data is
already compressed. In other words, a database using page and/or



row compression might not gain any benefit from backup
compression.

The CPU can be limited for backup compression in Resource
Governor.

 You can read more about Resource Governor in the section
“Configuration settings” later in this chapter, and in more detail
in Chapter 8.

In most cases, we recommend turning on backup compression,
keeping in mind that you might need to monitor CPU utilization.

Intel QuickAssist Technology
SQL Server 2022 introduces support for Intel QuickAssist Technology
(Intel QAT) data compression with SQL Server backups. This can
potentially double your backup speed and reduces storage capacity
by approximately 5 percent. The Intel QAT backup compression
requires that you install Intel QAT drivers on the server.

 You can read more about integrated acceleration and
offloading at https://learn.microsoft.com/sql/relational-
databases/integrated-acceleration/use-integrated-
acceleration-and-offloading.

Manage the temporary database
tempdb is the working area of every database on the instance, and
there is only one tempdb per instance. SQL Server uses this
temporary database for several things that are mostly invisible to you,
including temporary tables, table variables, triggers, cursors, sorting,
version data for snapshot isolation and read-committed snapshot
isolation, index creation, user-defined functions, and many more.

Additionally, when performing queries with operations that don’t fit in
memory (the buffer pool and the buffer pool extension), these

https://learn.microsoft.com/sql/relational-databases/integrated-acceleration/use-integrated-acceleration-and-offloading


operations spill to the drive, requiring the use of tempdb.

Storage options for tempdb
Every time SQL Server restarts, tempdb is cleared out. If tempdb’s
data and log files don’t exist, they are re-created. If the files are
configured at a size that is different from their last active size, they will
automatically be resized as they are re-created at startup. Like the
database file structure described earlier, there is usually one tempdb
transaction log file and one or more data files in a single filegroup.

Performance is critical for tempdb—even more than with other
databases—to the point that the current recommendation is to use
your fastest storage for tempdb before using it for user database
transaction log files.

Where possible, use solid-state storage for tempdb. If you have a
failover cluster instance, have tempdb on local storage on each node.

Starting with SQL Server 2019, tempdb can store certain metadata in
memory-optimized tables for increased performance.

Inside OUT
How does memory-optimized metadata make tempdb
faster?

SQL Server 2019 introduced a feature where the system
tables used for managing the metadata for temporary objects
can be converted to in-memory tables, reducing contention on
this metadata. This means temporary objects can be created,
modified, and destroyed much more quickly due to better
concurrency.

You can enable this feature at the instance level by using the
following command and restarting SQL Server:

Click here to view code image



ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED 
TEMPDB_METADATA = ON;

To read more about this feature, including the limitations
around transactions and columnstore indexes, visit
https://learn.microsoft.com/sql/relational-
databases/databases/tempdb-database#memory-optimized-
tempdb-metadata.

SQL Server 2022 introduces performance enhancements to two
internal page types: Global Allocation Map (GAM) and Shared Global
Allocation Map (SGAM) pages, in both user databases and tempdb.
These enhancements benefit tempdb-heavy workloads. Workloads
that may benefit include, for example, busy databases with read-
committed snapshot isolation or applications that make heavy use of
temporary tables.

Recommended number of files
As with every database, only one transaction log file should exist for
tempdb.

For physical and virtual servers, the default number of tempdb data
files recommended by SQL Server Setup should match the number of
logical processor cores, up to a maximum of eight, keeping in mind
that your logical core count includes symmetrical multithreading (for
example, Hyper-Threading). Adding more tempdb data files than the
number of logical processor cores rarely results in improved
performance. In fact, adding too many tempdb data files could
severely harm SQL Server performance.

 You can read more about processors in Chapter 2.

Increasing the number of files to eight (and possibly more, based on
other factors) reduces tempdb contention when allocating temporary
objects, as processes seek out allocation pages in the buffer pool. If
the instance has more than eight logical processors allocated, you

https://learn.microsoft.com/sql/relational-databases/databases/tempdb-database#memory-optimized-tempdb-metadata


can test to see whether adding more files helps performance. This is
very much dependent on the workload.

You can allocate the tempdb data files together on the same volume
(see the “Types of storage” section in Chapter 2), provided the
underlying storage layer can meet the low-latency demands of
tempdb on your instance. If you plan to share the storage with other
database files, keep latency and IOPS in mind.

Inside OUT
Do you need Trace Flags 1118 and 1117 for tempdb?

On versions prior to SQL Server 2016, Trace Flag 1118 turned
off mixed extents at the instance level, which reduced
contention when creating and deleting many temporary
objects. Trace Flag 1117 ensured that all files allocated to any
database grew at the same rate. Because trace flags are
instance-wide, it meant that all databases were affected by
these trace flags, even though they mainly benefited tempdb.

Since SQL Server 2016, these trace flags have no effect.
Instead, uniform extents are turned on by default for tempdb
(MIXED_PAGE_ALLOCATION was mentioned previously in this
chapter), as is the setting to autogrow all files at the same
time.

Configuration settings
SQL Server has scores of settings that you can tune to your
workload. There are also best practices regarding the appropriate
settings (such as file growth, memory settings, and parallelism). We
cover some of these in this section.



 Chapter 6, “Provision and configure SQL Server databases,”
contains additional configuration settings for provisioning
databases.

Manage system usage with Resource Governor
Using Resource Governor, you can specify limits on resource
consumption at the application-session level. You can configure these
in real time, which allows for flexibility in managing workloads without
affecting other workloads on the system.

 You can find out more about Resource Governor in Chapter 8.

A resource pool represents the physical resources of an instance,
which means you can think of a resource pool itself as a mini SQL
Server instance. This allows a DBA to determine quality of service for
various workloads on the server.

To make the best use of Resource Governor, it is helpful to logically
group similar workloads together into a workload group so you can
manage them under a specific resource pool. For example, suppose
a reporting application has a negative impact on database
performance due to resource contention at certain times of the day.
By classifying it into a specific workload group, you can limit the
amount of memory or disk I/O that the reporting application can use,
reducing its effect on, say, a month-end process that needs to run at
the same time.

This is done via classification, which looks at the incoming application
session’s characteristics. That incoming session will be categorized
into a workload group based on your criteria. This facilitates fine-
grained resource usage that reduces the impact of certain workloads
on other, more critical workloads.

Caution
Classification offers a lot of flexibility and control because
Resource Governor supports user-defined functions (UDFs).



Resource Governor uses a scalar UDF that allows you to
employ system functions, tables, and even other UDFs to
classify sessions. This means a poorly written classifier function
can render the system nearly unusable. Always test classifier
functions and optimize them for performance. If you need to
troubleshoot a classifier function, use the dedicated
administrator connection (DAC) because it is not subject to
classification.

Configure the operating system page file
Operating systems use a portion of the storage subsystem for a page
file (also known as a swap file, or swap partition on Linux) for virtual
memory for all applications, including SQL Server, when available
memory is not sufficient for the current working set. It does this by
offloading (paging out) segments of RAM to the drive. Because
storage is slower than memory (see Chapter 2), data that has been
paged out is also slower when working from the system page file.

The page file also captures a system memory dump for crash
forensic analysis, a factor that dictates its size on modern operating
systems with large amounts of memory. Therefore, the general
recommendation for the system page file is that it should be at least
the same size as the server’s amount of physical memory.

Another general recommendation is that the page file should be
managed by the operating system (OS). For Windows Server, this
should be set to System Managed. Since Windows Server 2012, that
guideline has functioned well, but in servers with large amounts of
memory, it can result in a very large page file. So, be aware of that if
the page file is located on your OS volume. This is also why the page
file is best moved to its own volume, away from the OS volume.

On a dedicated SQL Server instance, you can set the page file to a
fixed size, relative to the max server memory assigned to SQL
Server. In principle, the database instance will use as much RAM as
you allow it, to that max server memory limit, so Windows will
preferably not need to page SQL Server out of RAM. On Linux, the



swap partition can be left at the default size or reduced to 80 percent
of the physical RAM, whichever is lower.

Note
If the Lock Pages in Memory policy is enabled, SQL Server will
not be forced to page out of memory, and you can set the page
file to a smaller size. This can free up valuable space on the OS
drive, which can be beneficial to the OS.

 For more about Lock Pages in Memory, see the section by the
same name in this chapter.

Take advantage of logical processors with
parallelism
SQL Server is designed to process data in parallel streams, which
can be more efficient than single-threaded operations. For more
information about multithreading, refer to the section “Central
processing unit” in Chapter 2.

 You can find out more about parallel query plans in Chapter
14.

In SQL Server, parallelism makes it possible for portions of a query
(or an entire query) to run on more than one logical processor at a
time. This has certain performance advantages for larger queries,
because the workload can be split more evenly across resources.
There is an implicit overhead with running queries in parallel,
however, because a controller thread must manage the results from
each logical processor and then combine them when each thread is
completed.

The SQL Server Query Optimizer uses a cost-based optimizer when
coming up with query plans. This means it makes certain
assumptions about the performance of the storage, CPU, and



memory, and how they relate to different query plan operators. Each
operation has a cost associated with it.

SQL Server will consider creating parallel plan operations, governed
by two parallelism settings: Cost Threshold for Parallelism and Max
Degree of Parallelism. These two settings can make a large
difference to the performance of a SQL Server instance if it is using
default settings.

Query plan costs are recorded in a unitless measure. In other words,
the cost bears no relation to resources such as drive latency, IOPS,
number of seconds, memory usage, or CPU power. Query tuning can
be difficult if you don’t keep this in mind. What matters is the
magnitude of this measure.

Cost threshold for parallelism
This is the minimum cost a query plan can incur before the optimizer
will even consider parallel query plans. If the cost of a query plan
exceeds this value, the query optimizer will take parallelism into
account when coming up with a query plan. This does not necessarily
mean that every plan with a higher cost is run across parallel
processor cores, but the chances are increased.

The default setting for cost threshold for parallelism is 5. Any query
plan with a cost of 5 or higher will be considered for parallelism. While
parallelism is helpful for queries that process large volumes of data,
the overhead of using parallelism is less efficient for relatively small
queries and can hurt overall server throughput. Given how much
faster and more powerful modern server processors are than when
this setting was first created, many queries will run just fine on a
single core—again, because of the overhead associated with parallel
plans. You should change this value on your server. Consider starting
with a value of 35 and testing by increasing in increments of 5 to
determine the most beneficial setting for your workload.



Inside OUT
Why doesn’t Microsoft change the defaults?

Microsoft is reticent to change default values because of its
strong support of backward compatibility. Many applications in
use today are no longer supported by their original creators
and might depend on default settings in Microsoft products.
Besides, if it is a best practice to change the default settings
when setting up a new instance of SQL Server, it does not
make much of a difference either way.

Note
Certain query operations can force some or all of a query plan
to run serially, even if the plan cost exceeds the cost threshold
for parallelism. Paul White’s article “Forcing a Parallel Query
Execution Plan” describes a few of these. You can read Paul’s
article at https://www.sql.kiwi/2011/12/forcing-a-parallel-query-
execution-plan.html.

It might be possible to write a custom process to tune the cost
threshold for parallelism setting automatically, using information from
the Query Store, but this would be an incredibly complex task and
would not be supported in many independent software vendor
applications. Because the Query Store works at the database level, it
helps identify the average cost of queries per database, and find an
appropriate setting for the cost threshold relative to your specific
workload.

 See more about the Query Store in the “Leverage the Query
Store feature” section in Chapter 14.

SQL Server 2022 introduces feedback for degree of parallelism,
which automatically adjusts the max degree of parallelism (MAXDOP)

https://www.sql.kiwi/2011/12/forcing-a-parallel-query-execution-plan.html


for individual queries where the degree of parallelism has caused
performance issues. This enhancement does require the Query Store
to be enabled.

Cost threshold for parallelism is an advanced server setting; you can
change it by using the command sp_configure 'cost threshold for
parallelism'. You can also change it in SQL Server Management
Studio by using the Cost Threshold For Parallelism setting, which
can be found in the Advanced page of the Server Properties dialog
box.

Max degree of parallelism
SQL Server uses the MAXDOP value to select the maximum number
of schedulers to run a parallel query plan when the cost threshold for
parallelism is reached.

Starting with SQL Server 2019, the setup process introduced an
automatic recommendation for MAXDOP based on the number of
processors available at setup. This option can also be configured at
the individual database level, both in Azure SQL and SQL Server.

The problem with this default setting for most workloads is twofold:

Parallel queries can consume all resources, preventing smaller
queries from running or forcing them to run slowly while they find
time in the CPU scheduler.

If all logical processors are allocated to a plan, it can result in
foreign memory access, which, as we explain in Chapter 2 in the
“Non-uniform memory access” section, carries a performance
penalty.

Specialized workloads can have different requirements for MAXDOP.
For standard or online transaction processing (OLTP) workloads, to
make better use of modern server resources, the MAXDOP setting
must take NUMA nodes into account:



Single NUMA node. With up to eight logical processors on a
single node, the recommended value should be set to 0 or the
number of cores. With more than eight logical processors, the
recommended value should be set to 8.

Multiple NUMA nodes. With up to 16 logical processors on a
single node, the recommended value should be set to 0 or the
number of cores. With more than 16 logical processors, the
recommended value should be set to 16.

 For more recommendations about MAXDOP, see
https://support.microsoft.com/help/2806535.

MAXDOP is an advanced server setting. You can change it by using
the sp_configure 'max degree of parallelism' command. You can
also change it in SQL Server Management Studio by using the Max
Degree Of Parallelism setting in the Advanced page of the Server
Properties dialog box.

SQL Server memory settings
Since SQL Server 2012, the artificial memory limits imposed by the
license for lower editions (Standard, Web, and Express) apply to the
buffer pool only (see https://learn.microsoft.com/sql/sql-
server/editions-and-components-of-sql-server-2022).Edition-specific
memory limits are not the same thing as the max server memory
configuration option, though. The max server memory setting controls
all of SQL Server’s memory allocation, which includes (but is not
limited to) the buffer pool, compile memory, caches, memory grants,
and CLR (Common Language Runtime, or .NET) memory.

Additionally, limits to columnstore and memory-optimized object
memory are calculated over and above the buffer pool limit on non-
Enterprise editions, which gives you a greater opportunity to use
available physical memory.

This makes memory management for non-Enterprise editions more
complicated, but certainly more flexible, especially taking columnstore

https://support.microsoft.com/help/2806535
https://learn.microsoft.com/sql/sql-server/editions-and-components-of-sql-server-2022


and memory-optimized objects into account.

Max Server Memory
As noted in Chapter 2, SQL Server uses as much memory as you
allow it. Therefore, you want to limit the amount of memory that each
SQL Server instance can control on the server, ensuring that you
leave enough system memory for the following:

The OS itself (see the algorithm in the next section)

Other SQL Server instances installed on the server

Other SQL Server features installed on the server—for example,
SQL Server Reporting Services, SQL Server Analysis Services,
or SQL Server Integration Services

Remote desktop sessions and locally run administrative
applications like SQL Server Management Studio (SSMS) and
Azure Data Studio

Antimalware programs

System monitoring or remote management applications

Any additional applications that might be installed and running
on the server (including web browsers)

Caution
If you connect to your SQL Server instance via a remote
desktop session, make sure you have a secure VPN connection
in place.

Because of feedback, and some SQL Server operations taking place
outside the main process memory for SQL Server, Microsoft has
introduced new guidance around setting Max Server Memory for SQL
Server. To learn more about configuring this setting, visit
https://learn.microsoft.com/sql/database-engine/configure-

https://learn.microsoft.com/sql/database-engine/configure-windows/server-memory-server-configuration-options#max_server_memory


windows/server-memory-server-configuration-
options#max_server_memory.

OS reservation
Microsoft recommends subtracting the number of potential memory
thread allocations that are outside of the control of the Max Server
Memory setting. To get this number, multiply the stack size (which on
most modern servers will be 2048 KB) by the max worker threads
(discussed in further detail in the upcoming section “Max worker
threads”) configuration option on your SQL Server. You should then
subtract an additional 25 percent for other allocations outside of that
main memory, like backup buffers, allocations from linked server
calls, and columnstore indexes. The remaining number should be
used to initially set max memory for your database server. This
guidance has been incorporated into the max memory
recommendation in the SQL Server installation process.

Performance Monitor to the rescue
Ultimately, the best way to see if the correct value is assigned to Max
Server Memory is to monitor the Memory\Available MBytes value in
Performance Monitor. This way, you can ensure that Windows Server
has enough working sets of its own and adjust the setting downward
if this value drops below 300 MB.

 Performance Monitor is covered in more detail in Chapter 8.

Max Server Memory is an advanced server setting. You can change it
by using the command sp_configure 'max server memory'. You can
also change it in SQL Server Management Studio by way of the Max
Server Memory setting in the Server Properties section of the
Memory node.

Max worker threads

https://learn.microsoft.com/sql/database-engine/configure-windows/server-memory-server-configuration-options#max_server_memory


Every process on SQL Server requires a thread, or time on a logical
processor, including network access, database checkpoints, and user
activity. Threads are managed internally by the SQL Server
scheduler, one for each logical processor, and only one thread is
processed at a time by each scheduler on its respective logical
processor. These threads consume memory, which is why it’s
generally a good idea to let SQL Server manage the maximum
number of threads allowed automatically.

While this setting should rarely be changed from the default of 0,
changing this value might help performance. In most cases the
availability of worker threads is not the performance problem; rather,
long-running code holding onto those threads is the root cause. A
default of 0 means that SQL Server will dynamically assign a value
when starting, depending on the number of logical processors and
other resources.

To check whether your server is currently under CPU pressure, run
the following query, which returns one row per CPU core:
Click here to view code image

SELECT AVG(runnable_tasks_count) 
FROM sys.dm_os_schedulers 
WHERE status = 'VISIBLE ONLINE';

 Glenn Berry provides a history in one-minute increments using
this same dynamic management view (DMV) at
https://sqlserverperformance.wordpress.com/2010/04/20/a-
dmv-a-day-%e2%80%93-day-21/.

If the number of tasks is consistently high (in the double digits), your
server is under CPU pressure. You can mitigate this in several other
ways that you should consider before increasing the number of max
worker threads. Also, be aware that in some scenarios, lowering the
number of max worker threads can improve performance.

 You can read more about setting max worker threads at
https://learn.microsoft.com/sql/database-engine/configure-

https://sqlserverperformance.wordpress.com/2010/04/20/a-dmv-a-day-%e2%80%93-day-21/
https://learn.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option


windows/configure-the-max-worker-threads-server-
configuration-option.

Lock Pages in Memory
The Lock Pages in Memory policy prevents Windows from taking
memory away from applications such as SQL Server in low-memory
conditions, but it can cause instability if you use it incorrectly. You can
mitigate the danger of OS instability by carefully aligning max server
memory capacity for any installed SQL Server features (discussed
earlier) and reducing the competition for memory resources from
other applications.

When reducing memory pressure in virtualized systems, it is also
important to avoid over-allocating memory to guests on the virtual
host. Meanwhile, locking pages in memory can still prevent the
paging of SQL Server memory to the drive due to memory pressure,
which is a significant performance hit.

 For a more in-depth explanation of the Lock Pages in Memory
policy, see Chapter 2.

Optimize for ad hoc workloads
Ad hoc queries are defined, in this context, as queries that are run
only once. Applications and reports typically run the same queries
many times, and SQL Server recognizes them and caches them over
time.

By default, SQL Server caches the runtime plan for a query after the
first time it runs, with the expectation of using it again and saving the
compilation cost for future runs. For ad hoc queries though, these
cached plans will never be reused, yet will remain in cache.

When you set Optimize for Ad Hoc Workloads to true, a plan will
not be cached until it is recognized to have been called twice. In other
words, it will cache the full plan on the second execution. The third

https://learn.microsoft.com/sql/database-engine/configure-windows/configure-the-max-worker-threads-server-configuration-option


and all ensuing times it is run would then benefit from the cached
runtime plan.

If you wish to enable this option, bear in mind that it can affect
troubleshooting performance issues with single-use queries.
Therefore, it is recommended that you set this option to true only after
testing.

Note
Enabling forced parameterization at the database level can
force query plans to be parameterized even if they are
considered unique by the query optimizer, which can then
reduce the number of unique plans. Provided you test this
scenario, you can get better performance using this feature than
with Optimize for Ad Hoc Workloads.

This is an advanced server setting. You can change it by using the
sp_configure 'optimize for ad hoc workloads' command. You can
also change it in SQL Server Management Studio by using the
Optimize for Ad Hoc Workloads setting in the Advanced page of
the Server Properties dialog box.

Allocate CPU cores with an affinity mask
It is possible to assign only certain logical processors to SQL Server.
This might be necessary on systems that are used for instance
stacking (more than one SQL Server instance installed on the same
OS) or when workloads are shared between SQL Server and other
software.

SQL Server on Linux does not support the installation of multiple
instances on the same server. Virtual consumers (virtual machines or
containers) are probably a better way of allocating these resources,
but there might be legitimate or legacy reasons for setting core
affinity.



Suppose you have a dual-socket NUMA server, with both CPUs
populated by 16-core processors. Excluding simultaneous
multithreading (SMT), this is a total of 32 cores. However, SQL
Server Standard edition is limited to 24 cores or four sockets,
whichever is lower.

When it starts, SQL Server will allocate all 16 cores from the first
NUMA node and 8 from the second NUMA node. It will write an entry
to the Error Log stating this, and that’s where it ends. Unless you
know about the core limit, you will be stuck with unbalanced CPU
core and memory access, resulting in unpredictable performance.

One way to solve this without using a VM or container is to limit 12
cores from each CPU to SQL Server using an affinity mask (see
Figure 3-5). This way, the cores are allocated evenly. When combined
with a reasonable MAXDOP setting of 8, foreign memory access is
not a concern.

Note
I/O affinity allows you to assign specific CPU cores to I/O
operations, which may be beneficial on enterprise-level
hardware with more than 16 CPU cores. You can read more at
https://support.microsoft.com/help/298402.

https://support.microsoft.com/help/298402


Figure 3-5 Set the affinity mask in SQL Server Management
Studio.

By setting an affinity mask, you instruct SQL Server to use only
specific cores. The remaining unused cores are marked as offline to
SQL Server. When SQL Server starts, it will assign a scheduler to
each online core.

Caution



Affinity masking is not a legitimate way to circumvent licensing
limitations with SQL Server Standard edition. If you have more
cores than the maximum usable by a certain edition, all logical
cores on that machine must be licensed.

Inside OUT
How do you balance schedulers across processors if you
limit affinity?

When no affinity is set, SQL Server doesn’t assign schedulers
to specific cores. With affinity set, it is possible that an
external process (that is, a process outside SQL Server) is
also bound to a particular core. This can result in queries
being blocked by that external process or SQL Server
becoming CPU bound by a lack of scheduler flexibility.

To avoid this unexpected behavior, enable Trace Flag 8002,
which lets SQL Server decide which of the available cores the
scheduler can use. This behavior seems intuitive but is
necessary when SQL Server runs with processor affinities.
Keep in mind that affinity masking is not typically necessary or
recommended and is an advanced configuration.

Configure affinity on Linux
For SQL Server on Linux, even when an instance is going to be using
all the logical processors, you should use the ALTER SERVER
CONFIGURATION option to set the PROCESS AFFINITY value. This value
maintains efficient behavior between the Linux OS and the SQL
Server Scheduler.

You can set the affinity by CPU or NUMA node, but the NUMA
method is simpler. Suppose you have four NUMA nodes. You can use



the configuration option to set the affinity to use all the NUMA nodes
as follows:
Click here to view code image

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY NUMANODE = 0 
TO 3;

 You can read more about best practices for configuring SQL
Server on Linux at https://learn.microsoft.com/sql/linux/sql-
server-linux-performance-best-practices.

File system configuration
This section primarily deals with the default file system on Windows
Server. Any references to other file systems, including Linux file
systems, are noted separately.

The NT File System (NTFS) was created for the first version of
Windows NT, bringing with it more granular security than the older
File Allocation Table (FAT)–based file system, as well as a journaling
file system. (Think of it as a transaction log for your file system.) You
can configure several settings that deal with NTFS in some way to
improve your SQL Server implementation and performance.

Instant file initialization
As stated, transaction log files need to be zeroed out at the file
system for recovery to work properly. However, data files are
different, and with their 8-KB page size and allocation rules, the
underlying file might contain sections of unused space.

With instant file initialization (IFI), a feature enabled by the Perform
Volume Maintenance Tasks Active Directory policy, data files can be
instantly resized without zeroing-out the underlying file. This adds a
major performance boost.

https://learn.microsoft.com/sql/linux/sql-server-linux-performance-best-practices


Inside OUT
Does instant file initialization (IFI) benefit transaction log
files, too?

With one exception, IFI does not benefit transaction log files,
so keep this in mind when growing or shrinking transaction log
files. The exception is that starting in SQL Server 2022, and
included in Azure SQL Database at the time of this writing, IFI
can benefit growth events of transaction log files that are less
than or equal to 64 MB. This applies to manual file growth
initiated by you, as well as autogrowth events initiated by SQL
Server. This should be a big performance improvement if your
transaction log files unexpectedly grow. Of course, you should
try to avoid autogrowth events altogether.

Otherwise, without IFI, all activity in a database will stop until
the file growth or shrink operations complete on the
transaction log file.

The trade-off is a tiny, perhaps insignificant security risk: data that
was previously used in drive allocation currently dedicated to a
database’s data file now might not be fully erased before use.
Because you can examine the underlying bytes in data pages using
built-in tools in SQL Server, individual pages of data that have not yet
been overwritten inside the new allocation could be visible to a
malicious administrator.

Caution
It is important to control access to SQL Server’s data files and
backups. When a database is in use by SQL Server, only the
SQL Server service account and the local administrator have
access. However, if the database is detached or backed up,
there is an opportunity to view that deleted data on the



detached file or backup file that was created with instant file
initialization turned on.

Because this is a possible security risk, the Perform Volume
Maintenance Tasks policy is not granted to the SQL Server service by
default, and a summary of this warning is displayed during SQL
Server setup.

Without IFI, you might find that the SQL Server wait type
PREEMPTIVE_OS_WRITEFILEGATHER is prevalent during times of data-file
growth. This wait type occurs when a file is being zero-initialized;
thus, it can be a sign that your SQL Server is wasting time that could
be skipped with the benefit of IFI. Keep in mind that
PREEMPTIVE_OS_WRITEFILEGATHER is also generated by transaction log
files, which do not benefit from IFI.

Note that SQL Server Setup takes a slightly different approach to
granting this privilege than SQL Server administrators might take.
SQL Server assigns access control lists (ACLs) to automatically
created security groups, not to the service accounts that you select
on the Server Configuration Setup page. Instead of granting the
privilege to the named SQL Server service account directly, SQL
Server grants the privilege to the per-service security identifier (SID)
for the SQL Server database service—for example, the NT
SERVICE\MSSQLSERVER principal. This means that SQL Server
service will maintain the ability to use IFI even if its service account
changes.

You can determine whether the SQL Server Database Engine service
has been granted access to IFI by using the sys.dm_server_services
dynamic management view via the following query:
Click here to view code image

SELECT servicename, instant_file_initialization_enabled 
FROM sys.dm_server_services 
WHERE filename LIKE '%sqlservr.exe%';



If IFI was not configured during SQL Server setup, and you want to
do so later, open the Windows Start menu. Then, in the Search box,
type Local Security Policy. In the pane on the left of the window that
appears, expand Local Policies (see Figure 3-6); then select User
Rights Assignment. Finally, locate the Perform Volume
Maintenance Tasks policy and add the SQL Server service account
to the list of objects with that privilege.

Figure 3-6 Turning on instant file initialization (IFI) through the
Local Security Policy setup page.

NTFS allocation unit size
SQL Server performs best with an allocation unit size of 64 KB.
Depending on the type of storage, the default allocation unit on NTFS
might be 512 bytes, 4,096 bytes (also known as Advanced Format 4K
sector size), or some other multiple of 512 bytes.

Because SQL Server deals with 64-KB extents (see the section
“Group data pages with extents” earlier in the chapter), it performs
best with an allocation unit size of 64 KB, to align the extents with the



allocation units. This applies to the Resilient File System (ReFS) on
Windows Server, and XFS and ext4 file systems on Linux.

Note
We cover aligned storage in more detail in Chapter 4 in the
section “Important SQL Server volume settings.”



Part II

Deployment



Chapter 4

Install and configure SQL
Server instances and
features

What to do before installing SQL Server
Install a new instance
SQL Server on Azure virtual machines
Post-installation server configuration
Post-installation configuration of other features
Container orchestration with Kubernetes

This chapter reviews the process of installing and configuring a
Microsoft SQL Server instance as well as creating and migrating
databases. We pay special attention to new features introduced in
SQL Server 2022 as well as other recent features you might not have
noticed in earlier editions of SQL Server. We also discuss how to
deploy SQL Server using containers and Kubernetes.

We present a post-installation checklist for you to use to verify your
installation. When necessary, we also direct you to other sources of
information and details for critical steps elsewhere in this book.



The content in this chapter related to SQL Server Setup mainly
applies to SQL Server installations on Windows operating systems.
Provisioning is vastly simplified for Azure SQL Database, Azure SQL
Managed Instance, SQL Server on Linux, SQL Server in Linux
containers, and Azure virtual machine (VM) images with pre-installed
SQL Server from the Azure Marketplace. Even so, many
recommended settings in this chapter apply for server-based
platforms of SQL Server, such as in Linux containers or SQL Server
on Linux. They are, after all, still very much the same SQL Server
products that have always existed on Windows.

This chapter focuses on server-level setup and settings. Chapter 6,
“Provision and configure SQL Server databases,” covers the initial
creation and configuration of databases inside the SQL Server
instance.

 For more on SQL Server on Linux, see Chapter 5, “Install and
configure SQL Server on Linux.”

 For more on Azure SQL Database, see Chapter 17, “Provision
Azure SQL Database.”

 For more on Azure SQL Managed Instance, see Chapter 18,
“Provision Azure SQL Managed Instance.”

 For more on database migrations to SQL Server platforms in
Azure, see Chapter 19, “Migrate to SQL Server solutions in
Azure.”

What to do before installing SQL
Server
Before running SQL Server Setup on your Windows Server, there are
several factors and settings to consider—some of which you cannot
easily change after installation. For example, choosing between the
default instance and a named instance or choosing an instance
collation are not decisions you can easily reverse after installation.



(More about the server-level collation option later in this chapter, in
the “Instance collation” section.)

However, many mistakes made in installation can be resolved
afterward—albeit likely with some tedium and outages. For example,
skipping the initial default data and log directories may land all your
databases on the operating system (OS) volume. They can be moved
to the appropriate volumes later, but it’s best to get it right the first
time.

Caution
Do not install SQL Server on the same server as a domain
controller. In some scenarios, it is not supported, and can even
cause SQL Server Setup to fail.

SQL Server 2022 has most of the same hardware and software
requirements as SQL Server 2019. There are some differences,
however. For example, SQL Server 2022 requires .NET Framework
4.7.2, which you can download from
https://dotnet.microsoft.com/download/dotnet-framework/net472.

In addition, we recommend you acquire the following before starting
SQL Server Setup:

Active Directory (AD) service accounts for the SQL Server
service, SQL Agent service, and other features if needed

The latest download of cumulative updates to bring the instance
up to the latest patch level

A licensing decision around the number of processors and the
edition to buy

A secure enterprise digital location for various passwords you
will generate, backups of certificates, and keys

A decision as to whether to install the default or a named
instance

https://dotnet.microsoft.com/download/dotnet-framework/net472


A plan for where SQL Server files will go, with each volume
formatted to the 64-KB disk unit allocation size (discussed in the
next section)

Inside OUT
What are SQL Server service accounts?

SQL Server service accounts are the accounts used to handle
the communication of services between the OS and SQL
Server. Using AD accounts on Windows for these accounts is
a best practice. These can be updated and set up after
installation in SQL Server Configuration Manager if needed.

If possible, it is recommended to use managed service
accounts (MSAs) or group managed service accounts
(gMSAs). These are specially provisioned Windows accounts
whose passwords are self-managed by Windows. This means
privileged service account secrets no longer need to be
secured and managed, providing greater security. For more
information, visit https://learn.microsoft.com/windows-
server/security/group-managed-service-accounts/group-
managed-service-accounts-overview.

Decide on volume usage
For many good reasons, various types of SQL Server files should be
placed on separate volumes. Although you can move user and
system database data and log files to other locations after installation,
it’s best to plan your volumes before installation.

The examples in this chapter assume your Windows OS installation is
on the C: volume of your server. You should have many other
volumes for SQL Server files, and we’ll review a sample layout soon.
One of the basic guiding principles for a SQL Server installation is

https://learn.microsoft.com/windows-server/security/group-managed-service-accounts/group-managed-service-accounts-overview


that anywhere you see “C:\,” you should change it to another volume.
This helps minimize SQL Server’s footprint on the OS volume
(especially if you install multiple SQL Server instances), and can have
potential disaster recovery implications in terms of volume-level
backups and restores.

Inside OUT
What if you are tight on space on the OS volume after
installing SQL Server?

There are some easy ways and some tricky ways to minimize
the footprint of a SQL Server installation on the OS volume of
your server (typically the C: volume, as it is for this example).
In general, SQL Server Setup and cumulative updates delete
temporary files involved in their installation, but not log files or
configuration files, which should have a minimal footprint.
Apart from log files, we recommend that you not delete any
files installed by SQL Server Setup or cumulative updates.
Instead, let’s look at some proactive steps to move these files
off the C: volume.

Some parts of SQL Server Setup install on the OS volume
(typically, and in this and future examples, the Windows C:
volume). These files, which are staging areas for SQL Server
Setup, are created on the OS volume in a C:\Program
Files\Microsoft SQL Server\160\Setup Bootstrap\ subfolder
structure, where 160 is specific to the internal version number
(16.0) of SQL Server 2022. This folder is used for future
cumulative updates or feature changes.

If you’re extremely tight on space before installing SQL
Server, you will also find that the root binaries installation
directory is, by default, C:\Program Files\Microsoft SQL
Server\. When you’re using the SQL Server Setup user
interface, there is no option to change this. You will, however,
find this installation directory folder path listed as the



INSTANCEDIR parameter in the config file that is generated by
SQL Server Setup. How to use the config file to install SQL
Server is further covered in the section “Automate SQL Server
Setup with configuration files” later in this chapter.

If this is the first SQL Server instance you are installing on a server,
you will have the opportunity to change the location of shared
features files, the data root directory for the instance (which contains
the system databases), and default database locations for user
database files and their backups. If this is not the first SQL Server
2022 instance installation on this server, the shared features directory
locations (for Program Files and Program Files x86) will already be
set for you, and you cannot change them.

You should place as much of the installation as possible on other
volumes, not the OS volume. Keep in mind that a full-featured
installation of SQL Server 2022 can consume more than 14 GB.

Inside Out
What can you do with the D: volume on an Azure VM?

For Microsoft Azure Windows VMs, do not set the installation
directories for any settings on the “Temporary Storage” D:
volume. In a Linux VM, the same applies to /dev/sdb1.

The D: volume is the temporary storage volume on an Azure
VM. The temporary storage volume is a high-speed disk that
is locally present on the machine hosting the Azure VM, so it
has better performance and lower latency than the default C:
volume. The temporary storage volume contains only the
Windows page file by default and is wiped upon server restart,
resize, or host migration.

The only possible long-term use for the temporary storage
volume is for tempdb files, which can exist on this drive if



certain other considerations are taken. Otherwise, do not
store any non-temporary files in the temporary storage.

For more details on using the D: volume for tempdb files, see
“Locate tempdb files on the VM” in Chapter 16, “Design and
implement hybrid and Azure database infrastructure.”

The following sample scenario is a good starting point for a volume
layout for your SQL Server installation (the volume letters don’t
matter):

Volume C. The OS. Some SQL Server files must be installed
here.

Volume E. SQL Server installation files, log files, SQL Server
database data files.

Volume F. SQL Server database log files.

Volume G. SQL Server tempdb data files and log files.
(Alternatively, use the D: Temporary Storage volume on Azure
Windows VMs.)

Volume H. SQL Server backups (if written locally).

Here are some more advanced volume decisions:

Use additional volumes for your largest data files (larger than 2
TB) for storage manageability:

For the most active databases

For FILESTREAM filegroups

For database replication snapshot files

For the Windows page file, especially for servers with large
amounts of memory



Inside OUT
Why separate SQL Server files onto different volumes?

There are good reasons to separate your SQL Server files
into various volumes, and not all of them are related to
performance. You should still separate your files onto different
volumes even if you exclusively use a storage area network
(SAN).

More discrete storage I/O on a physical server with dedicated
drives means better performance. But even in a SAN,
separating files onto different volumes is also done for
stability. Think of the volumes as bulkheads on a submarine. If
a volume fills and has no available space, files cannot be
allocated additional space. On the OS volume, running out of
free space would result in Windows Server stability issues—
user profile and remote desktop problems at least—and affect
other applications.

Important SQL Server volume settings
There are some settings to consider for volumes that host SQL
Server data and log files, and this guidance applies specifically to
these volumes. For other volumes—for example, those that contain
the OS, application files, or backup files—the default Windows
settings are acceptable unless otherwise specified.

When adding these volumes to Windows, there are important volume
configuration settings that you must examine or discuss with your
storage administrator:

When creating new drives, opt for GUID Partition Table (GPT)
over Master Boot Record (MBR) disk types for new SQL Server
installations. GPT is a newer disk-partitioning scheme than



MBR, and GPT disks support files and volumes larger than 2
TB. In contrast, the older MBR disk type is capped at 2 TB.

The appropriate file unit allocation size for SQL Server volumes
is 64 KB, with few exceptions. Setting this to 64 KB for each
volume can have a significant impact on storage efficiency and
performance. The Windows default is 4 KB, which is not optimal
for SQL Server data and log files.

To check the file unit allocation size for an NT File System
(NTFS) volume, run the following from the Administrator:
Command Prompt, repeating for each volume:
fsutil fsinfo ntfsinfo d:

The file unit allocation size is returned with the Bytes Per
Cluster; thus, the desired 64 KB would be displayed as 65,536
(bytes). If formatted as the default, this will display 4096.
Correcting the file unit allocation size requires formatting the
drive, so it is important to check this setting before installation.
If you notice this on an existing SQL Server instance, your likely
solution is to create a new volume with the proper file unit
allocation size and then move files to the new volume during an
outage. Do not format or re-create the partition on volumes with
existing data; you will lose the data when it is reformatted.
Modern storage devices are currently in a transition between
disks that use a Bytes per Physical Sector size of 512 bytes (the
old standard) and “4K Native” disks that have both a Bytes per
Sector size and a Bytes per Physical Sector size of 4 KB.
Usually, a DBA will not notice or even be aware of this
difference. When configuring availability groups or log shipping
between servers on different storage systems with mixed Bytes
per Physical Sector modes, however, this can result in very poor
performance, with the transaction logs unable to truncate, and
the error message “There have been nnn misaligned log IOs
which required falling back to synchronous IO.” You may
encounter this with hybrid availability groups spanning on-



premises and Azure VM–based SQL Server instances, for
example.
This cannot be resolved via reformatting, but can potentially be
resolved via hardware-level storage or firmware settings. To
avoid this, all storage that hosts the transaction log files of SQL
Servers in an availability group or log shipping relationship
should have the same Bytes per Physical Sector.
A workaround is to apply Trace Flag 1800 as a startup flag on
the SQL Server instances that use storage without having a
Bytes per Physical Sector setting of 4K. TF1800 overrides disk
default behavior and writes the transaction log in 4-KB sectors,
resolving the issue. TF1800 must be enabled on the on-
premises SQL Server instances in the case of using the older
on-premises and Azure VM availability group.
Check the Bytes per Physical Sector setting of a volume by
using the same fsutil command noted in the previous code
sample.

A hardware-level concept related to file unit allocation size
called disk starting offset deals with how Windows, storage, disk
controllers, and cache segments align their boundaries. Aligning
disk starting offset was far more important before Windows
Server 2008. Since then, the default partition offset of 1,024 KB
has been sufficient to align with the underlying disk’s stripe unit
size, which is a vendor-determined value and rarely a concern
for DBAs. Still, it should be verified upon first use of a new
storage system or upon the migration of disks to a new storage
system. This can be verified in consultation with the drive
vendor’s information.

To access the disk starting offset information, run the following
from the Administrator: Command Prompt:

Click here to view code image
wmic partition get BlockSize, StartingOffset, Name, Index



A 1,024-KB starting offset is a Windows default, which is
displayed as 1048576 (bytes) for Disk #0 Partition #0.
Like the file unit allocation size, the only way to change a disk
partition’s starting offset is destructive: You must re-create the
partition and reformat the volume to align with the vendor-
supplied offset.

SQL Server editions
The following are brief descriptions of all the editions in the SQL
Server family, including past editions that you might recognize. It’s
important to use the appropriate licenses for SQL Server, even in
preproduction systems.

Note
This book is not intended to be a reference for licensing or
sales-related documentation; still, editions are a key piece of
knowledge for SQL Server administrators to understand what
features may or may not be available.

Enterprise. Appropriate for production environments; not
appropriate for preproduction environments such as user
acceptance testing (UAT), quality assurance (QA), testing,
development, or a sandbox. For these environments, you should
instead use the free Developer edition. You’ll have a far easier
time in a licensing audit if your preproduction environment
installations are Developer edition.

Developer. Appropriate for all preproduction environments,
especially those under a production Enterprise edition. Not
allowed for production environments. This edition has the same
features and capacity as Enterprise edition and is free.

Standard. Appropriate for production environments. Lacks the
scale and compliance features of Enterprise edition required in
some regulatory environments. Limited to the lesser of 4 sockets



or 24 cores and 128 GB of buffer pool memory, whereas
Enterprise edition is limited only by the OS for compute and
memory.

Web. Appropriate for production environments but limited to low-
cost server environments for web hosting.

Express. Not appropriate for most production environments or
preproduction environments. Appropriate only for environments
in which data size is small, is not expected to grow, and can be
backed up with external tools or scripts (because Express
edition has no SQL Server Agent to automate backups). The
free Express edition is ideal for production proofs-of-concept,
lightweight applications, and student projects. It lacks some
critical features and is severely limited on compute (lesser of 1
socket or 4 cores), available buffer pool memory (1,410 MB),
and individual database size (10-GB capacity).

Express with Advanced Services. Like Express edition in all
caveats and limitations, this edition includes some additional
features, including R integration and full-text search.

Evaluation. Functionally the same as Enterprise edition, and
free with a 180-day shutdown timer. Evaluation edition isn’t
supported. This edition can be upgraded to any edition except
for Express. Do not use this edition if you plan for a clustered
installation, because an upgrade in that case is not supported.

It’s worth noting that the hardware limitations of SQL Server
editions have not changed since SQL Server 2016.

Note
When you run the SQL Server 2022 Setup, you can choose to
install several features outside the core database features.
Installing SQL Server features on multiple Windows servers
requires multiple licenses per server, even if you intend to install
each SQL Server instance’s features only once.



There is an exception to this rule, however: If you have licensed
all physical cores on a host server for SQL Server Enterprise
edition, and purchased Software Assurance, you can install any
number or combination of SQL Server instances and their
standalone features on virtual guests.

Change SQL Server editions and versions
Upgrading editions in-place is supported by a feature of the SQL
Server 2022 installer. You can upgrade in the following order:
Express, Web, Standard, and Enterprise.

You cannot downgrade a SQL Server version or licensed edition. This
type of change requires a fresh installation and migration. For
example, you cannot downgrade in-place from SQL Server 2022
Enterprise edition to Standard edition.

In-place upgrades for major versions (from 2019 to 2022, for
example) is supported but not recommended. Instead, we strongly
recommend that you perform a fresh installation of the newer version
and then migrate from old to new instances. This method offers major
advantages in terms of duration of the planned outage, rollback
capability, and robust testing in parallel.

Although in-place upgrades to SQL Server 2022 are not
recommended, upgrades are supported for versions as old as SQL
Server 2012 SP4. You can even migrate databases using detach and
reattach, from older versions of SQL Server to SQL Server 2022, as
long as the source database compatibility level is 90 or higher.
Databases with a compatibility of 90 (SQL Server 2005) will be
automatically upgraded to compatibility level 100. Databases already
at compatibility level 100 will not change.

A supported upgrade also assumes that the OS and previous version
of SQL Server are not 32-bit installations. Beginning with SQL Server
2016, SQL Server is available only for 64-bit platforms. For more
information on upgrades to SQL Server 2022, visit



https://learn.microsoft.com/sql/database-engine/install-
windows/supported-version-and-edition-upgrades-2022.

Install a new instance
In this section, you learn how to begin a new SQL Server 2022
instance installation, upgrade an existing installation, or add features
to an existing instance.

The instructions in this chapter are the same for the first installation or
any subsequent installations, whether it is for the default or any
named instances of SQL Server 2022. As opposed to an exhaustive
step-by-step instruction list for installations, we’ve opted to cover the
important decision points and the information you need and to
highlight new features from SQL Server 2022.

Even though you can change almost all of the decisions you make in
SQL Server Setup after installation, those changes potentially require
an outage or server restart. Making the proper decisions at
installation time is the best way to ensure the least administrative
effort. Some security and service account decisions should be
changed only via the SQL Server Configuration Manager application,
not through the Services console (services.msc). This guidance will
be repeated elsewhere for emphasis.

We begin by going through the typical interactive installation. Later in
this chapter, we will go over some of the command-line installation
methods that you can use to automate the installation of a SQL
Server instance.

Plan for multiple SQL Server instances
You can install as many as 50 SQL Server instances on a Windows
Server, although we obviously do not recommend this. In a Windows
failover cluster, the maximum number of SQL Server instances is
reduced by half if you’re using shared cluster drives.

https://learn.microsoft.com/sql/database-engine/install-windows/supported-version-and-edition-upgrades-2022


Only one of the SQL Server instances on a server can be the default
instance. All, or all but one, of the SQL Server instances on a SQL
Server will be named instances. The default instance is reachable by
connecting to the name of the Windows Server, whereas named
instances require an instance name. The SQL Browser service is
required to handle traffic for named instances on the SQL Server.

For example, you can reach the default instance of a SQL Server by
connecting to servername. All named instances have a unique
instance name, such as servername\instancename.

Note
If the Browser service is not turned on, this does not mean you
cannot reach the instance, but that you will need to know the
specific port on which it is listening. You reach the instance
using servername,portnumber in place of the instance name.

Inside OUT
What is different about SQL Server on an Azure VM?

The Azure Marketplace provides VM images that are pre-
installed with SQL Server, with a wide selection of edition and
compute options, so you usually won’t install SQL Server
yourself. However, the default configuration might require
some tweaking.

When it comes to licensing, there are two types of SQL Server
licensing agreements for Azure VMs. SQL Server VM images
in the Azure Marketplace contain the SQL Server licensing
costs as an all-in-one billing package.

Alternatively, if you’d like to leverage your existing Enterprise
licensing agreement using the Azure Hybrid Benefit, there are
three options:



Choose bring-your-own-license (BYOL) VM images using
the same process, then later associate your existing
Enterprise license agreements. The image names you’re
looking for here are prefixed with BYOL.

Manually upload an .iso file to the VM and install SQL
Server 2022 as you would on any other Windows Server.

Upload an image of an on-premises VM to provision the
new Azure VM.

You cannot change from the built-in licensing model to the
BYOL licensing model after the VM has been provisioned.
You need to make this decision before creating your Azure
VM.

Install SQL Server on Windows
The rest of this chapter is dedicated to installations of SQL Server
that are not part of a pre-made Azure Marketplace VM and apply to
the installation of SQL Server on any Windows Server.

While logged in as a local Windows administrator, begin by mounting
the installation .iso to the Windows server. These days, this rarely
involves inserting a physical disc or USB flash drive, although you
can use them if necessary.

Launch SQL Server Setup
You should not run SQL Server Setup with the installation media
mounted over a remote network connection, a shared remote desktop
drive, or any other high-latency connection. For a faster SQL Server
Setup experience, unpack the contents of the .iso file to a physical
folder local to the server.

Start setup.exe on the SQL Server Setup media, running the program
as a Windows user with administrator privileges. If AutoPlay is not



turned off (it usually is), setup.exe will start when you first mount the
media or double-click to open the .iso. Instead, as a best practice,
right-click setup.exe and select Run As Administrator on the
shortcut menu that appears.

We’ll review here a few items (not all) in the SQL Server Installation
Center worth noting before you begin an installation.

In the pane on the left, select Planning to open a long list of links to
Microsoft documentation websites. Most helpful here might be a
standalone version of the System Configuration Checker, which you
run during SQL Server Setup later, but it could save you a few steps if
you review it now. A link to download the Data Migration Assistant
(DMA) is also present, which is a helpful Microsoft-provided tool for
upgrading from prior versions of SQL Server.

On the Maintenance page, you will find the following:

The Edition Upgrade Wizard is relatively painless. This is only
for promoting your existing installation’s edition, as discussed
earlier.

The Repair feature is not commonly used except in the case of
an instance with a corrupted installation. You might also need to
repair an instance of SQL Server when the executables, .dll
files, or Windows Registry entries have become corrupted or
damaged by disk corruption, antimalware, malware, or malicious
activity. A failed SQL Server in-place upgrade or cumulative
update installation might also require a repair, which could be
better than starting from scratch.

Removing a node from an existing SQL Server failover cluster is
an option in the Maintenance page. Adding a node to an
existing SQL Server failover cluster is an option in the
Installation page.

The Advanced page features a link to perform an installation
based on a configuration file. We will discuss how to easily
generate and use a configuration file later in this chapter, in the



section “Automate SQL Server Setup with configuration files.” If
you are tasked with installing multiple SQL Servers with mostly
common settings, consider this time-saving method. There are
also links to wizards for advanced failover cluster installations.

 We discuss failover cluster instances (FCIs) in Chapter 11,
“Implement high availability and disaster recovery.”

Windows Update in the SQL Server Setup
Since SQL Server 2012, the SQL Server installer has had the ability
to patch itself within the Setup wizard. The Product Updates page is
presented after the License Terms page, and, after you accept it, it is
downloaded from Windows Update (or Windows Server Update
Services) and installed along with other SQL Server Setup files.

This is recommended, so a SQL Server 2022 Setup with Internet
connectivity is the easiest way to carry out the installation. This also
could be described as a way to “slipstream” updates, including
hotfixes and cumulative updates, into the SQL Server installation
process, eliminating these efforts post-installation.

For servers without Internet access, there are two setup.exe
parameters that support downloading these files to an accessible
location and making them available to Setup. When starting
setup.exe from Windows PowerShell or the command line (you can
read more about this in the next section), you set the /UpdateEnabled
parameter to FALSE to turn off the download from Windows Update.
The /UpdateSource parameter can then be provided as an installation
location of .exe files. Note that the /UpdateSource parameter is a
folder location, not a file. You will find more on these two parameters
later in the “Install by using a configuration file” section.

Regardless, after installation is complete, and before the SQL Server
enters further use, verify that the latest SQL Server patches have
been applied. For SQL Server 2022, see the official build versions at
https://support.microsoft.com/help/4518398.

https://support.microsoft.com/help/4518398


Install SQL Server stand-alone installation
Although what follows in this chapter is not a step-by-step walk-
through, we do cover key new features and decision points of the
New SQL Server Stand-Alone Installation option of the SQL Server
Installation Center.

Inside OUT
Where are the installers for SQL Server Management
Studio and SQL Server Data Tools?

SQL Server Management Studio, SQL Server Data Tools (for
Visual Studio 2015 and higher), and SQL Server Reporting
Services are no longer installed with SQL Server’s traditional
setup media. These products are now updated regularly (as
often as monthly) and available for download.

You should keep up-to-date versions of SQL Server
Management Studio (SSMS) on administrator workstations
and laptops.

Avoid installing SSMS locally on the SQL Server if possible. In
fact, avoid the need to use Remote Desktop Connection to
manage and administer the SQL Server altogether. For all
SQL Server platforms, try to use SSMS, Azure Data Studio,
PowerShell, and other tools to do as much of your work on
SQL Server remotely as possible.

PolyBase Services
Immediately after the instance configuration is a new configuration for
the port range of PolyBase services. This is where you choose a
range of ports to use for this service. If you plan to use PolyBase, the
ports typically used are TCP ports between 16450 and 16460, of



which there must be at least six ports. These should be allowed
through the firewall if needed. This option was added to SQL Server
Setup in SQL Server 2022.

Grant Perform Volume Maintenance Tasks
On the same Server Configuration page on which service accounts
are set, notice the Grant Perform Volume Maintenance Task
privilege to the SQL Server Database Engine Service check box.
Selecting this check box automates what used to be a standard post-
installation checklist step for SQL DBAs beginning with Windows
Server 2003.

The reason to grant this permission to use instant file initialization is
to speed the allocation of large database data files, which could
dramatically reduce the Recovery Time Objective (RTO) capacity for
disaster recovery. This can mean the difference between hours and
minutes when restoring a very large database. It can also have a
positive impact when creating databases with large initial sizes, or in
large autogrowth events—for example, with multiple data files in the
tempdb (more on this next). It is recommended that you allow SQL
Server Setup to turn on this setting.

Inside OUT
How can you verify that instant file initialization is
enabled?

IFI is granted to a SQL Server service account via the Perform
Volume Maintenance Tasks permission in Local Security
Policy on the Windows server. But it’s straightforward to verify
whether IFI is in place for the SQL Server service, via the
sys.dm_server_services dynamic management view:

Click here to view code image



SELECT servicename, instant_file_initialization_enabled 
FROM sys.dm_server_services 
WHERE filename LIKE '%sqlservr.exe%';

 For more information on instant file initialization, see Chapter
3, “Design and implement an on-premises database
infrastructure.”

Instance collation
The Collation tab on the Server Configuration page allows you to
choose a collation for the Database Engine. The collation determines
how character data is stored, sorted, and compared. For more
information, see the section on collation in Chapter 7, “Understand
table features.”

Initially, the instance collation provided in SQL Setup is the default
collation for the server’s regional settings, but you might need to
change this collation based on vendor or developer specifications.

While changing the collation of a database is easy, the instance
collation is important to get right at the time of SQL Server
installation, as changing the instance collation is quite difficult.

The server collation you set here acts as the collation for all system
databases as well as the default for any newly created user
databases. For new application development, you may choose to
take advantage of UTF-8 collations as the server default, introduced
in SQL Server 2019.

Inside OUT
How do you change the server collation after installing
SQL Server?



This is one of those things you want to get right at the time of
installation. To change the collation of the SQL Server
instance, reference this lengthy and difficult Microsoft guide,
at https://learn.microsoft.com/sql/relational-
databases/collations/set-or-change-the-server-collation.

In the case of Azure SQL Managed Instance, you cannot
change the server-level collation after it is created. For more
information, visit https://learn.microsoft.com/sql/relational-
databases/collations/set-or-change-the-server-
collation#setting-the-server-collation-in-managed-instance.

Mixed Mode authentication
SQL Server supports two modes of authentication: Windows
Authentication and SQL Authentication. Windows Authentication is
preferable to SQL Authentication, and in multiple places in this book
we will emphasize this.

 You can read more on this topic in Chapter 12, “Administer
instance and database security and permissions,” but it is
important to note this decision point here.

Ideally, all authentication is made via Windows Authentication,
through types of server principals called logins that reference
Windows accounts—ideally, AD domain accounts or, starting with
SQL Server 2022, Azure Active Directory (Azure AD) principals.
These are created by your existing enterprise security team, which
manages password policy, password resets, password expiration,
and so on.

A redundant security model for connecting to SQL Server also exists
within each instance: SQL Server Authenticated logins. Logins are
maintained at the SQL Server level, are subject to local policy
password complexity requirements, are reset/unlocked by SQL
DBAs, have their own password change policy, and so forth.

https://learn.microsoft.com/sql/relational-databases/collations/set-or-change-the-server-collation
https://learn.microsoft.com/sql/relational-databases/collations/set-or-change-the-server-collation#setting-the-server-collation-in-managed-instance


Enabling Mixed Mode (SQL and Windows Authentication Mode)
activates SQL Authenticated logins. Be aware that SQL
Authentication is not on by default, and isn’t the recommended
method of connection. The recommended Windows Authentication
cannot be turned off. When possible, applications and users should
use Windows Authentication.

Enabling Mixed Mode also activates the sa account, which is a
special built-in SQL Server Authentication that is a member of the
server sysadmin role. Setup will ask for a strong password to be
provided at this time.

 You can learn more about the sa account and server roles in
Chapter 12.

If you find you have an actual need to enable SQL Server
Authentication, but didn’t do this during SQL Server Setup, you can
do it later by connecting to the SQL Server instance via Object
Explorer in SQL Server Management Studio. To do so, right-click the
server name and select Properties from the shortcut menu. Then,
select the Security page and change to Mixed Mode. You must
perform a SQL Server service restart to effect this change.

Default settings for the tempdb database
Starting with SQL Server 2016, SQL Server Setup provides a more
realistic default configuration for the number and size of tempdb data
files. This has been a common to-do list for all post-installation
checklists for DBAs since the early days of SQL Server.

The TempDB database page in SQL Server Setup provides not only
the ability to specify the number and location of the tempdb’s data
and log files, but also their initial size and autogrowth rates. The best
number of tempdb data files is almost certainly greater than one and
less than or equal to the number of logical processor cores, including
hyper-threading for local machines. For example, with 16 logical
processors, SQL Server Setup will default the installation to have
eight tempdb data files.



Adding too many tempdb data files can degrade SQL Server
performance—perhaps severely. For example, with 20 logical
processors, SQL Server Setup will still default the installation to have
8 tempdb data files. If you add 20 tempdb data files, SQL Server may
struggle to respond.

 For more information on the best number of tempdb data files,
see Chapter 3.

Specifying tempdb’s initial size to a larger, normal operating size is
important and can improve performance after a SQL Server restart
when the tempdb data files are reset to their initial size. Setup
accommodates an individual tempdb data file initial size up to 256
GB. For data file initial sizes larger than 1 GB, you will be warned that
SQL Server Setup can take a long time to complete if instant file
initialization is not turned on.

Since SQL Server 2016, all tempdb files autogrow at the same time,
keeping file sizes the same over time, which is critical to the way
multiple tempdb data files are used. This is superior to the old way of
ensuring tempdb data files stay the same size: using the server-level
setting via server Trace Flag 1117, which applied the data file growth
behavior to all databases. Trace Flag 1117 is no longer necessary.

Also note the naming convention for the second tempdb data file and
beyond: tempdb_mssql_n.ndf. A SQL Server uninstallation will
automatically clean up tempdb data files with this naming convention.
For this reason, we recommend that you follow this naming
convention for tempdb data files.

 The tempdb system database is discussed in detail in Chapter
3.

Default settings for MAXDOP
New in SQL Server 2019 were defaults for the configuration of the
server-wide Maximum Degree of Parallelism (MAXDOP) setting on



the Database Engine Configuration page under the new MaxDOP
tab.

In the same way that new tempdb defaults since SQL Server 2016
are dependent on the detected processors, a suggested default
MAXDOP is also configured based on the number of logical
processors. For many servers with 16 or fewer virtual processor
cores, the default is the same as the number of cores, effectively the
same as a MAXDOP setting of 0, which allows for unlimited
parallelism.

For example, with 8 logical processors, SQL Server Setup will default
the installation to use a MAXDOP of 8. With over 16 logical
processors, SQL Server Setup may default to half the number of
logical processors—at most 16. For example, with 20 logical
processors, SQL Server Setup will default the installation to use a
MAXDOP of 10.

 For more recommendations about MAXDOP, visit Microsoft
Support at https://support.microsoft.com/help/2806535. See
also the section on “Max degree of parallelism” in Chapter 3.

You can always reconfigure the MAXDOP after installation without a
restart, though not without potential disruption. Although changing the
server-wide (or database-level) MAXDOP setting takes effect
immediately, it is definitely not advisable to do so during normal
production operating hours, because it can lead to widespread plan
recompilation and a heavy CPU spike. This server-wide MAXDOP
setting can be overridden at the database, query, or Resource
Governor group level. The MaxDOP tab in the Database Engine
Configuration tab has a recommended MAXDOP setting of 8 for a
server with eight virtual cores. This is effectively the same as a
MAXDOP of 0, but offers the administrator an option to potentially
change the MAXDOP at the time of installation.

Note

https://support.microsoft.com/help/2806535


Some applications recommend disabling parallelism on their
databases. Consult your vendor’s specifications and
recommendations documentation. MAXDOP can be set at the
server level now, then configured and overridden at each
database level after SQL Server Setup is complete using a
database scoped configuration.

 For much more information on performance tuning,
parallelism, and the MAXDOP setting, see Chapter 14,
“Performance tune SQL Server.”

Default settings for Maximum Server Memory
New in SQL Server 2019 were defaults for the configuration of the
instance-level Max Server Memory option, a common post-
installation checklist item, under the Memory tab of the Database
Engine Configuration page. SQL Server Setup makes a guess
based on total server memory for an appropriate option. In previous
versions of SQL Server, it was important to remember to change the
Max Server Memory setting after installation was complete;
otherwise, SQL Server memory would be uncapped and have access
to all memory on the server.

You can configure this Max Server Memory option intelligently at the
time of installation. It’s important to note (and there’s a check box to
accept this guess) that SQL Server Setup assumes this SQL Server
instance will run alone on this server. If you expect to host other
applications on this server, or to run memory-heavy features of SQL
Server on the same server such as SSAS or SSRS, you should
further reduce the Max Server Memory setting for the SQL Server
instance.

 Chapter 3 discussed the Max Server Memory setting, in the
“Configuration settings” section.

Let’s use an example of the new Max Server Memory
recommendation for a Windows Server with one SQL Server instance



and 16 GB of memory. SQL Server Setup recommends a Max Server
Memory setting of 12672 MB. The Min Server Memory setting, which
establishes a floor for memory allocation, is set to 0. It is generally
unnecessary to change this setting from the default. You might find
this setting useful for situations in which the total system memory is
insufficient and many applications, including SQL Server instances,
are present. The Min Server Memory setting is not immediately
allocated to the SQL Server instance upon startup; instead, it does
not allow memory below this level to be freed for other applications.
Figure 4-1 shows the Memory tab of the Database Engine
Configuration page, with the Min Server Memory and Max Server
Memory settings visible.



Figure 4-1 This figure displays the minimum and maximum server
default memory settings for the SQL Server setup.

After installation, server memory settings are accessible via SQL
Server Management Studio, in Object Explorer, and on the Server
Properties page.

You should ensure that SQL Server leaves enough memory for the
OS and other applications. Keep in mind that SQL Server will slowly
consume more memory over time and may take hours or days,
depending on your business cycle, for the SQL Server instance to
consume the maximum amount of memory made available. Lowering
this setting after installation and during operation does not return SQL
Server memory back to the OS immediately; rather, it does so over
time during SQL Server activity. Increasing this setting will not
immediately show the effect of a change in memory use.

Install common features
Aside from the SQL Server service itself, other features of the product
might be common to your installations. For example, SQL Server
Analysis Services, SQL Server Integration Services, and SQL Server
Reporting Services are part of the license and are provided at no
additional cost. This section covers the installation of these features
using SQL Server Setup. Later, this chapter covers the post-
installation steps necessary to use them.

Install SQL Server Analysis Services
Installing SQL Server Analysis Services (SSAS) requires you to
decide ahead of time which mode to install. Each instance of SSAS
can be in only one mode, which means that with a single license, you
can run either Multidimensional mode, the newer Tabular mode
(introduced in SQL Server 2012), or Power Pivot mode.

Ask your business intelligence (BI) decision makers which platform
you should use. For most new development, Tabular mode is popular



and recommended. Tabular mode databases can also run in Azure
Analysis Services. Brief descriptions of each mode follow:

Multidimensional. This is the SSAS setup that was introduced
in SQL Server 2000 and helped revolutionize the data-
warehousing industry. This is also the only mode to support data
mining and other features on which existing SSAS data models
predating SQL Server 2012 may be dependent. The primary
language for building and querying multidimensional models is
MDX.

Tabular. This is the newer and recommended SSAS setup
introduced in SQL Server 2012, using the in-memory VertiPaq
processing engine. Since SQL Server 2017, this has been the
default installation mode selected on the Analysis Services
Configuration page of SQL Server Setup. The primary language
for building and querying tabular models is DAX, which is similar
to the Excel function language.

Power Pivot. This mode installs SSAS in Power Pivot for
SharePoint mode. Power Pivot workbooks use both DAX and
MDX. Note that Analysis Services Power Pivot for SharePoint
support for Microsoft SharePoint 2019 has been discontinued.

 For more on the differences between these SSAS installation
options, visit https://learn.microsoft.com/analysis-
services/comparing-tabular-and-multidimensional-solutions-ssas.

Inside OUT
What if you choose the wrong SSAS mode?

If you choose one SSAS mode at installation, but your BI
developers want another mode, the supported option is to
uninstall and reinstall the SSAS feature. However, changing
the SSAS mode from Multidimensional to Tabular, or vice

https://learn.microsoft.com/analysis-services/comparing-tabular-and-multidimensional-solutions-ssas


versa, after installation is not supported, and administrators
are specifically warned not to do this.

Packages developed for each mode are not supported for the
other. If no databases have been deployed to the SSAS
server instance, changing the DeploymentMode property in the
MSMDSRV.ini file should make it possible to change an
existing instance. But again, this is not a supported change.
The file is located in %Programfiles%\Microsoft SQL
Server\MSAS15.instancename\OLAP\Config\.

Install SQL Server Integration Services
The SQL Server Integration Services (SSIS) instance is installed
once per server per version, not once per instance like other features.
Starting in SQL Server 2017, however, a new Integration Services
Scale Out Configuration became available. We discuss this new
feature further in the next section.

A 64-bit version of SSIS is installed on 64-bit operating systems. If
you worry about connecting to 32-bit servers, data sources, or
application installations (such as Microsoft Office), you don’t need to.
Those connections are not dependent on the 32-bit/64-bit installation
and are handled at the package or connection-string level. Unlike
other features, you can install SSIS on a 32-bit OS; however, we do
not recommend this.

Installations of different versions of SSIS are installed side by side on
a server. Specifically, SSIS 16.0 is compatible with prior versions.

Apart from configuring the service account, you need not do any
additional configuration when installing SSIS during SQL Server
Setup. The default virtual service account is NT
Service\MsDtsServer160.



Inside OUT
Should you install SSIS alone on a server?

A standalone installation of SSIS without a matching
Database Engine instance is possible but not recommended.
For the modern Project Deployment model of SSIS, the
storage and logging of packages will still be dependent on a
SQL Server Database Engine, and the execution of packages
on a schedule still requires a SQL Agent service.

So, the SSIS workload is not best isolated in this way. A
dedicated installation including the SQL Server Database
Engine and SQL Server Agent is a better configuration to
isolate SSIS package runtime workloads from other database
workloads. Both options carry the same licensing cost.

Install SQL Server Integration Services Scale Out
configuration
Since SQL Server 2017, SSIS supports a Scale Out configuration, by
which you can run a package on the same or multiple SQL Server
instances. This also allows for high availability of SSIS, and a similar
architecture allows for integration and “lift and shift” code
deployments from on-premises SSIS to the Azure Integration
Runtime.

 Additional information on integration runtimes can be found in
Chapter 19.

The master node talks to worker nodes in an SSIS Scale Out system,
with the communication over a port (8391 by default) and secured via
a new Secure Sockets Layer (SSL) certificate. The SQL Server
installer can automatically create a 10-year self-signed certificate and
endpoint for communication when the master node is set up.



When adding another SSIS installation as a Scale Out Worker, start
the new SSIS Manage Scale Out window via SQL Server
Management Studio. To do so, right-click the catalog you have
created and select Manage Scale Out. At the bottom of the page,
select the + button to add a new Scale Out Worker node.

Next, you provide the server name on which to connect. If using a
named instance, provide only the server name of the node; do not
include the instance name. A dialog box confirms the steps taken to
add the Scale Out Worker node, including copying and installing
certificates between the Worker node and Master node, updating the
endpoint and HttpsCertThumbprint of the worker, and restarting the
Worker node’s Scale Out service.

After the worker node is added, refresh the Worker Manager page.
Then select the new Worker node entry, which will be red. Finally,
turn on the Worker node by selecting Enable Worker.

You also can copy and install the certificates manually between
servers. You will find them in %Program Files%\Microsoft SQL
Server\160\DTS\Binn\.

 For more information on certificates between servers, visit
https://learn.microsoft.com/sql/integration-services/scale-
out/deal-with-certificates-in-ssis-scale-out. For a Microsoft-
provided walk-through of setting this up, visit
https://learn.microsoft.com/sql/integration-services/scale-
out/walkthrough-set-up-integration-services-scale-out.

One major security difference with Scale Out is that even though the
SSIS service account doesn’t run packages or need permission to do
very much, the Scale Out Master and Worker service accounts do run
packages. The SSIS service account is different from the Scale Out
Master and Scale Out Worker service accounts.

The Worker and Master nodes do not appear in SQL Server
Configuration Manager (as of SQL Server 2019) but do appear in the
Services console (services.msc). By default, these services run under
virtual accounts NT Service\SSISScaleOutMaster160 and NT

https://learn.microsoft.com/sql/integration-services/scale-out/deal-with-certificates-in-ssis-scale-out
https://learn.microsoft.com/sql/integration-services/scale-out/walkthrough-set-up-integration-services-scale-out


Service\SSISScaleOutWorker160, but you might want to change
these to a Windows-authenticated domain service account that will be
used to run packages across the Scale Out.

Install SQL Server Reporting Services
Starting with SQL Server 2017, SQL Server Reporting Services
(SSRS) is no longer found in the SQL Server Setup media; it is
instead available as a simplified, unified installer and a small
download. SSRS is now a 95+MB download named
SQLServerReportingServices.exe but still needs a SQL Server
Database Engine instance as part of the license to host the two
Report Server databases. Note that SSRS isn’t free, and that the
separate installer isn’t a licensing change—although SQL Server
Express with Advanced Services offers some limited SSRS support.

 For more information on the limitations of SSRS with SQL
Server Express license, see
https://learn.microsoft.com/sql/reporting-services/reporting-
services-features-supported-by-the-editions-of-sql-server-
2016.

To install SSRS, you need to provide a license key upon installation in
a production environment. You can choose a free edition to install
(Evaluation, Developer, or Express), but you should note that
Developer edition is not allowed in a production environment.

The “native mode” of SSRS Is now the only mode since SQL Server
2017. If you are familiar with Reporting Services Report Manager
from the past, accessible via the URL servername/Reports, that is the
“native mode” installation of Reporting Services.

Report Server Configuration Manager is in a new location, in its own
Program Files menu: Microsoft SQL Server Reporting Services. After
installation, start the Report Server Configuration Manager (typically
installed in a path like \Program Files (x86)\Microsoft SQL
Server\160\Tools\Binn\RSConfigTool.exe). The Report Server

https://learn.microsoft.com/sql/reporting-services/reporting-services-features-supported-by-the-editions-of-sql-server-2016


Configuration Manager application itself is largely unchanged since
SQL Server 2008.

The default SSRS service account is the virtual service account
called NT SERVICE\SQLServerReportingServices. It is a second-
best option, however. We recommend that you instead create a new
domain service account to be used only for this service—for example,
Domain\svc_ServerName_SSRS or something with a similar naming
convention. You will need to use a domain account if you choose to
configure Report Server email with Report Server service account
(NTLM) authentication.

If you choose to change the SSRS service account later, you must
use the Reporting Services Configuration Manager tool. As with other
SQL Server services, you should never use the Services console
(services.msc) to change service accounts.

After installation, you will need to follow up on other changes and
necessary administrative actions—for example, configuring the SSRS
Execution Account and email settings or backing up the encryption
key using Reporting Services Configuration Manager.

SSRS can also integrate with Microsoft Power BI dashboards. A page
in the Report Server Configuration Manager supports the registration
of this installation of SSRS with a Power BI account. You will be
prompted to sign into Azure AD. The account you provide must be a
member of the Azure tenant where you intend to integrate with Power
BI. The account should also be a member of the system administrator
in SSRS, via Report Manager, and a member of the sysadmin role in
the SQL Server that hosts the Report Server database.

Inside OUT
Where is SSRS SharePoint Integrated mode?

Starting with SQL Server 2017, SharePoint Integrated mode
has been removed. The simplified “native” mode is the only



installation available. This matches the moves that Microsoft
has made in other areas that step away from the SharePoint
on-premises product in favor of SharePoint Online features
and development.

Instead, you can integrate SSRS native mode with on-
premises SharePoint sites via embedded SSRS reports,
including SSRS reports stored in the Power BI Report Server.

Similarly, there is no future support for SSRS integration with
SharePoint Online.

Install machine learning features
The Machine Learning Services feature makes it possible for
developers to integrate with the R and Python language extensions
using standard Transact-SQL (T-SQL) statements.

Data scientists can take advantage of this feature to build advanced
analytics, data forecasting, and algorithms for machine learning. Data
engineers can leverage these languages to integrate predictive
analytic and machine learning. The scripts you create can be
executed in-database without having to move data. You can prepare,
clean, train, evaluate, perform feature engineering, and deploy
machine learning models where the data resides. This eliminates the
transfer of data across the network to another server.

Machine Learning Services is not a standalone feature. It requires a
Database Engine instance. Also, it is now only available in the
Instance Features section, and is no longer available in the Shared
Features section.

Beginning with SQL Server 2022, runtimes for R, Python, and Java
are no longer installed with SQL Setup. You must run the SQL Setup
Wizard to install Machine Learning Services and Language
Extensions. Then you must install your desired R, Python, or Java
runtime(s) and packages.



You can install and use your open-source package and framework of
choice, such as PyTorch, TensorFlow, and others. Machine Learning
Services use an extensibility framework to run Python and R scripts.

Note
After installing your desired runtime(s), be sure to enable the
external scripting feature using the following T-SQL command:
Click here to view code image

EXEC sp_configure  'external scripts enabled';

Then restart the SQL Server service.

 Note that there are separate Microsoft Docs articles for
installation of Machine Learning Services on SQL Server 2019
and prior, and for SQL Server 2022. For installation on SQL
Server 2022 on Windows, visit
https://learn.microsoft.com/sql/machine-learning/install/sql-
machine-learning-services-windows-install-sql-2022. For
information about installing Machine Learning Services for
SQL Server 2022 on Linux, see
https://learn.microsoft.com/sql/linux/sql-server-linux-setup-
machine-learning-sql-2022.

Availability groups are supported for Machine Learning Services, to
ensure business continuity by configuring packages on each node,
and failover cluster instances are supported from SQL Server 2019
onward.

You can execute Python and R scripts on a SQL Server instance with
the stored procedure sp_execute_external_script.

You can find more details on each framework for this evolving feature
in these Microsoft Docs articles:

Extensibility framework.
https://learn.microsoft.com/sql/machine-

https://learn.microsoft.com/sql/machine-learning/install/sql-machine-learning-services-windows-install-sql-2022
https://learn.microsoft.com/sql/linux/sql-server-linux-setup-machine-learning-sql-2022
https://learn.microsoft.com/sql/machine-learning/concepts/extensibility-framework


learning/concepts/extensibility-framework

Python extension. https://learn.microsoft.com/sql/machine-
learning/concepts/extension-python

R extension. https://learn.microsoft.com/sql/machine-
learning/concepts/extension-r

Install PolyBase Query Service for External Data
The PolyBase connector is a much-marketed feature for allowing
native connectors for external data sources—even non-Microsoft or
non–relational database platforms like Oracle, Teradata, and
MongoDB.

Using PolyBase EXTERNAL tables, we can use SQL data types and
T-SQL queries to seamlessly query data sources in-place in what
Microsoft calls data virtualization. This eliminates the need for
complex heterogeneous data movement and reduces the need for
developers to have knowledge of other external query languages.

The PolyBase Query Engine feature is specifically designed for read
and write queries on non-Microsoft database platforms like Oracle
and DB2, but also for Azure Blob Storage files, MongoDB, and more.
This is a superior alternative to linked servers to the same external
data sources, because PolyBase allows “push down” computation for
these external sources, reducing the amount of data transferred and
increasing the performance of analytical-scale queries.

Install Azure extension for SQL Server
A new feature for SQL Server 2022 is extensibility for Azure features.
This is in large part where the connections are initially set up for the
features that make up the most Azure-connected version of SQL
Server to date. Let’s look at the most common ones available so you
understand what you are setting up.

Azure Arc–enabled servers

https://learn.microsoft.com/sql/machine-learning/concepts/extensibility-framework
https://learn.microsoft.com/sql/machine-learning/concepts/extension-python
https://learn.microsoft.com/sql/machine-learning/concepts/extension-r


Azure Arc–enabled SQL Server instances are on-premises but still
managed by Azure. This extends the services of Azure to the
datacenter or wherever it is needed.

Azure Arc–enabled servers are supported only for the following
operating systems:

Windows Server 2012 R2 and higher

Ubuntu 16.04 and 18.04 (x64)

Red Hat Enterprise Linux (RHEL) 7 (x64)

SUSE Linux Enterprise Server (SLES) 15 (x64)

Note
SQL Server instances on Azure Arc–enabled servers are not
currently supported in Linux containers.

To perform all the actions needed to connect an Azure Arc–enabled
server to Azure, you need an account with all of the following
privileges:

Microsoft.HybridCompute/machines/extensions/read

Microsoft.HybridCompute/machines/extensions/write

Microsoft.HybridCompute/machines/extensions/delete

Microsoft.HybridCompute/machines/read

Microsoft.HybridCompute/machines/write

Microsoft.GuestConfiguration/guestConfigurationAssignments/re
ad

Microsoft.Authorization/roleAssignments/write

Microsoft.Authorization/roleAssignments/read



To enable the services so that Azure Arc recognizes your instance,
you need to register it for the services you want to take advantage of.
There are a few steps to follow, both in Azure and on the server itself,
for existing instances. Detailed instructions on how to do this can be
found at https://learn.microsoft.com/sql/sql-server/azure-arc/overview.

Inside OUT
What are Azure Arc–enabled servers?

Azure Arc–enabled servers are servers that are managed by
Azure but reside outside of Azure. These can reside on a
private network, corporate network, or other public cloud. The
experience is designed to be like how you would manage an
Azure VM.

Azure Arc–enabled servers unlock additional features and
advantages, including unified cloud manageability, but also,
for example, the ability to use Azure AD–integrated
authentication in on-premises SQL Servers. Azure Arc is a
continuously evolving and developing technology, with new
announcements arriving regularly.

Microsoft Defender for Cloud
Microsoft Defender for Cloud is a Cloud Security Posture
Management (CSPM) and Cloud Workload Protection Platform
(CWPP) that can be run in Azure but has been extended to on-
premises and third-party clouds for multi-cloud opportunities with
Azure Arc. The purpose of Defender is to assess, secure, and defend
from threats. It does this by:

Continuously assessing your security posture so you can
identify opportunities, track vulnerabilities, and report

https://learn.microsoft.com/sql/sql-server/azure-arc/overview


Securing resources and checking best practices to provide cloud
recommendations

Defending from, detecting, alerting on, and resolving threats in
real-time so you can prevent security events from happening

 For more detailed steps on setting up Microsoft Defender for
Cloud, see the Microsoft Cloud Guide tutorial at
https://mslearn.cloudguides.com/guides/Protect%20your%20multi
-
cloud%20environment%20with%20Microsoft%20Defender%20for
%20Cloud.

Microsoft Defender is only supported for SQL Server on Windows
machines and must have one of the RBAC roles assigned to it, as
described in the next paragraph.

 Details on how to install Defender on your Azure Arc–enabled
server for SQL Server can be found at
https://learn.microsoft.com/sql/sql-server/azure-arc/configure-
advanced-data-security.

Microsoft Defender for Cloud uses Azure role-based access control
(RBAC)—a built-in set of roles assigned to users, groups, and
services in Azure—to assess, manage, and access resources. Users
require the Assignments role with write permissions, such as a User
Access Administrator or Owner. You can access information related
to a resource when you are assigned the role of Owner, Contributor,
or Reader for the subscription or the resource’s resource group.

Other built-in roles are specific to Microsoft Defender for Cloud:

Security Reader users have viewing rights, which lets them view
recommendations, alerts, security policies, and security states,
but not make changes.

Security Admin users have the same rights as Security Reader
users but can also update the security policy, dismiss alerts and
recommendations, and apply recommendations.

https://mslearn.cloudguides.com/guides/Protect%20your%20multi-cloud%20environment%20with%20Microsoft%20Defender%20for%20Cloud
https://learn.microsoft.com/sql/sql-server/azure-arc/configure-advanced-data-security


 For detailed instructions on how to assign roles in the Azure
portal, see “Assign Azure roles using the Azure portal” at
https://learn.microsoft.com/azure/role-based-access-control/role-
assignments-portal.

 Find instructions for assigning administrator roles in Azure AD at
https://learn.microsoft.com/azure/active-directory/roles/manage-
roles-portal.

Azure AD Authentication
New with SQL Server 2022, you can authenticate SQL Server with
Azure AD using the following methods:

Azure AD Password

Azure AD Integrated

Azure AD Universal with Multi-Factor Authentication

Azure AD access token

Azure AD support makes hybrid integrations with Azure Synapse
Analytics, Azure SQL Managed Instance, Azure Arc, and other
services easier. If your Windows Server AD is federated with Azure
AD, users can use those credentials to sign into SQL Server.
However, Azure AD authentication does not support service accounts
or other complex architectures of AD.

Azure AD support requires that both SQL Server and the host server
(Windows or Linux) be registered with Azure Arc.

 For more details on Azure AD, see Chapter 12.

Microsoft Purview
Microsoft Purview is a data-governance tool designed to support
organizations in finding, understanding, governing, and consuming
data stores. Microsoft Purview has been a cloud-first feature for some

https://learn.microsoft.com/azure/role-based-access-control/role-assignments-portal
https://learn.microsoft.com/azure/active-directory/roles/manage-roles-portal


time, and has come to SQL Server on-premises with SQL Server
2022.

As with many other Azure hybrid features, SQL Server must be
registered with Azure Arc to use Microsoft Purview. In addition, you
will need to create a Microsoft Purview account and enable Azure
AD.

 For information on creating a Microsoft Purview account, see
https://learn.microsoft.com/azure/purview/create-catalog-
portal.

Caution
Take care when assigning permissions for Microsoft Purview.
There are inherent risks with the various admin roles, and these
should be shared among different people in your organization.
To prevent policies from being modified, you can use Azure
Resource Manager (ARM) locking. More details on setting up
Purview for an Azure Arc server are available at
https://learn.microsoft.com/azure/purview/how-to-data-owner-
policies-arc-sql-server#configuration.

Azure extension for SQL Server
To connect SQL Server to Azure Arc and take advantage of Microsoft
Defender, Azure AD, and Microsoft Purview, you must install the
Azure extension for SQL Server during SQL Server Setup on the
Azure Extension for SQL Server page (see Figure 4-2). You can use
your existing Azure credentials or an Azure Service Principal, and
then complete the required fields such as Azure Research Group,
Azure Region, and Azure Tenant ID. If you are not interested in
connecting your SQL Server instance to Azure Arc, simply deselect
the Azure Extension for SQL Server check box.

https://learn.microsoft.com/azure/purview/create-catalog-portal
https://learn.microsoft.com/azure/purview/how-to-data-owner-policies-arc-sql-server#configuration


Figure 4-2 The Azure Extension for SQL Server page displays a
number of required fields to enable Azure Arc features.

Log SQL Server Setup
SQL Server Setup generates many logging files for diagnostic and
troubleshooting purposes. These logs should be the first place you go
if you have an issue with Setup.

First, a System Configuration Check Report .htm file is generated
each time you run Setup. You can view this report in SQL Server
Setup near the start of the installation steps.



A new timestamp-named folder of log files is generated for each
launch of SQL Server Setup. After you proceed past the Ready to
Install page, and regardless of whether Setup was a complete
success, it generates a number of log files in the following folder:
Click here to view code image

%programfiles%\Microsoft SQL Server\150\Setup 
Bootstrap\Log\YYYYMMDD_HHMMSS\

However, when you run Setup using the /Q or /QS parameters for
unattended installation, the log file is written to the Windows %temp%
folder.

A log summary file of the installation is created that uses the following
naming convention:
Click here to view code image

Summary_instancename_YYYYMMDD_HHMMSS.txt

Setup generates similar files for the Component and Global Rules
portions of Setup, as well as a file called Detail.txt in the same folder.
These files might contain the detailed error messages you are looking
for when troubleshooting a failed installation. The Windows
Application Event log might also contain helpful information in that
situation.

You’ll also find the new SQL Server instance’s first error log encoded
at UTC time in this folder, showing the log from startup, similar to the
normal SQL Server Error Log.

Automate SQL Server Setup with configuration
files
Let’s dig more into what you can do with setup.exe outside of the
user interface. You can use configuration files to automate the
selection process when installing SQL Server, which helps to create a
consistent configuration.



Values provided in configuration files can prepopulate or override
Setup settings. They also can configure Setup to run with the normal
user interface or silently without any interface.

Start SQL Server Setup from the command line
You can start setup.exe from either Windows PowerShell or the
command prompt, providing repeatability and standardization of
parameter options. You also can use it to prefill sections of the Setup
wizard or to change the default behavior of Setup.

For the purposes of the installer, ensure you always use the
Administrator level for these two shells. The title on each application
window should be preceded by Administrator:—for example,
Administrator: Windows PowerShell.

Sometimes you also might find it necessary to start Setup from the
command line or Windows PowerShell because of a workaround for a
specific problem or to automate and standardize future SQL Server
installations. To start Windows PowerShell or the command prompt
as Administrator, in the Start menu, search for the desired
application, right-click it, and then select Run As Administrator on
the shortcut menu that opens.

From the location of the SQL Server Setup installation files—for
example, the mounted .iso file—execute the following command with
PowerShell or the Windows Prompt:
Click here to view code image

.\setup.exe /ConfigurationFile=c:\install\SQL2019_basic.INI

This sample script, and all scripts for this book, are available for
download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads. The preceding code sample uses a configuration file to pre-
select installation choices—for example, features to be installed. Let’s
talk more about configuration files.

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


Generate a configuration file
Writing a configuration file by hand is not necessary, and can be
tedious. Instead of going through that effort, you can let SQL Server
Setup create a configuration file for you.

Work your way through the normal SQL Server Setup user interface,
completing everything as you normally would, but pause when you
get to the Ready to Install page. Near the bottom of this page is a
path (see Figure 4-3). At that location, you’ll find a generated
configuration file, ready for future use and modification if needed.



Figure 4-3 The Ready to Install page displays a summary of the
installation steps as well as the path to the
configuration file that has been prepared.

For example, the first modification you need to make to the .ini file is
to accept the SQL Server license terms via the
IACCEPTSQLSERVERLICENSETERMS parameter, which isn’t automatically
provided in the automatically generated .ini file. Unless you modify an
.ini file to provide this, it isn’t possible to run the installer without user
interaction.

Install by using a configuration file
Now that you have a configuration file generated using the previous
walk-through, you can take the next step to automate or standardize
your installation.

You can start setup.exe from a command prompt with a configuration
file by using the /CONFIGURATIONFILE parameter of setup.exe. Or you
can launch SQL Server Setup with a configuration file by navigating
to the Advanced page of the SQL Server Installation Center that
starts with setup.exe in Windows. Once there, select the Install
Based On A Configuration File check box. A message appears,
asking you to browse to the .ini file. After you select the appropriate
file, setup.exe will start with those options.

One thing to keep in mind is that configuration files generated by
setup.exe do not and should not store the passwords you provided
for any service accounts. If you do want to configure service account
credentials in your configuration file, for security reasons, do not store
the service account passwords in plain text in a configuration file.
Instead, store passwords separately and securely, and provide them
when you run setup.exe.

Each service’s account parameters are available in a setup.exe
runtime parameter, which is listed in Table 4-1.

Table 4-1 Common setup.exe parameters and their purposes



Service Parameter name Description
SQL
Server
Database
Engine

/SQLSVCPASSWORD Password for the SQL Server
Database Engine Services service
account. This is the service
account for sqlservr.exe. It is
required if a domain account is
used for the service.

SQL
Server
Agent

/AGTSVCPASSWORD Password for the SQL Server
Agent service account. This is the
service account for sqlagent.exe. It
is required if a domain account is
used for the service.

sa
password

/SAPWD Password for the sa account. It is
required when /SECURITYMODE=SQL
is used, which enables Mixed Mode
authentication.

Integration
Services

/ISSVCPASSWORD Password for the Integration
Services service. It is required if a
domain account is used for the
service.

Reporting
Services
(Native)

/RSSVCPASSWORD Password for the Reporting
Services service. It is required if a
domain account is used for the
service.

Analysis
Services

/ASSVCPASSWORD Password for the Analysis Services
service account. It is required if a
domain account is used for the
service.

PolyBase /PBDMSSVCPASSWORD Password for the PolyBase service
account.



Service Parameter name Description
Full-Text
filter
launcher
service

/FTSVCPASSWORD Password for the Full-Text filter
launcher service.

For example, in the snippet that follows, the
PROD_ConfigurationFile_Install.INI provides the account name of the
SQL Server Database Engine service account, but the password is
provided when setup.exe runs in the command prompt or
PowerShell:
Click here to view code image

setup.exe /SQLSVCPASSWORD="securepwd" 
/ConfigurationFile="d:\SQL\PROD_Install.INI"

You can provide further parameters like passwords when you run
Setup. Parameter settings provided override any settings in the
configuration file, just as the configuration file’s settings override any
defaults in the Setup operation. Table 4-2 lists and describes the
parameters.

Table 4-2 Common setup.exe parameters of which you should be
aware

Parameter
usage Parameter Description
Unattended
installations

/Q Specifies Quiet
Mode with no
user interface
and user
interactivity
allowed.



Parameter
usage Parameter Description

Unattended
installations

/QS Specifies Quiet
Mode with user
interface but no
user interactivity
allowed. Will fail
if all needed
information or
parameters are
not provided.

Accept license
terms

/IACCEPTSQLSERVERLICENSETERMS Must provide in
any
configuration file
looking to avoid
prompts for
installation.

R open license
terms

/IACCEPTROPENLICENSETERMS Must provide for
any unattended
installation
involving the R
language option
for Machine
Learning
Services.

Python open
license terms

/IACCEPTPYTHONLICENSETERMS Must provide for
any unattended
installation
involving the
Python
language option
for Machine
Learning
Services.



Parameter
usage Parameter Description

Instant file
initialization

/SQLSVCINSTANTFILEINIT Set to true to
grant Perform
Volume
Maintenance
Task privilege to
the Database
Engine service
account
(recommended).

Windows
accounts to
provision as
members of the
sysadmin role

/SQLSYSADMINACCOUNTS Must provide
groups or
service
accounts to
specify as the
initial members
of the sysadmin
role.

Provision the
user running
SQL Server
Setup as a
member of the
sysadmin role

/ADDCURRENTUSERASSQLADMIN If desired,
specify the
current local
Windows Server
user running
SQL Server
Setup as an
initial member of
the sysadmin
role. Not desired
if using a
personal named
account; use a
group instead.



Parameter
usage Parameter Description

tempdb data file
count

/SQLTEMPDBFILECOUNT Set to the
number of
desired tempdb
data files to be
installed initially.

Enable TCP/IP /TCPENABLED="1" Disabled by
default and
used in many
installations.
Enable TCP/IP
here to save
yourself a step
in Configuration
Manager later
on.

By default, the /UpdateEnabled parameter is enabled and doesn’t
need to be specified, and SQL Server will include updates found via
Windows Update. If you choose to disable this behavior by providing
/UpdateEnabled=False, you can also specify /UpdateSource as the
location of the cumulative update or other SQL patch file executables
to be included in the installation.

SQL Server on Azure virtual machines
Azure options are continuously evolving, making it hard to
comprehensively cover them in any one book. SQL Server 2022 is
touted as the most Azure-connected version to date. It is Microsoft’s
way of bringing you hybrid flexibility from ground to cloud, so it is
worthwhile covering some of those intersections here.

At the time of writing, there are three options:



Azure VMs. VMs hosted in Azure. They function very similarly
to VMs in your on-premises environment, except they are
hosted in Azure. You have the same responsibilities for
protection and management, but with the utilities and services of
Azure at your disposal.

SQL Server on Azure VMs. Azure VMs with a preset
configuration of SQL Server you choose based on your desired
workload. The default workload environment is production, but
there are options for dev/test as well. You can choose between
different performance tiers; some focus on CPU-intensive
workloads, while others focus on memory-optimized workloads,
with variations in between. These tiers provide a wide selection
of virtual hardware to run enterprise applications, relational
databases, analytics, in-memory workloads, and intensive batch
processing.

Azure Arc VMs. VMs that can be created in one of your non-
Azure environments. Typically, this is on-premises, but it could
also be another cloud provider, public or private.

Post-installation server configuration
After you install SQL Server, there are several changes to make or
confirm on the OS and in settings for SQL Server.

Post-installation checklist
You should run through the following checklist on your new SQL
Server instance. The order of these items isn’t necessarily specific.
Many deal with SQL Server and/or Windows configuration settings.
You want to evaluate whether these are appropriate for your
environment, but you should consider and apply them to most SQL
Server installations.

Check your SQL Server patch level version and apply patches if
necessary.



Review maximum server memory settings for other features.

Review the surface area configuration facet.

Set up SQL Agent.

Turn on TCP/IP if needed.

Verify server power options.

Configure antivirus exclusions for SQL Server processes and
files.

Evaluate whether Lock Pages in Memory is necessary.

Review the size and location of the Windows page file.

Set up scheduled backups, index maintenance, log retention
maintenance, and integrity checks.

Back up service master and database master keys.

Increase SQL Agent and SQL Error Log retention from the
defaults.

Suppress successful backup messages.

Increase default SQL Agent history retention.

Let’s look at each of these in more detail in the following subsections.

Check your SQL Server patch level version and
apply patches if necessary
After you install SQL Server, check the version number against the
latest cumulative updates list—especially if you did not opt to or could
not use Windows Update during SQL Server Setup. You can view the
version number in SQL Server Management Studio’s Object Explorer
or via a T-SQL query on either of the following built-in functions:
Click here to view code image



SELECT @@VERSION; 
SELECT SERVERPROPERTY('ProductVersion'); 
SELECT SERVERPROPERTY('Edition');

While you’re at it, double-check that you installed the right edition of
SQL Server, too!

Note
Take the opportunity before your SQL Server enters production
to patch it. For information about the latest cumulative updates
for SQL Server, visit
https://learn.microsoft.com/troubleshoot/sql/general/determine-
version-edition-update-level#sql-server-complete-version-list-
tables, and select your version or build.

Review maximum server memory settings for
other features
Other features of SQL Server have their own maximum server
memory settings. As you will notice by their default settings, for
servers on which both the Database Engine and SSAS and/or SSRS
are installed, competition for and exhaustion of memory is possible. It
is recommended that you protect the Database Engine by lowering
the potential memory impact of other applications.

Limit SSAS memory
SQL Server Analysis Services (SSAS) has not just one maximum
server memory limit, but five, and you can enforce limits by hard
values in bytes or by a percentage of total physical memory of the
server.

You change these memory settings via SSMS by connecting to the
SSAS instance in Object Explorer. To start, right-click the server and
select Properties on the shortcut menu. Some of the memory

https://learn.microsoft.com/troubleshoot/sql/general/determine-version-edition-update-level#sql-server-complete-version-list-tables


settings described here are identical for Multidimensional and Tabular
installations, whereas others are for Tabular mode only:

LowMemoryLimit. A value that serves as a floor for memory,
but also the level at which SSAS begins to release memory for
infrequently used or low-priority objects in its cache. Below this
level, no memory maintenance is performed by SSAS. The
default value is 65, or 65 percent of total server physical
memory (or technically the virtual address space, but SSAS,
among other features, is no longer supported on 32-bit systems,
so this is not a concern).

TotalMemoryLimit. A value that serves as a threshold for SSAS
to begin to release memory for higher priority requests. This is
not a hard limit. The default is 80 percent of total server memory.

HardMemoryLimit. A hard memory limit that leads to more
aggressive pruning of memory from cache and potentially to the
rejection of new requests. By default, this is displayed as 0, and
is effectively the midway point between the TotalMemoryLimit
and the server physical memory. The TotalMemoryLimit must
always be less than the HardMemoryLimit.

VertiPaqMemoryLimit. For SSAS installations in Tabular mode
only, a value that serves as a memory limit for the VertiPaq
processing engine. The default is 60, or 60 percent of server
physical memory. Above this percentage, and only if
VertiPaqPagingPolicy is turned on (it is by default), SSAS
begins to page data to the hard drive using the OS page file.
Paging to a drive can help prevent out-of-memory errors when
the HardMemoryLimit is met.

QueryMemoryLimit. A value that can limit the amount of
memory used by individual DAX queries, preventing any one
query from dominating memory. For any individual query, this
setting can be overridden by a new XMLA property,
DbpropMsmdRequestMemoryLimit, specified for the query
connection. This setting can be specified as a percentage
(values <=100) or as a number of bytes greater than 100. The



default setting of 0 implies no limit to the memory of individual
queries.

Figure 4-4 shows the General page of the Analysis Server Properties
dialog box, as started in Object Explorer in SSMS, and the locations
of the preceding memory configuration properties with their defaults
in SQL Server 2019 for a Tabular mode installation of SSAS. Note
that the Show Advanced (All) Properties check box is checked.

Figure 4-4 The General page in the Analysis Server Properties
dialog box showing the default settings.

Limit SSRS memory
Four options are available for limiting SQL Server Reporting Services
(SSRS) memory: MemorySafetyMargin, MemoryThreshold,



WorkingSetMaximum, and WorkingSetMinimum. All four are based on
numbers contained in tags within a config file, so be sure to make a
backup of it before editing. You can configure memory settings only in
the RSReportServer.config file, which is a text file stored at
%ProgramFiles%\Microsoft SQL Server Reporting
Services\SSRS\ReportServer.

Note
This location has changed from previous versions, but the
config file name has not.

Two of the settings are in the config file by default; two more are
available to administrators to use in advanced scenarios. Let’s look at
each one:

MemorySafetyMargin. The percentage of WorkingSetMaximum
that SSRS will use before taking steps to reduce background
task memory use and prioritize requests coming from the web
service, attempting to protect user requests. User requests
could still be denied.

MemoryThreshold. The percentage of WorkSetMaximum at which
SSRS will deny new requests, slow down existing requests, and
page memory to a hard drive until memory conditions improve.

Two more settings are given values automatically upon service
startup, but you can override them in the config file. Two older
memory settings from SQL Server 2005 with which SQL DBAs might
be familiar are MemoryLimit and MaximumMemoryLimit, but these two
values have been ignored since SQL Server 2008.

WorkingSetMaximum. By default, this is the server’s total
physical memory. This setting does not appear by default in the
config file, but you can override it to reduce the amount of
memory of which SSRS will be aware. This value is expressed
in kilobytes of memory.



WorkingSetMinimum. By default, this value is 60 percent of
WorkingSetMaximum. If SSRS needs memory below this value, it
will use memory and not release it due to memory pressure.
This setting does not appear by default in the config file, but you
can override it to increase the variability of SQL SSRS’s memory
use.

These four settings can appear in the rsreportserver.config file. As
demonstrated here, you could override the default settings to 4 GB
maximum and 2 GB minimum (each expressed in KB):
Click here to view code image

<MemorySafetyMargin>80</MemorySafetyMargin> 
<MemoryThreshold>90</MemoryThreshold> 
<WorkingSetMaximum>4194304</WorkingSetMaximum> 
<WorkingSetMinimum>2097152</WorkingSetMinimum>

Limit Machine Learning Server memory
Like SSAS and SSRS, the Machine Learning Server has a config file
at %ProgramFiles%\Microsoft SQL
Server\MSSQL15.instancename\MSSQL\Binn\rlauncher.config.

By default, Machine Learning Server is similar to 20 percent of total
server memory. You can override this by adding a tag to the config file
to provide a value for MEMORY_LIMIT_PERCENT. This value is not in the
config file by default.

Remember to make a backup of this config file before editing. The
following is an example of the contents of the rlauncher.config file,
with the default memory limit changed to 25 percent:
Click here to view code image

RHOME=C:\PROGRA~2\MICROS~1\MSSQL1~4.SQL\R_SERV~2 
MPI_HOME=C:\Program Files\Microsoft MPI 
INSTANCE_NAME=SQL2K22 
TRACE_LEVEL=1 
JOB_CLEANUP_ON_EXIT=1 
USER_POOL_SIZE=0 



WORKING_DIRECTORY=C:\Program Files\Microsoft SQL 
Server\MSSQL16.SQL2K22\MSSQL\ExtensibilityData 
PKG_MGMT_MODE=0 
MEMORY_LIMIT_PERCENT=25

Review the surface area configuration
If you are a veteran SQL Server DBA, you will remember when the
SQL Server Surface Area Configuration was a separate application.
Now, surface area settings are a facet, accessed via the Facets
dialog box in SSMS starting with SQL Server 2008.

To view surface area configuration settings in SSMS, open Object
Explorer, connect to the SQL Server, right-click the server, and select
Facets on the shortcut menu. (The Facets window sometimes takes
a moment to load.) Then, in the dialog box that opens, change the
value in the list box to Surface Area Configuration.

Most of these options should remain off unless needed because they
present a specific potential for misuse by an administrator or
unauthorized user. In typical installations of SQL Server 2022,
however, you should consider enabling three of these options:

Database Mail. This should be enabled on most instances to
allow SQL Server to, at the very least, send out a message in
case of a high-severity incident or job failure, and to allow
developers to send custom email messages using the system
procedure sp_send_dbmail. You also can turn this setting on or
off via the Database Mail XPs option in sp_configure. (More
about this setting in Chapter 9, “Automate SQL Server
administration.”)

Remote Dedicated Admin Connection. This could be
particularly useful for bypassing a malfunctioning login trigger or
Resource Governor. You also can turn this setting on or off via
the remote admin connections option in sp_configure. (More on
this setting in Chapter 13: “Protect data through classification,
encryption, and auditing.”)



CLR Integration. Turn on if you need to use SSIS or to write
CLR objects. You also can turn this setting on or off via the
clr_enabled option in sp_configure.

You should turn on other options in the Surface Area Configuration
only if they are specifically required by an application and you are
aware of the potential security concerns.

Set up SQL Agent
There are several post-installation tasks to set up in SQL Agent
before SQL Server can begin to help you automate, monitor, and
back up your new instance.

 Chapter 8, “Maintain and monitor SQL Server,” and Chapter 9
cover SQL Agent and monitoring topics in detail.

You will likely want to do the following:

1. Change the SQL Agent service from Manual to Automatic
startup.

2. Set up a Database Mail account and profile (see Chapter 9) to
send email notifications for alerts or job status notifications.

3. Set up an operator for a distribution group of IT professionals in
your organization who would respond to a SQL Server issue.

4. Configure SQL Server Agent to use Database Mail, including a
fail-safe operator.

5. Set up SQL Server Alerts for desired errors and high severity
(Severity 21+) errors.

At the very least, these steps are put in place so that SQL Server can
send out a call for help. Even if you have centralized monitoring
solutions in place, the most rare and severe of errors should be
important enough to warrant an email.



You can choose to configure many Windows Management
Instrumentation (WMI) conditions, Performance Monitor counter
conditions, and SQL Server Error messages by number or severity in
SQL Server Alerts. However, do not overcommit your inboxes, and do
not set an inbox rule to Mark As Read and file away emails from SQL
Server. By careful selection of emails, you can assure yourself and
your team that emails from SQL Server will be actionable concerns
that rarely arrive.

 For much more information on maintaining and monitoring
SQL Server, see Chapter 8.

Turn on TCP/IP if needed
Depending on the edition you have installed, the common network
protocol TCP/IP is off by default. The only protocol that is on is
Shared Memory, which allows only local connections. You will likely
not end up using Shared Memory alone to connect to the SQL Server
for common business applications that use multiple servers for
database, web, and application tiers.

Note
It is possible to enable TCP/IP by default at the time of
installation if using a configuration file for SQL Server Setup, but
this option does not appear in the UI for SQL Server Setup. It
must be changed after installation is complete.

When you connect to SQL Server using SSMS while local to the
server, you connect to the Shared_Memory endpoint whenever you
provide the name of the server, the server\instance, localhost, dot
character (.), (local), .\instance, or (local)\instance.

TCP/IP, however, is ubiquitous in many SQL Server features and
functionality. Many applications will need to use TCP/IP to connect to
the SQL Server remotely. Many SQL Server features require TCP/IP



to be enabled, including the Remote Dedicated Admin Connection
(DAC), the availability groups listener, and Kerberos authentication.

To configure TCP/IP, open the SQL Server Configuration Manager
application locally on the server. Then, in the left pane, select SQL
Server Network Configuration. Browse to the protocols for your
newly installed instance of SQL Server. The default instance of SQL
Server, here and in many places, will appear as MSSQLSERVER.

You can also enable TCP/IP for a SQL Server instance with
PowerShell:
Click here to view code image

Import-Module SqlServer 
$wmi = new-
object('Microsoft.SqlServer.Management.Smo.Wmi.ManagedCompute
r') 
#Path to the local server 
$path = "ManagedComputer[@Name='$env:COMPUTERNAME']/" 
$path = 
$path+"ServerInstance[@Name='SQL2K22']/ServerProtocol[@Name='
Tcp']" 
#Enable the TCP protocol on the local server, on the named 
instance SQL2K22 
$TCPIP = $wmi.GetSmoObject($path) 
$TCPIP.IsEnabled = $true 
$TCPIP.Alter() 
$TCPIP.IsEnabled 
#Restart SQL Server Database Engine service to apply the 
change

After turning on TCP/IP, regardless of what method you use, you
need to restart the SQL Server Database Engine service for it to take
effect.

Note
Turning on Named Pipes is not required or used unless an
application specifically needs it.



Verify server power options
The Windows Server Power Options setting should be set to High
Performance for any server hosting a SQL Server instance.

In other power plans, Windows might not operate the processor at
maximum frequency during normal or even busy periods of SQL
Server activity. This applies to physical or virtual Windows servers.

Review this setting and ensure that the group policy will not change it
back to Balanced or another setting. Also ensure that group
preferences are configured with High Performance selected for new
SQL Servers. Finally, you may also need to check that the BIOS is
also configured for High Performance.

Configure antivirus exclusions for SQL Server
processes and files
Configure any antivirus software installed on the SQL Server to
ignore scanning files with extensions used by your SQL Server data
and log files. Typically, these will be MDF, LDF, and NDF files.

Also, configure any antivirus programs to ignore folders containing
SQL Server files. These could include:

Full-text catalog files

Backup files

Replication snapshot files

SQL Server trace (TRC) files

SQL Audit files

Analysis Services database

Log and backup files

FILESTREAM and FileTable folders



SSRS temp files and log files

Processes might also be affected, so set antivirus programs to ignore
the programs for all instances of the SQL Server Database Engine
service, Reporting Services service, Analysis Services service, and R
Server (RTerm.exe and BxlServer.exe).

In SQL Server FCIs and availability groups, configure antivirus
software to exclude the MSCS folder on the quorum drive if in use,
the MSDTC directory on the MSDTC share, and the Windows\Cluster
folder on each cluster node, if they exist.

Inside OUT
What if you suspect antivirus or antimalware software is
interfering with SQL Server?

This is one of the more challenging troubleshooting exercises:
a strange error message, DLL error, or file accessibility issue.
It is critical to configure antivirus to exclude SQL Server files
and folders from on-access scans, exclusive-lock scans, and
more.

If you notice, for example, random databases failing to
recover upon SQL Server startup, or error messages like “File
activation failure” or “Unable to open the physical file,”
sqlservr.exe may not be able to gain exclusive access to the
files because they are being scanned by another application.
Use the Windows Sysinternals Process Explorer application to
search for handles, including your SQL Server files, and
potentially catch that other application accessing the file.
Download the Sysinternals Process Explorer at
https://aka.ms/processexplorer.

Antivirus applications may also interfere with service packs
and cumulative updates if those files, even if they are signed
by Microsoft, have not been pre-approved for execution in the

https://aka.ms/processexplorer


production environment. Communicate with the teams that
control antivirus, antiransomware, or antimalware solutions in
your enterprise.

Optimize for ad hoc workloads
The server-level setting Optimize for Ad Hoc Workloads doesn’t have
the most intuitive name. We are not optimizing ad hoc queries; we
are optimizing SQL Server memory usage to prevent ad hoc queries
from consuming unnecessary cache.

 For more about the Optimize for Ad Hoc Workloads setting,
see Chapter 3.

For the unlikely scenario in which a large number of queries are
executed only two times, setting this option to True would be a net
negative for performance. Enabling this setting can also affect
performance tuning for single-use queries.

 For more about cached execution plans, read Chapter 14.

Evaluate whether Lock Pages in Memory is
necessary
Consider using the Lock Pages in Memory policy for environments in
which instances of SQL Server are expected to experience memory
pressure due to other applications, server limitations, or overallocated
virtualized systems. This is an in-depth topic to be carefully
considered.

 For more about the Lock Pages in Memory setting, see
Chapter 2, “Introduction to database server components.”

 For more about the Windows page file, see Chapter 3.



Inside OUT
How can you tell if the Lock Pages in Memory policy is in
effect?

Starting with SQL Server 2016 SP1, you can check whether
the Lock Pages in Memory policy has been granted to the
Database Engine using the following query:

Click here to view code image

SELECT sql_memory_model_desc 
FROM sys.dm_os_sys_info; 
--CONVENTIONAL = Lock pages in memory privilege is not 
granted 
--LOCK_PAGES = Lock pages in memory privilege is 
granted 
--LARGE_PAGES = Lock pages in memory privilege is 
granted in Enterprise mode 
--  with Trace Flag 834 ON

Review the size and location of the Windows page
file
The page file is used to page out system memory. It can also capture
a system memory dump for crash forensic analysis, a factor that
dictates its size on modern operating systems with large amounts of
memory. Therefore, the general recommendation for the system page
file is that it should be at least the same size as the server’s amount
of physical memory. This is also why the page file is best moved to its
own volume, away from the OS volume, so that it does not
unexpectedly grow and create space issues.

 For more guidance on the operating system page file, see the
section “Configure the operating system page file” in Chapter
3.



Set up scheduled backups, index maintenance,
log retention maintenance, and integrity checks
Backups are a critical part of disaster recovery. They should begin as
soon as possible after installation, and before users or applications
begin to use the SQL Server.

Generate database backups, at least of the master and msdb system
databases, right away. You should also back up other SQL Server
Setup–created databases, including ReportServer,
ReportServerTempDB, and SSISDB, as soon as possible.

 For more information on backups, index maintenance, and
monitoring, see Chapter 11.

As soon as your new SQL Server instance has databases in use,
regularly perform selective index maintenance and integrity checks
that consider the current fragmentation levels of indexes rather than
performing index maintenance on entire databases. In many cases,
statistics maintenance may be more effective in the shorter term.

 For more information on automating maintenance, see
Chapter 9.

Back up service master and database master keys
You should back up service master keys and any database master
keys as they are created, securely storing their information.

 For more information on service master and database master
keys, see Chapter 13.

To back up the instance service master key, use the following
command:
Click here to view code image

BACKUP SERVICE MASTER KEY TO FILE = 'localfilepath_or_UNC' 
ENCRYPTION BY PASSWORD = 'complexpassword'



As soon as database master keys come into existence in each user
database—for example, as you implement features like transparent
data encryption (TDE) or column data encryption, back up individual
database master keys as follows:
Click here to view code image

BACKUP MASTER KEY TO FILE = 'localfilepath_or_UNC' ENCRYPTION 
BY PASSWORD = 
'complexpassword'

If you implement TDE, Always Encrypted, native backup encryption,
column encryption, or any other native or external solutions that
generate certificates, keys, and/or passwords, develop a secure
storage and retrieval method inside your enterprise. Failure to back
up master and database master keys could compromise future
disaster recovery attempts!

Increase SQL Agent and SQL error log retention
from the defaults
By default, SQL Server maintains the current SQL Server Error Log
plus six more historical error logs. Logs are cycled each time the SQL
Server service is started.

One fun weekend of server troubleshooting or maintenance where
the SQL Server service is restarted many times could wipe out a
significant amount of your error history. This could make the task of
troubleshooting periodic or business cycle–related errors difficult or
impossible.

You need visibility into errors that occur only during a monthly
processing, monthly patch day, or periodic reporting, for example.
Follow these steps:

1. In SQL Server Management Studio, in Object Explorer, connect
to the SQL Server instance.



2. Expand the Management folder, right-click SQL Server Logs,
and select Configure in the shortcut menu.

3. Select the Limit the Number of Error Logs Before They Are
Recycled check box.

4. For the Maximum Number of Error Log Files setting, type a
value larger than 6. You might find that a value between 25 and
50 will result in more useful log history contained for multiple
business cycles.

On SQL Server instances that generate a large amount of log noise,
consider other options to reduce the clutter of the SQL Server Error
Log, including Trace Flag 3226 to suppress the logging of successful
backup operations. (Much more on this in the next section.)

You may also choose to configure a SQL Agent Job to manually cycle
the SQL Server Error Log using sp_cycle_errorlog so that no one
log file contains so much data it becomes unwieldly for scan and
analysis. Consider scheduling sp_cycle_errorlog to execute weekly,
and keep 50 SQL Agent error jobs, leaving at most 50 weeks of
history.

Suppress successful backup messages
By default, SQL Server writes an event to the SQL Server error log
upon a successful database backup, whether it be FULL,
DIFFERENTIAL, or TRANSACTION LOG.

On instances with many databases, and with many databases in the
full recovery model with regular transaction log backups, the amount
of log activity generated by just their successful frequent log backups
could flood the log with clutter, lowering log history retention.

Note
You can review successful backup history by querying the msdb
system database. It has a series of tables dedicated to storing



the backup history for all databases, including
msdb.dbo.backupset and msdb.dbo.backupmediafamily. The
built-in “Backup and Restore Events” report in SQL Server
Management Studio provides access to this data, as well.

 For more on backups, see Chapter 10, “Develop, deploy, and
manage data recovery.”

SQL Server Trace Flag 3226 controls an option at the instance level
to suppress successful backup notifications.

There are many trace flags available to administrators to alter default
behavior—many more options than there are user interfaces to
accommodate them in SQL Server Management Studio. Take care
when turning them on and understand that many trace flags are
intended only for temporary use when aiding troubleshooting.
Because Trace Flag 3226 is intended to be a permanent setting,
simply enabling the trace flag by using DBCC TRACEON is not sufficient,
as the trace flag will no longer be active following a SQL Server
service restart. Instead, add the trace flag as a startup parameter to
the Database Engine service by using SQL Server Configuration
Manager. In the Properties of the SQL Server service, go to the
Startup Parameters tab, and use the syntax -Tflagnumber. This field
is essentially adding parameters that are passed to the sqlserver.exe
executable. For example, enter -T3226, then select Add. The change
will not take effect until the SQL Server Database Engine service is
restarted.

 For more information on SQL Server Configuration Manager,
refer to Chapter 1, “Get started with SQL Server tools.”

Increase default SQL Agent history retention
Similarly, you might find that the SQL Server Agent history is not
sufficient to cover an adequate amount of job history, especially if you
have frequent job runs.



You can use SSMS to change the job history settings for SQL Server
Agent. In Object Explorer, connect to the SQL Server instance. Then
right-click SQL Server Agent, select Properties from the shortcut
menu, and select the History page.

This page is not intuitive and can be confusing. The first option, Limit
Size of Job History Log, is a rolling job history retention setting.
Consider adding zeros to increase the maximum log history size in
rows from the default of 1,000 to 10,000 or more, and increasing the
maximum job history per job in rows from the default of 100 to 2,000
or more. This data is stored in the msdb system database and will
cause that database to grow larger over time. Consider pre-allocating
some additional file space to the msdb data file now.

Heads up: The second option on the History page, Remove Agent
History, along with its corresponding Older Than text box, is not a
rolling job history retention setting. Rather, it is an immediate and
manual job history pruning. Select this second check box and select
OK. When you return to the History page, you will find the second
check box is cleared. Behind the scenes, SQL Server Management
Studio immediately ran the msdb.dbo.sp_purge_jobhistory stored
procedure to remove the job history once.

Post-installation configuration of other
features
SQL Server Database Engine installation is now complete, but three
other features require post-installation configuration: SSIS, SSRS,
and SSAS. You will need to perform the steps detailed in this section
before use if these features are installed.

SSISDB initial configuration and setup
Among the best features added by SQL Server 2012 were massive
improvements to SSIS—specifically a new server-integrated
deployment, built-in performance data collector, environment



variables, and more developer quality-of-life improvements. For these
reasons, you should use the new Project Deployment Model and
built-in SSISDB for all new development.

When the Integration Services Catalog is created, a new user
database called SSISDB is also created. You should back it up and
treat it as an important production database.

You must create the SSISDB catalog soon after installation and
before an SSIS development can take place. You will need to create
the catalog only once. Because this involves potential surface area
configuration changes and the creation of a new strong encryption
password, a SQL DBA, not an SSIS developer, should perform this
step and should store the password securely alongside others
generated at the time of installation.

To create the catalog, in Object Explorer, connect to your instance,
right-click Integration Services Catalog, and select Create Catalog
in the shortcut menu that appears. In the single-page setup window,
select the Enable CLR Integration check box, decide whether SSIS
packages should be allowed to be run at SQL Server Startup (we
recommend this due to the maintenance and cleanup performed
then), and provide an encryption password for the SSISDB database.

The encryption password is for the SSISDB database master key.
After you create it, you should back up the SSISDB database master
key and securely store the SSISDB database password where it can
be retrieved along with other disaster-recovery information for this
server.

 For more on database master keys, see Chapter 13.

The SSISDB database will contain SSIS packages and their
connection strings. The SSISDB encryption would not allow these
sensitive contents—a treasure trove of connections to other servers
—to be decrypted by a malicious user who gains access to the
database files or backups. This SSISDB password will be required if
the database is restored to a new server, so you should store it in a
secure location within your enterprise.



Note
If you receive an error when creating the SSSIDB catalog that
reads “The catalog backup file 'C:\Program Files\Microsoft SQL
Server\150\DTS\Binn\SSISDBBackup.bak' could not be
accessed” or similar, it is probably because SSIS was not
actually installed. Most likely, the 6-MB template database
backup was not copied from the SQL Server media, probably
because the SSIS feature was not a selected feature. To rectify
this, you can run SQL Server Setup again or copy the
SSISDBBackup.bak file from another SQL Server installation of
the same version.

SQL Server Reporting Services initial
configuration and setup
There are still tasks to perform upon first installation of an SSRS
native-mode installation from the downloaded installer file,
SQLServerReportingServices.exe.

 Get the latest installer and see what’s new in SSRS at
https://learn.microsoft.com/sql/reporting-services/what-s-new-
in-sql-server-reporting-services-ssrs.

At the end of the Microsoft SQL Server 2022 Reporting Services
installer wizard, on the Setup Completed screen, select the
Configure Report Server button to open the Reporting Services
Configuration Manager application. Then connect to the newly
installed SSRS instance and review the following options, from top to
bottom:

Service Account. You can change the SSRS service account
here. Remember that you should use only the Reporting
Services Configuration Manager tool to make this change, never
services.msc.

https://learn.microsoft.com/sql/reporting-services/what-s-new-in-sql-server-reporting-services-ssrs


Web Service URL. The web service URL is not for user
interaction; rather, it is for Report Manager and custom
applications to programmatically connect to the SSRS instance.

By default, a web service on TCP Port 80 is created called
ReportServer. For named instances, the web service will be
called ReportServer_instancename. The URL for the webservice
would then be:
servername/ReportServer
or:
servername/ReportServer_instancename
To accept defaults, at the bottom of the application window,
select Apply.
You can optionally configure an SSL certificate for a specific
URL for the Web Portal in the Advanced section here. Choose
an identity and an HTTPS certificate that’s been loaded to the
server, and the Reporting Services Configuration Manager will
make the necessary changes.

 For more information on configuring SSL connections for the
SSRS Web Service and Web Portal, visit
https://learn.microsoft.com/sql/reporting-
services/security/configure-ssl-connections-on-a-native-mode-
report-server.

Database. Each SSRS instance requires a pair of databases
running on a SQL Server instance. Executing the SSRS installer
alone does not configure the databases for SSRS; you need to
configure them via Reporting Services Configuration Manager.
The database names by default are ReportServer and
ReportServerTempDB, or, for a named instance,
ReportServer$InstanceName and
ReportServer$InstanceNameTempDB. Both of these databases
are important, and you should create a backup schedule for
each. The ReportServerTempDB is not a completely transient

https://learn.microsoft.com/sql/reporting-services/security/configure-ssl-connections-on-a-native-mode-report-server


database like the SQL Server instance’s tempdb system
database.

The databases for SSRS can be hosted on an on-premises SQL
Server instance or Azure VM–hosted SQL Server instance or,
since SQL Server 2019, an Azure SQL Managed Instance.
To set the databases for a new instance of SSRS, in the
Database page of the Reporting Services Configuration
Manager, select Change Database, and then follow the Report
Server Database Configuration Wizard.

Web Portal URL. The web portal URL is the user-friendly
website that hosts links to reports and provides administrative
features to the SSRS instance. This is the link to share with
users if you will be using the SSRS portal. By default, the URL
for the web portal is servername/Reports for the default
instance, or servername/Reports_InstanceName for named
instances. You can change the name from the default if desired.
To proceed, at the bottom of the application window, select
Apply.

Email Settings. You use these email settings to send reports to
user subscribers via email. SSRS uses its own email settings
and does not inherit from the SQL Server instance’s Database
Mail settings. This setting is optional if you do not intend to send
reports to subscribers via email.

SSRS can authenticate to an SMTP server using anonymous
(No Authentication), Basic, or NT LAN Manager (NTLM)
authentication, which uses the SSRS service account to
authenticate to the SMTP server.
Modern email systems likely require at least TLS 1.2. For
example, with Office 365, TLS 1.0 and 1.1 have been
deprecated since 2020. Older versions of Windows and SQL
Server may need to be patched to support TLS 1.2.

 If you suspect the TLS 1.2 requirement is preventing SSRS from
sending emails, review



https://support.microsoft.com/topic/kb3135244-tls-1-2-support-for-
microsoft-sql-server-e4472ef8-90a9-13c1-e4d8-44aad198cdbe.

SQL Server 2022 introduces support for TLS 1.3 as well.
Leverage this when you can, including with SMTP connections.

Note
Enterprise SMTP servers usually have an allow list of IP
addresses. You will need to add this server’s IP to this list to
relay email.

Execution Account. You can optionally provide this domain
account to be used when reports are configured to run
unattended on a schedule or to connect to remote servers for
external images. This credential must be a domain account.

To follow the principle of least privilege, the execution account
should not be the same as the SSRS service account. Further,
this account should have minimal read-only access to any data
sources that will require it. You also can give it EXECUTE
permissions to stored procedures that serve as data sources for
reports, but you should never give it additional SQL Server
permissions or let it be a member of any server roles, including
sysadmin.

Encryption Keys. Immediately after installation, and after the
two SSRS databases have been created, you should back up
this instance’s encryption keys. These are used to encrypt
sensitive information such as connection strings in the two
databases. If the databases are restored to another server and
this key is not available from the source server, credentials in
connection strings will not be usable, and you will need to
provide them again for the reports to run successfully on a new
server.

If you can no longer locate the backup of a key, back it up again.
Alternatively, rotate the key by using the Change operation on

https://support.microsoft.com/topic/kb3135244-tls-1-2-support-for-microsoft-sql-server-e4472ef8-90a9-13c1-e4d8-44aad198cdbe


this page and then back it up.
To restore the original key to a new server to which the
databases have been moved, use the Restore operation on this
page.

Note
SSRS key encryption is different from TDE, which was first
supported for SSRS databases in SQL Server 2019. SSRS
encryption keys are used inside tables to secure connection
strings, while TDE is used to secure database files from being
restored or attached to other SQL Servers.

Subscription Settings. Use this page to specify a credential to
reach file shares to which report subscriptions can be written.
Reports can be dropped in this file share location in PDF,
Microsoft Excel, or other formats for consumption. Multiple
subscriptions can employ this file share credential, which can be
used on this page in a central location. This account should be
different from the SSRS execution account, to follow the
principle of least privilege.

Scale-Out Deployment. Visit this page on multiple SSRS
instances to join them together. By using the same SSRS
databases for multiple SSRS instances, multiple front ends can
provide processing for heavy reporting workloads, including
heavy subscription workloads. The server names can optionally
be used in a network load balancer such as Network Load
Balancing (NLB), or you can distribute workload to each SSRS
instance from different applications.

Upon first installation, the Scale-Out Deployment page will
show that the instance is “joined” to a single server scale-out.
Each scale-out instance of SSRS must use the same settings on
the Database page of the Reporting Services Configuration
Manager. Connect to each instance in the scale-out and visit this



page by opening it on each SSRS instance to view the status,
add servers to the scale-out, or remove servers.

 For more detail on scale-out deployments of SSRS, visit
https://learn.microsoft.com/sql/reporting-services/install-
windows/configure-a-native-mode-report-server-scale-out-
deployment.

Power BI Integration. Use this page to associate the SSRS
instance to a Microsoft Power BI account—specifically to an
account in Azure AD. The administrator joining the Power BI
instance to the SSRS instance must be:

A member of the Azure AD

A member of the system administrator role of the SSRS
instance

A sysadmin on the SQL Server instance that hosts the
SSRS databases

 For the latest information on Power BI/SSRS integration and the
latest Azure authentication features, visit
https://learn.microsoft.com/sql/reporting-services/install-
windows/power-bi-report-server-integration-configuration-
manager.

SQL Server Analysis Services initial configuration
and setup
No additional steps are required after setup to begin using a new
SSAS instance.

You can initiate manual backups of SSAS databases in Object
Explorer in SQL Server Management Studio as well as restore SSAS
databases. Because of the nature of SSAS databases, their size, and
how they are populated, they are not typically backed up on a
schedule, but you can do so by passing an XMLA command via a

https://learn.microsoft.com/sql/reporting-services/install-windows/configure-a-native-mode-report-server-scale-out-deployment
https://learn.microsoft.com/sql/reporting-services/install-windows/power-bi-report-server-integration-configuration-manager


SQL Server Agent job step by typing SQL Server Analysis
Services.

When installing SSAS, a security group should have been chosen to
grant permissions to SSAS server administrators, granting a team full
access to the server.

If you need to add a different group to the administrator role of the
SSAS instance, open SQL Server Management Studio. Then, in
Object Explorer, connect to the Analysis Services instance. Right-
click the server and select Properties on the shortcut menu. Then,
on the Security page, add Windows-authenticated accounts or
groups to the administrator role.

Azure Synapse Link for SQL Server
This feature replicates operational data into a dedicated SQL pool in
Azure Synapse Analytics, directly from SQL Server 2022.

Azure Synapse Analytics is an enterprise analytics service in the
Azure cloud running on both serverless and dedicated resource
models. Azure Synapse Analytics is a combination of broad
technologies, including relational data warehousing, serverless data
pools for nonrelational data, built-in machine learning, and other big
data technologies.

Far outside the scope of this book, Azure Synapse Analytics
accelerates insights into data for logs, time series data, and data
integrations. The built-in streaming and deep integrations with Power
BI, Cosmos DB APIs, and Azure Machine Learning (AzureML), as
well as other analytics tools and pipelines, provide convenient access
to cloud resources for all kinds of workloads.

Azure Synapse Link connection
The Azure Synapse Link connection initially does a bulk upload, and
then a continuous incremental upload of change feed data on a
regular basis. The link between the SQL Server 2022 database and



the dedicated SQL pool is mapped and can be changed. This
ensures the ability to create, manage, monitor, and delete link
connections or add and delete tables to the connection. To access
corporate data inside a firewall, it is recommended to use a self-
hosted integration runtime (IR).

 For step-by-step details on how to create a self-hosted IR,
read the documentation here:
https://learn.microsoft.com/azure/data-factory/create-self-
hosted-integration-runtime?tabs=synapse-analytics.

Note
Self-hosted IRs created for Azure Synapse workspaces
currently cannot be shared across Azure data factories or
between other Synapse workspaces, unlike other self-hosted
integration runtimes.

Azure Synapse Link landing zone
The landing zone is an intermediate staging location required to hold
the data as it comes in from the SQL Server and before it is loaded
into the Synapse dedicated SQL pool.

You must provide an Azure Data Lake Storage (ADLS) Gen2 account
to be used as a landing zone, and this landing zone cannot be used
for anything else. It must be different from the account created with
the Azure Synapse Analytics workspace. An unexpired shared
access signature (SAS) token for the ADLS Gen2 account is also
crucial, because without it, the data will fail to replicate.

Ensure your database in SQL Server 2022 has a master key created
by running the following command:
Click here to view code image

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<a new password>'

https://learn.microsoft.com/azure/data-factory/create-self-hosted-integration-runtime?tabs=synapse-analytics


 For current detailed steps on how to set up your own Azure
Synapse link for SQL Server 2022, see
https://learn.microsoft.com/azure/synapse-analytics/synapse-
link/connect-synapse-link-sql-server-2022#create-your-target-
synapse-dedicated-sql-pool.

The Synapse Link feature is also available for data in Microsoft
Dataverse for the Power Platform, Cosmos DB APIs, and Azure SQL
Database.

 For all the known limits and issues outstanding with Synapse
Link, review the list here:
https://learn.microsoft.com/azure/synapse-analytics/synapse-
link/synapse-link-for-sql-known-issues.

Note
The Azure Synapse Link for SQL Server 2022 is in preview at
the time of this writing and important details may change.

Container orchestration with
Kubernetes
SQL Server in Linux containers is almost identical to SQL Server on
Windows or Linux. As noted in Chapter 2, the Database Engine is just
the same.

This section discusses how to deploy SQL Server in containers on
Kubernetes, a container orchestration system initially developed by
Google. Processes like fault tolerance, workload schedule, and even
networking are all provided by the management layer of Kubernetes.

Once the orchestration is set up, you can configure and manage the
databases inside the containers like any other SQL Server instances.
One reason Kubernetes (also known as K8s, because there are eight
letters between the K and the s) has become a staple in modern

https://learn.microsoft.com/azure/synapse-analytics/synapse-link/connect-synapse-link-sql-server-2022#create-your-target-synapse-dedicated-sql-pool
https://learn.microsoft.com/azure/synapse-analytics/synapse-link/synapse-link-for-sql-known-issues


datacenters is its flexibility in container orchestration and
management. It provides enterprise-level infrastructure functionality
to the container development process favored by most DevOps
organizations, making it, as Google describes it, the “operating
system for the data center.”

Let’s use the analogy of an actual orchestra, comprising a conductor,
instrument sections, musicians, their instruments, and their sheet
music. While no analogy is perfect, this might help you picture things
more easily. At the bottom are your musical instruments. Each
instrument needs to be played by a musician, guided by their sheet
music. Groups of musicians play together in a section. Finally, the
conductor oversees the entire performance. In our analogy,
Kubernetes is the conductor, containers are the instruments, clusters
are the instrument families (like the string section or the brass
section), and musicians are the pods with their sheet music.

Inside OUT
What is the difference between a Kubernetes cluster, a
node, and a pod?

Kubernetes clusters consist of two types of nodes: masters
and workers. The master nodes run cluster operations and
schedule work, while the worker nodes run the container
workloads. While the lowest unit of deployment is a container,
it is important to note that containers are always deployed into
higher-level pods. Pods provide location affinity within the
cluster, meaning dependent workloads are deployed together.

Kubernetes relies on a software-defined infrastructure (the sheet
music in our analogy). When you deploy your containers, you use a
YAML (a recursive acronym standing for YAML Ain’t Markup
Language) file that defines:



The container image you are using

Any storage you are persisting

The container CPU and memory configuration of the pod

The networking configuration

Other metadata about the deployment

The deployment manifest is converted from YAML to JSON by
kubectl and then deployed to the Kubernetes API, where it is parsed
and then deployed into a key-value store (called etcd) that stores the
cluster metadata. The objects in the manifest are deployed in their
respective pods, services, and storage. The cluster controller (part of
the control plane) ensures that the manifest is running and is in a
healthy application state, and redeploys the manifest in the event of
node failure or an unhealthy application state. The cluster will always
attempt to maintain the desired state of the configuration, as defined
in the deployed manifests.

Inside OUT
What is the Kubernetes control plane?

The Kubernetes control plane is a set of processes and pods
that control cluster management. These services record all
the Kubernetes objects in the system and execute the desired
state configuration for all objects within the cluster.

Kubernetes support for SQL Server
Microsoft introduced support for Kubernetes after the release of SQL
Server 2017 (see Figure 4-5). Early releases of Kubernetes lacked
support for persisted storage, which is an obvious problem for
database containers. The implementation uses a Kubernetes service



to act as a persisted front-end name and IP address for the container.
In this scenario, if the pod fails, the service stays running, and a new
copy of the pod is launched and then pointed at the persisted
storage. This is nearly analogous to the architecture of a SQL Server
failover cluster instance (FCI).

 Refer to Chapter 2 for a more in-depth discussion on FCIs.

Figure 4-5 SQL Server on Kubernetes architecture.

The SQL Server Kubernetes deployment provides for just a single
container per SQL Server pod. Services provide load balancing and
persistent IP addressing, while persistent volume claims ensure that
storage is persisted across container failures or node movement. By
defining a persistent volume claim, you align a specific disk volume to
your pod deployment to persist data files.

Recent releases of both Kubernetes and Windows Server allow
Kubernetes to support both Windows nodes and Windows containers,
but SQL Server currently only supports containers on Linux.
Kubernetes is also much more broadly used on Linux, so community
support will be much more prevalent on that platform.



 To learn more about Kubernetes, read The Kubernetes Book
(2022) by Nigel Poulton and Kubernetes: Up and Running
(2022) by Brendan Burns et al.

Inside OUT
What is OpenShift?

Many organizations deploy open-source software with a
support agreement in place. Some common examples of this
are Red Hat Enterprise Linux (RHEL) and Percona for MySQL
databases. Red Hat has also introduced its own Kubernetes
offering called OpenShift. While OpenShift is mainly core
Kubernetes components, it also introduces some additional
tooling into the space for licensed customers—specifically a
project called Istio, which offers a service mesh management
layer across Kubernetes clusters.

 You can find out more about RHEL in Chapter 5.

Deploy SQL Server in containers
As mentioned, SQL Server runs on Windows, on Linux, and in
containers. When originally released with SQL Server 2017, container
support was touted for use in development. After all, there was limited
support in the container world for persisted storage at the time, and
SQL Server lacked support for an enterprise orchestration framework
like Kubernetes.

While database containers still make for a fantastic development
environment, the support in SQL Server for availability groups and
AD authentication means that container deployment is quickly
becoming an option for production workloads as well.

 You can read more about availability groups in Chapter 11.



Get started with SQL Server in a Docker container
One of the biggest attractions of running SQL Server in a container is
that your choice of OS does not matter. While the container images of
SQL Server use Linux as their base, your host machine can run
Windows, Linux, or macOS.

While containers can run on almost all host operating systems, SQL
Server in containers is only supported for production on Linux hosts
running Intel or AMD 64-bit CPU architecture.

Note
SQL Server containers do not run on Apple silicon. While SQL
Server can run on Apple silicon using the Rosetta 2 emulator
and a compatible container host, it is not a supported
configuration.

First, you will need to install Docker Desktop on your workstation.

 Download Docker Desktop from
https://www.docker.com/products/docker-desktop.

After you have Docker installed, you can deploy a SQL Server
container with the following steps:

1. Pull a copy of the container image from the Microsoft Container
Registry (MCR) to your local environment. To do so, run this
command from either a bash shell on Linux or macOS, or an
elevated PowerShell prompt on Windows:

Click here to view code image

sudo docker pull mcr.microsoft.com/mssql/server:2022-
latest

 You can find out more about the bash shell in Chapter 5 and
about PowerShell in Chapter 9.

https://www.docker.com/products/docker-desktop


2. Use the following command to deploy the container. Note that
the backslash in this command is a way to split a single bash
command across multiple lines:

Click here to view code image

sudo docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=
<YourStrong!Passw0rd>' \ 
   -p 1433:1433 --name sql2022 \ 
   -v /users/randolph/mssql:/mssql \ 
   -d mcr.microsoft.com/mssql/server:2022-latest

Caution
There is currently no secure way to obfuscate the SA password
in a Docker deployment. Microsoft recommends that you
change your SA password after you have deployed your
container. Do not store the SA password in any saved
configuration files. Be careful not to accidentally commit
passwords in configuration files to source control.

You may be curious what these parameters (also called switches in
Linux) mean:

The docker pull command downloads the container image to
your local container repository.

The docker run command is where the deployment takes place.

The -e switch allows for an environmental variable to be passed
into the deployment. (Chapter 5 covers environment variables.)
In this case, you are accepting the End-User License Agreement
(EULA) for SQL Server, and providing a strong password for the
SA account.

The -p (or --publish; note the double-dash before the
parameter) switch publishes the container’s public and private
port for your container. To run multiple SQL Server containers



simultaneously, specify a TCP port other than 1433 for the
subsequent containers that are deployed.

The --name switch (note the double-dash before the parameter)
specifies the name of your container. This is not required, but if it
is not specified, the system will generate a name.

The -v switch is probably the most important in terms of
database use. It allows a persistent volume to be mounted from
your local machine to your container. In this case, the local
directory /users/randolph/mssql will appear in the container as
/mssql. Use this directory to store database backups or data
files to be mounted to the container.

The -d switch refers to the container image you are deploying.
In this case you are deploying a SQL Server 2022 container
from the MCR.

 These are only a few of the command-line parameters that you
might need. The full list is documented here:
https://docs.docker.com/engine/reference/commandline/run/.

Note
Docker on macOS does not support persistent volumes.
Microsoft recommends that you use separate data container
volumes to persist data files that are stored in
/var/opt/mssql/data. You can read the background on this issue
at https://github.com/microsoft/mssql-docker/issues/12, and you
can learn more about data container volumes at
https://docs.docker.com/storage/volumes/.

Inside OUT
Can you use containers in development?

https://docs.docker.com/engine/reference/commandline/run/
https://github.com/microsoft/mssql-docker/issues/12
https://docs.docker.com/storage/volumes/


Yes. Development is one of the main uses for containers.
Given the ease of deploying SQL Server in a container, you
can envision a process where a software vendor builds
orchestration to perform automated regression tests against
every cumulative update (CU) of a release of SQL Server, or
across multiple releases. This is just one excellent use case
for databases in containers.

After the container is deployed, execute the docker ps command
(which lists all the running containers) to confirm that your container
is running. (In some environments you may need to run sudo docker
ps.) Also, you can connect to your container using SQL Server tools
like SSMS or Azure Data Studio, or sqlcmd, by connecting to
localhost. This is possible because when you deployed the
container, you configured it to run on TCP port 1433, which is the
default SQL Server port.

Figure 4-6 A screenshot of docker ps output and the sqlcmd
connection.

Note
If you use a custom TCP port (or deploy multiple SQL Server
containers) you can connect to localhost followed by the port
number, separated with a comma. For example,
localhost,1455.

You can also connect into your container with an interactive shell and
execute sqlcmd. The first command will launch the bash shell within



your container:
Click here to view code image

sudo docker exec -it sql1 "/bin/bash"

After launching the interactive bash shell within your container, you
then call sqlcmd using the full path, since it is not in the path by
default:
Click here to view code image

/opt/mssql-tools/bin/sqlcmd -S localhost -U SA -P 
'<YourNewStrong!Passw0rd>'

Once your SQL Server container is deployed, you can execute T-SQL
just like it was any other SQL Server.

Get started with SQL Server on Kubernetes
Although running SQL Server in a single Docker container is
relatively easy, running SQL Server on a Kubernetes infrastructure is
more challenging.

Kubernetes as part of Docker Desktop
You can install Kubernetes with Docker Desktop. However, as
mentioned, persistent volumes are not supported on Intel-based
macOS. If you are using Docker on Windows and you are running
Windows 10 or Windows 11 Professional, you can configure
Kubernetes after enabling Hyper-V.

 You can find the instructions for deploying Docker with
Kubernetes at https://docs.docker.com/desktop/kubernetes.

Kubernetes using minikube
Another commonly used option for development and testing of
Kubernetes is minikube, which runs across Windows, Linux, and

https://docs.docker.com/desktop/kubernetes


macOS. minikube is an open-source project that allows for a
deployment to your local workstation.

 Configuring minikube is part of the main Kubernetes
documentation, available at
https://kubernetes.io/docs/tutorials/hello-minikube.

Kubernetes using the Azure Kubernetes Service
If you need to simulate a production environment, we recommend
deploying using Azure Kubernetes Service (AKS). (See Figure 4-7.)
AKS is a managed service that allows you to quickly deploy a
Kubernetes cluster of 1 node or up to 100 nodes.

 Configuring AKS is part of the main Azure documentation,
available at https://learn.microsoft.com/azure/aks/learn/quick-
kubernetes-deploy-cli.

Figure 4-7 A screenshot of the Azure portal showing AKS scale
options.

https://kubernetes.io/docs/tutorials/hello-minikube
https://learn.microsoft.com/azure/aks/learn/quick-kubernetes-deploy-cli


AKS offers the benefit of hosting a highly available control plane for
the cluster in Azure, as well as deploying the latest release of
Kubernetes without installing software, worrying about dependencies,
or finding hardware to build on. The other benefit of AKS is that the
service itself is free. You are charged only for the underlying VM
compute costs. Storage in AKS is provided by using either Azure
Managed Disks or the Azure File service that acts as a file share.

Deploy SQL Server on Kubernetes
Once you have a Kubernetes cluster or simulated cluster like
minikube, you can start deploying SQL Server. First, you will need to
create a secret in Kubernetes to store your SA password:
Click here to view code image

kubectl create secret generic mssql --from-
literal=MSSQL_SA_PASSWORD="<password>"

If kubectl (the Kubernetes command-line tool) is not installed on the
machine where you are managing your cluster, you will need to install
it to manage your deployment.

 Instructions for installing kubectl are available at
https://kubernetes.io/docs/tasks/tools/install-kubectl.

Next, you will create a persistent volume claim (PVC). As mentioned,
containers were originally designed to be ephemeral and not persist
data across restarts or failures. A PVC will ask the cluster to provide
a mapping to a persistent volume (PV). A PV can be statically or
dynamically provisioned.

A statically provisioned PV is defined by the cluster
administrator. A PVC will be matched to that PV based on size
and access mode.

A dynamically provisioned PV is provisioned from a cluster-
defined storage class. A PV asks the storage class to provision
the volume from the underlying storage subsystem of the

https://kubernetes.io/docs/tasks/tools/install-kubectl


cluster. This can be a cloud provider’s persistent volume such
as Azure Managed Disks, or even an on-premises SAN.

If you are using Azure Kubernetes Services, save the following code
to a file called pvc.yaml:
Click here to view code image

kind: StorageClass 
apiVersion: storage.k8s.io/v1 
metadata: 
     name: azure-disk 
provisioner: kubernetes.io/azure-disk 
parameters: 
  storageaccounttype: Standard_LRS 
  kind: Managed 
--- 
kind: PersistentVolumeClaim 
apiVersion: v1 
metadata: 
  name: mssql-data 
  annotations: 
    volume.beta.kubernetes.io/storage-class: azure-disk 
spec: 
  accessModes: 
  - ReadWriteOnce 
  resources: 
    requests: 
      storage: 8Gi

This code defines the Azure storage class, and then an 8-GB volume.
This code example uses Azure Storage, which is how you would
implement on AKS. You will use slightly different code if you are using
storage local to your cluster, like you do when using minikube or
Docker:
Click here to view code image

kind: PersistentVolumeClaim 
apiVersion: v1 
metadata: 
  name: mssql-data-claim 
spec: 



  accessModes: 
  - ReadWriteOnce 
  resources: 
  requests: 
   storage: 8Gi

Just like in the Azure example, save this file to pvc.yaml and then
deploy using this kubectl apply command:
Click here to view code image

kubectl apply -f C:\scripts\pvc.yaml

Caution
ReadWriteOnce is one of three access modes available for
persistent volumes. It is the only option that allows both writes
and single-node mounting. You will corrupt your databases if a
volume is mounted by multiple writers.

The next step is to deploy the SQL Server service and the pod itself.
In the following code, you specify the load balancer service as well as
the container running SQL Server. Kubernetes can use extensive
metadata to describe and categorize your environment, as you will
note from the metadata and label fields in the following YAML. Much
like in the Docker script earlier, you define a port, passing in the SA
password you defined in the secret and accepting the EULA. Finally,
in the last section, you define the load balancer, which gives you a
persistent IP address for your SQL instance.
Click here to view code image

apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: mssql-deployment 
spec: 
  replicas: 1 
  template: 
    metadata: 



      labels: 
        app: mssql 
    spec: 
      terminationGracePeriodSeconds: 10 
      containers: 
      - name: mssql 
        image: mcr.microsoft.com/mssql/server:2022-latest 
        ports: 
        - containerPort: 1433 
        env: 
        - name: MSSQL_PID 
          value: "Developer" 
        - name: ACCEPT_EULA 
          value: "Y" 
        - name: MSSQL_SA_PASSWORD 
          valueFrom: 
            secretKeyRef: 
              name: mssql 
              key: MSSQL_SA_PASSWORD 
        volumeMounts: 
        - name: mssqldb 
          mountPath: /var/opt/mssql 
      volumes: 
      - name: mssqldb 
        persistentVolumeClaim: 
          claimName: mssql-data 
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: mssql-deployment 
spec: 
  selector: 
    app: mssql 
  ports: 
    - protocol: TCP 
      port: 1433 
      targetPort: 1433 
  type: LoadBalancer

You can save this YAML as sql.yaml. Then, using the same kubectl
apply -f command, you can deploy it from where you manage
Kubernetes.



Congratulations, you now have SQL Server running on Kubernetes.
You can run the kubectl get pods and kubectl get services
commands as shown in Figure 4-8 to see your deployment.

Figure 4-8 A screenshot showing the load balancer and SQL
Server pod in a Kubernetes deployment. © 2023 The
Linux Foundation

If you review the output of the kubectl get services command, you
will see the external IP address of your SQL Server service. You can
now use any SQL Server client tool to connect to that address with
the SA password you created in the secret.

Caution
This configuration exposes port 1433 to the Internet and should
only be used for demonstration purposes. To secure your
cluster for production usage, review AKS networking best
practices at https://learn.microsoft.com/azure/aks/best-
practices.

Review cluster health
Kubernetes provides a built-in dashboard for monitoring the overall
health of your cluster and its resource use. If you are using AKS, you
can view this by running the az aks browse command with the
resource group and cluster names. Depending on the configuration
and version of your cluster, you may need to create a cluster role
binding to view the dashboard, as shown in Figure 4-9.

https://learn.microsoft.com/azure/aks/best-practices


Figure 4-9 A screenshot of the Kubernetes web dashboard.

 If you are not using AKS, you can find instructions on installing
and configuring a dashboard for your cluster at
https://kubernetes.io/docs/tasks/access-application-
cluster/web-ui-dashboard.

Kubernetes deployments move all your infrastructure into scripts. For
some automation-focused administrators, this may be the holy grail
that they have been waiting for. But it is important to manage these
scripts just as you would your application code. They should be
version-controlled in a source control system like Azure DevOps or
GitHub. If you are hosting your own repositories, you should ensure
they are backed up and highly available.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard


Chapter 5

Install and configure SQL
Server on Linux

What is Linux?
Considerations for installing SQL Server on Linux
Install SQL Server on Linux
Configure SQL Server on Linux
Caveats of SQL Server on Linux

Since SQL Server 2017, you can install SQL Server on multiple
platforms: Windows, Linux, and in containers. Chapter 4, “Install and
configure SQL Server instances and features,” discussed installing
SQL Server on containers and in a Kubernetes environment, as well
as performing setup and configuration on Windows Server.

This chapter covers Linux distributions, the basic differences
between Windows and Linux, how to install SQL Server on the
supported distributions of Linux, and the main differences in SQL
Server on Windows and Linux. It is a shorter chapter because the
differences are minimal.

What is Linux?



Linux, sometimes referred to as GNU/Linux, is an operating system
(OS) including a kernel, system libraries, and a package manager. A
Linux distribution (or distro for short) is a software collection
composed of the Linux kernel, system libraries and tools, and
numerous software packages (the equivalent of installer files on
Windows), maintained by commercial and noncommercial
organizations from all over the world.

Inside OUT
Why is it sometimes called GNU/Linux?

As mentioned in Chapter 2, “Introduction to database server
components,” a kernel is a low-level interface that manages
computer hardware such as CPU, RAM, storage, and
network devices. An operating system is software that
provides an interface between the kernel and the applications
that need to use it.

The Linux kernel was originally created by and named after a
Finnish computer science student named Linus Torvalds, in
1991. When Torvalds made the kernel available for free
online, it was then combined with an existing operating
system called GNU (a recursive acronym that stands for
“GNU’s not Unix!”) that was lacking its own kernel.

Even though many GNU packages are still included in the
myriad Linux distributions under active development today,
the name GNU/Linux is not widely used. Many distribution
maintainers and software vendors, even the authors of this
book, usually just say “Linux” to refer to the kernel and
operating system.

There are several hundred distributions in active development
worldwide, with many of the same software packages available in



each one, so it can be confusing trying to pick a distribution.
Microsoft supports SQL Server on three distributions, which makes
your decision easier.

Like Windows Server Core, Linux distributions may offer a server-
only configuration with a smaller package footprint and a command-
line user interface. You can also install a desktop user interface
through a window manager package, which is similar to the Windows
desktop. To install SQL Server on Linux, you can use whichever
server or desktop configuration you prefer. However, the desktop
environment uses more system resources.

Inside OUT
Why use Linux?

For those of you who prefer Linux, you can run SQL Server
natively in your existing environment without needing to run
Windows. On the other hand, if you prefer Windows, you can
continue using SQL Server on Windows without concerning
yourself with Linux.

You can use SQL Server in containers for development and
testing, but they are only supported on Linux and
Kubernetes. Those container images are based on the
Ubuntu distribution. We cover containers in Chapter 2, and
deploying to Kubernetes in Chapter 4.

Differences between Windows and Linux
Windows is a proprietary OS created and maintained by Microsoft.
Linux is an open-source OS created and maintained by a loose
collection of volunteers, as well as various commercial and
noncommercial organizations.



The main difference between Windows and Linux is philosophical.
Because Linux is open source, if there is a feature you want to
change or add, the end-user license lets you modify the source code
yourself and recompile it. With a proprietary OS, the license does not
permit modification, so you must submit a feature request and hope
that enough people think it is a worthwhile addition.

On a technical level, Linux has a different directory structure, file
system, and user interface from Windows. Applications written for
one OS do not run natively on the other without some form of code
modification or recompilation. For example, you cannot simply copy
the sqlservr.exe file from Windows to Linux and run it. We cover this
in more detail in the section “Caveats of SQL Server on Linux” later
in this chapter.

Note
Code written in certain languages with their own runtime
engines (for example .NET, Python, and Java) may run on both
Windows and Linux if they access resources that are common
to each OS.

Active Directory Domain Services authentication
Unlike with Windows, Active Directory Domain Services (AD DS) is
not built into Linux and must be installed separately. SQL Server can
then use Active Directory on both operating systems, which is
recommended for centralized security and management. This allows
you to extend your current Active Directory (AD) to access SQL
Server instances on Linux as an extension of your Windows network.

 Setting up Kerberos authentication on Linux (which AD uses)
is outside of the scope of this book, but you can learn how
here: https://learn.microsoft.com/sql/linux/sql-server-linux-
active-directory-authentication.

https://learn.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication


Note
SQL Server 2022 introduces Azure Active Directory (Azure AD)
authentication powered by Azure Arc, which is not the same as
Active Directory Domain Services (AD DS). To use Azure Arc
with SQL Server on Linux, you need the Azure extension for
SQL Server on Linux, just as you would on Windows.

 You can read more about Azure Arc in Chapter 4, and at
https://learn.microsoft.com/sql/sql-server/azure-arc/overview.

File systems and directory structures
Windows Server supports NTFS and ReFS. Several file systems are
supported on Linux and might differ between distribution and edition,
but will usually be ext4. SQL Server is supported on both ext4 and
XFS, because these two file systems provide similar features to
NTFS, including journaling, large partitions, and fine-grained access
control.

Note
A journaling file system keeps track of changes that are not yet
committed. It helps prevent corruption in the case of a disaster
—for example, after a power failure or system crash.

On Windows, individual volumes are addressed by a letter followed
by a colon. For example, the default volume for a Windows OS is C:
and all files beneath the root directory (C:\) are addressable through
that drive letter. Files are stored logically in folders, and these folders
and subfolders (also called directories and subdirectories) are
located beneath the root directory on each drive and separated by a
backslash (\).

On Linux, the directory structure is based off a root directory, called /
(a single forward slash). While files are also stored in directories and

https://learn.microsoft.com/sql/sql-server/azure-arc/overview


subdirectories, everything, including individual drives, are addressed
as subdirectories beneath the root directory separated by a slash (/).

Note
On Linux, the forward slash character (/) is just referred to as a
slash. This differentiates it from a backslash (\).

Package managers
Every Linux distribution comes with a package manager to install,
manage, update, and delete packages using online repositories. For
practical purposes, this is the major difference between distributions
when installing software.

When a package manager installs an application (the package), it
connects to a central repository controlled by the distribution
maintainer. You can also register a third-party repository to install
packages outside of that distribution, provided the repository
provides packages in the appropriate format.

Package managers use information from repositories to ensure that
packages are compatible with one another, which makes it much
easier to keep your system stable and up to date. This built-in
dependency resolution means that you install only what you need. If
a package is dependent on one or more other packages that are not
installed, the package manager will automatically install those
dependencies.

Inside OUT
How do you navigate around Linux?

On Windows, you typically employ a combination of the
mouse and keyboard to navigate around the OS using the



Start menu and File Explorer, and in SQL Server with
Configuration Manager and Management Studio. You can
also use the command prompt, or the new Windows
Terminal, to run commands from a command-line interface
(CLI).

On Linux, you interact with the OS (and SQL Server) using
the CLI. This is known as a shell, the most common of which
is called bash (Bourne again shell). Other common shells are
ksh (Korn shell) and zsh (Z shell). In this book, all Linux script
samples will run on bash.

Note
PowerShell runs on both Windows and Linux. You should
familiarize yourself with PowerShell to give yourself an
advantage managing SQL Server on both operating systems.
You can learn more about this in Chapter 9, “Automate SQL
Server administration.”

Run commands with elevated privileges
Many commands for installing, configuring, and administering Linux
require administrative privileges, just like on Windows. The
commands are preceded by the sudo keyword, which stands for
superuser do. This is less risky than logging in as the superuser
account (root). You will be prompted for the root password when you
run sudo for the first time after a fixed period (usually 15 minutes).

Note
Some Linux distributions do not allow you to log in directly as
the root account for added security. We recommend using the
sudo command as a best practice.



Linux distributions supported by SQL Server
As noted, several hundred choices make it difficult to decide on
which Linux distribution you should install. For SQL Server, however,
the choice is a lot easier because it is supported only on the
following three commercial distributions:

Red Hat Enterprise Linux (RHEL). Maintained by Red Hat,
Inc., RHEL uses the RPM package manager through the
command yum (which stands for Yellowdog Updater, Modified).

SUSE Linux Enterprise Server (SLES). Maintained by SUSE
Group, SLES uses the ZYpp package manager through the
command zypper (which stands for Zen/YaST Packages
Patches Patterns Products).

Ubuntu Server (Ubuntu). Maintained by Canonical Ltd.,
Ubuntu uses the APT package manager through the command
apt-get or aptitude (which stands for Advanced Package
engine).

Note
Although Docker is included in the list of supported Linux
distributions, this is not entirely accurate. Docker is just one of
several OS-level virtualization engines on which you can
deploy SQL Server containers. However, SQL Server
containers are only supported for a production environment on
Linux and Kubernetes. You can read more about Linux
containers in Chapter 2, and about Kubernetes deployments in
Chapter 4.

Having a vendor and support agreement behind an open-source
implementation can be comforting and beneficial to organizations
that have limited experience with a new technology stack. This
support is especially valuable for SQL Server administrators starting
out with Linux who are more familiar with Windows Server.



Considerations for installing SQL
Server on Linux
As discussed in previous chapters, SQL Server has several
considerations for CPU, RAM, and storage. In the vast majority of
cases, you will apply the same principles as you would on Windows,
with some minor caveats.

 We cover CPU and RAM configuration in Chapters 2, 3, and
4. The next section adds Linux-specific configuration using
mssql-conf.

Configure OS settings
Microsoft recommends the following OS settings for a dedicated
SQL Server instance to run optimally on Linux.

Caution
Some configuration settings do not persist between reboots, so
you will have to create an init.d script, which runs at boot time.
Refer to your distribution’s documentation for details on how to
configure the options that follow.

Configure high performance
Aside from the computer’s BIOS, where high performance should be
enabled (in other words, power saving should be disabled), you can
also modify CPU settings at the Linux kernel level:

Set the CPU frequency governor to 100% using the cpupower
command.

Use the performance option with the x86_energy_perf_policy
command.



Set the min_perf_pct setting to 100%.

Set C-States to C1 only.

These CPU settings are functionally equivalent to enabling High
Performance on Windows.

 You can read more about CPU C-States and power-saving
modes at https://www.hardwaresecrets.com/everything-you-
need-to-know-about-the-cpu-c-states-power-saving-modes.

Configure NUMA nodes
For computers with more than one NUMA node, use the sysctl
command to disable auto-NUMA balancing, setting
kernel.numa_balancing to 0. You do this because SQL Server
handles NUMA internally.

Configure virtual address space
Chapter 2 discussed the working set, or memory provided by the OS
for use by a process—in this case, SQL Server. The working set
resides in a virtual address space, which in turn is mapped to
physical memory by internal OS structures. The default setting for
the number of memory map areas in virtual memory might not be
sufficient for SQL Server on Linux, so you should use the sysctl
command to change vm.max_map_count to the upper limit of 262144
(262,144).

Configure Transparent Hugepages
Certain Linux distributions, including Red Hat, provide improved
performance on systems by increasing the size of memory blocks
transparently to the underlying process. This is beneficial for
applications with contiguous memory access patterns and works to
SQL Server’s advantage. Transparent Hugepages (THP) is already

https://www.hardwaresecrets.com/everything-you-need-to-know-about-the-cpu-c-states-power-saving-modes


enabled on Linux by default, so you should leave this on for a
dedicated SQL Server instance.

Set up the file system
As mentioned in Chapter 3, “Design and implement an on-premises
database infrastructure,” SQL Server on Linux requires either the
ext4 or XFS file system. If the file system supports it, use a 64-KB
block size to match the size of an extent. Otherwise, use the largest
size that it supports. (For example, ext4 may only support a block
size of 4 KB.) With newer storage subsystems and SANs, this block
size is less important than it used to be.

By default, SQL Server places the data and log files in
/var/opt/mssql/data. Notice that this path starts with a single forward
slash, which is the root directory on a Linux system. This path then
includes var, which is a default directory created for the OS to write
data during normal operation. (var stands for variable.) Then, opt
(which stands for optional) is for optional packages that are not
included in a default installation of Linux. The next directory is mssql,
which stands for Microsoft SQL.

Note
You can use symbolic or hard links to redirect the default data
path to a different physical location (for instance, another
drive), but we recommend using the mssql-conf tool to change
the location instead, like you would on Windows.

A good practice is to keep transaction log files and tempdb on your
fastest available storage. Additionally, you should mount volumes
using the noatime attribute, which prevents tracking the last
accessed time for that volume, thereby improving performance. This
is managed in the file system table configuration file known as fstab.
Refer to the fstab documentation for more information.



Recommended disk settings
For optimal settings at the physical disk level, you can set the disk
read-ahead to 4096 bytes using the blockdev command.
Additionally, there are several settings you can configure using the
sysctl command:

Set kernel.sched_min_granularity_ns to 10000000
(10,000,000).

Set kernel.sched_wakeup_granularity_ns to 15000000
(15,000,000).

Set vm.dirty_ratio to 40.

Set vm.dirty_background_ratio to 10.

Set vm.swappiness to 10.

Caution
Some sysctl settings may be overridden by modules that load
later in the boot process. You can read more about this at
https://linux.die.net/man/8/sysctl.

Inside OUT
How do you edit files on Linux?

You edit files on Linux from the command line. While there
are many text editors available, not all of them are installed
by default.

The default file editor that will nearly always be available is vi
(visual editor). It is extremely powerful, but that means it is
also complex. Opening files is a matter of running vi from the
command line followed by the name of the file you want to

https://linux.die.net/man/8/sysctl


create or modify. To save and quit from a vi session,
however, you must type :wq and then press Enter. The colon
instructs vi that you want to perform a command: The w writes
(saves) the file, and q quits the session.

If you’re new to Linux, you might find that the vi editor is quite
different from what you’re used to. In that case, you might
want to replace it with nano, which you can install using your
distribution’s package manager. On Red Hat, you can install
nano using the following command:

yum install nano

Install SQL Server on Linux
To integrate better with Linux, SQL Server leverages the package
manager concept, meaning you only install the components you
need, starting with the Database Engine package. This can
drastically reduce the amount of time it takes to install SQL Server
compared to Windows. For instance, on an Internet-connected
machine with a high-speed connection, you can download, install,
and configure SQL Server 2022 in under 5 minutes.

Table 5-1 shows which packages are available for SQL Server on
Linux. The command-line tools include sqlcmd and bcp, which work
the same as their Windows counterparts.

Table 5-1 SQL Server packages for Linux

Component Package name
SQL Server Database Engine mssql-server

Full-Text Search mssql-server-fts

SQL Server Integration Services mssql-server-is



Component Package name

PolyBase mssql-server-polybase

SQL Server Agent (included in Database
Engine)

mssql-server-agent

SQL Server command-line tools mssql-tools

SQL Server 2022 Language Extensions mssql-server-
extensibility

Note
SQL Server Agent is installed with the Database Engine but is
not enabled by default. To enable SQL Server Agent, use
mssql-conf and set sqlagent.enabled to true. You can read
more about mssql-conf in the section “Use mssql-conf to set
up and configure SQL Server” later in this chapter.

Inside OUT
Can you install named instances on SQL Server on
Linux?

No, you can only install a single instance of SQL Server on
Linux on a machine. Named instances are not supported.
Installing more than one instance (known as instance
stacking) is also not supported on Linux.

If you need to install more than one SQL Server instance on
the same machine, we recommend either creating individual
virtual machines (VMs) per SQL Server install or using SQL
Server in Linux containers. In general, maintenance is much
easier when SQL Server is installed on separate virtual
consumers (VMs or containers), because that has a lower
impact on other software.



You can find more information about virtual consumers in
Chapter 2, and additional information about SQL Server in
containers in Chapter 3. Chapter 4 discusses deploying
containers in Kubernetes.

Installation requirements
The minimum system requirements for SQL Server on Linux are as
follows:

CPU. 2 GHz (x64-compatible), with two physical cores

Memory. 3.25 GB RAM

Storage. 6 GB (formatted with either ext4 or XFS)

Note
While SQL Server Express edition is artificially limited to 1,410
MB for the buffer pool, it can use additional memory for
columnstore and memory-optimized objects. You can read
more about edition scale limits at
https://learn.microsoft.com/sql/linux/sql-server-linux-editions-
and-components-2022.

Download and install packages
You can install SQL Server on a computer that is connected to the
Internet or on an offline computer. In the latter case you must
download the packages you need and copy them to the offline
machine.

 A walk-through for installing SQL Server on each distribution
is available at https://learn.microsoft.com/sql/linux/sql-server-
linux-overview.

https://learn.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2022
https://learn.microsoft.com/sql/linux/sql-server-linux-overview


Download the third-party repository
configuration file
You must download SQL Server packages directly from Microsoft
because they are not available from the official distribution
repositories. You must add the Microsoft package repository to the
list of approved repositories on your computer, depending on which
version of the Linux distribution you have installed.

Note
When you add a third-party repository, you must first import
that repository’s public keys to ensure that any files you are
downloading are verified. Read more about public key
encryption in Chapter 13, “Protect data through classification,
encryption, and auditing.”

The following sample bash command loads the package repository
configuration for SQL Server 2022 for RHEL 8.x into the repository
on your machine. In this example, the trailing space and backslash
at the end of the first line are a bash convention to indicate that the
command spans more than one line:
Click here to view code image

sudo curl -o /etc/yum.repos.d/mssql-server.repo \ 
https://packages.microsoft.com/config/rhel/8/mssql-server-
2022.repo

Download the package
Once the package manager is configured to accept packages from
Microsoft and the list of available packages is refreshed, you can
install SQL Server immediately or download the packages for offline
installation on another computer. For RHEL, the following command
will download the package locally (as well as any dependencies):



Click here to view code image

sudo yum localinstall mssql-server_2022.x86_64.rpm

Install the package
Depending on the distribution and package manager, you will install
the SQL Server Database Engine package using one of the following
methods:

RHEL. sudo yum install -y mssql-server

SLES. sudo zypper install -y mssql-server

Ubuntu. sudo apt-get install -y mssql-server

Each install command has a -y switch, which forces any prompts
to agree to the question in the affirmative. This is useful for agreeing
to install dependencies without prompting for each one—for
example, in unattended installs (see the next section). If you want to
confirm every prompt manually, you can remove the -y switch.

Perform an unattended installation
You can also install SQL Server on Linux using a shell script, which
is recommended for production deployments and deployments
across multiple servers, to ensure a consistent experience. The
script should include all the steps you need to register the Microsoft
package repository, download the requisite packages, and perform
the post-installation configuration.

See the “Configure SQL Server on Linux” section later in this chapter
for more information about post-installation steps. You can also get a
sample bash script from Microsoft Docs, depending on the
distribution you have chosen, from the following locations:

RHEL. https://learn.microsoft.com/sql/linux/sample-unattended-
install-redhat

https://learn.microsoft.com/sql/linux/sample-unattended-install-redhat


SLES. https://learn.microsoft.com/sql/linux/sample-unattended-
install-suse

Ubuntu. https://learn.microsoft.com/sql/linux/sample-
unattended-install-ubuntu

Update packages
With the Microsoft SQL Server package repository as an approved
third-party option, the distribution’s package manager will update
SQL Server components (including cumulative updates) at the same
time as other OS updates. This is functionally equivalent to the
Windows Update feature titled “Receive updates for other Microsoft
products.”

To update the packages on your Linux OS, including any updates of
SQL Server components you have installed, use the following
commands:

RHEL. sudo yum update

SLES. sudo zypper update

Ubuntu. sudo apt-get update

Note
On Red Hat Enterprise Linux, you must use subscription-
manager to register your computer with the Red Hat Network
(RHN) before updates will work.

Configure SQL Server on Linux
After you install the SQL Server Database Engine package, you
need to configure SQL Server for the first time. This differs from the
way SQL Server on Windows works (unless you perform an

https://learn.microsoft.com/sql/linux/sample-unattended-install-suse
https://learn.microsoft.com/sql/linux/sample-unattended-install-ubuntu


unattended install), because you can follow SQL Server Setup and
configure the settings as you go, whereas on Linux, you configure
SQL Server after it is installed.

Inside OUT
How do you configure the Linux firewall to allow access
to SQL Server?

With both Linux and Windows, you need to open TCP port
1433 (and TCP port 1434 for the Dedicated Admin
Connection) to allow access to your SQL Server instance
from other machines on your network.

Each Linux distribution might have a different firewall
package installed as the default, but on RHEL, the firewalld
package can be configured with the following commands:

Click here to view code image

sudo firewall-cmd --zone=public --add-port=1433/tcp --
permanent 
sudo firewall-cmd --zone=public --add-port=1434/tcp --
permanent 
sudo firewall-cmd -- reload

The firewall configuration must be reloaded after it has been
modified to take effect.

 You can read more about TCP ports in Chapter 13.

Use mssql-conf to set up and configure SQL
Server
Windows uses the SQL Server Configuration Manager to configure
SQL Server at the OS level. Linux does not have its own registry, so



SQL Server’s configuration is stored in a plain text file and accessed
when the SQL Server service starts up.

You will initially interact with SQL Server through the CLI—most
likely the bash shell. To configure SQL Server after installing the
Database Engine package, you must run mssql-conf from the
command line.

Inside OUT
Is there another way to configure SQL Server on Linux?

mssql-conf is the preferred method for setting up SQL Server
on Linux. However, you can also use environment variables
for initial (first-run) setup and to set up a SQL Server
container on Linux, because containers generally do not use
mssql-conf. We cover the container scenario in Chapter 4.

For initial configuration, you can use the following variables:

ACCEPT_EULA. Required to use SQL Server. Can be
set to any value.

MSSQL_PID. The product ID, which can be Evaluation,
Developer, Express, Web, Standard, Enterprise, or a
product key.

MSSQL_SA_PASSWORD. Must follow password
complexity rules.

MSSQL_TCP_PORT. Usually TCP port 1433.

 You can view a complete list of these environment variables
at https://learn.microsoft.com/sql/linux/sql-server-linux-
configure-environment-variables.

https://learn.microsoft.com/sql/linux/sql-server-linux-configure-environment-variables


Note
The mssql-conf tool is written in Python, as are several other
command-line tools for working with SQL Server. When you
install SQL Server on Linux, you may notice that one of the
dependencies installed is the Python package.

Configuration settings
The executable package for mssql-conf is in the /opt/mssql/bin path.
You can see that /opt is a directory off the root directory where
optional packages are stored, and mssql stands for Microsoft SQL.
The bin directory stands for binaries, which are functionally the same
as executable files on Windows.

Note
To execute a binary file on Linux and other Unix-like operating
systems, you must either provide the full path to the binary or, if
you have navigated to the directory already, you must prefix
the binary with ./ (a period and a slash).

mssql-conf uses a configuration file (called mssql.conf), which is a
plain text file located at /var/opt/mssql/mssql.conf. Remember that
/var is where files are written to, which is a convenient way to
remember the difference between /opt and /var/opt.

The mssql-conf tool has two phases: first-run (initial) setup, and
configuration, both of which we cover next.

Note
Once your SQL Server instance has been set up the first time,
you can connect to it from any computer running SQL Server
Management Studio, Azure Data Studio, sqlcmd, or mssql-conf
—indeed, any tool that can connect to SQL Server.



First-run setup
From bash, run the following command to enter the configuration tool
to configure SQL Server 2022 on Linux:
Click here to view code image

sudo /opt/mssql/bin/mssql-conf setup

You are presented with a numbered list. If you make an error, you
can quit the tool and run it again.

Choose the correct edition
SQL Server on Linux might not ask you to enter a license key. When
you set up SQL Server for the first time, you are prompted for the
edition you will be using. The following editions are available (this list
is copied from the mssql-conf setup prompt):

1. Evaluation (free, no production use rights, 180-day limit)

2. Developer (free, no production use rights)

3. Express (free)

4. Web (PAID)

5. Standard (PAID)

6. Enterprise (PAID)—CPU Core utilization restricted to 20
physical/40 hyperthreaded

7. Enterprise Core (PAID)—CPU Core utilization up to Operating
System Maximum

8. I bought a license through a retail sales channel and have a
product key to enter.



Make your selection based on the edition you want to install and
move on to the next prompt. You are shown the path to the license
agreement, and then prompted to accept that agreement.

The Evaluation, Developer, and Express editions are free and do not
require a paid license, but you will still be prompted to agree to the
license terms. A good guideline for choosing a license is that if you
plan to process production data under any circumstances (including
if you want to test your database backups), you cannot use the
Evaluation or Developer edition, and must purchase a paid license.
Alternatively, you can use the artificially limited Express edition.

Choose the language
Now you are prompted to choose a default language for the SQL
Server instance. You can choose from among 11 different options:
English, German, Spanish, French, Italian, Japanese, Korean,
Portuguese, Russian, Simplified Chinese, or Traditional Chinese.

Choose a SQL Server system administrator
password
Your system administrator (SA) password should be a strong
password. Microsoft’s guidance is to choose an alphanumeric
password with a minimum length of eight uppercase and lowercase
characters, including letters, digits, and symbols. If you plan to use
AD authentication, you can disable this account later.

Note
Our password recommendation is similar, but you should
increase the minimum length to 15 characters. You can
generate and save the password using a password manager,
so there is no need to pick a memorable password. You should
not use the sa account directly unless it is an emergency or
you are setting up the instance.



After you choose a password, you will be prompted to confirm it.
Once that’s done, the SQL Server service will restart, taking these
settings into account.

Configure the SQL Server instance
The configuration settings for SQL Server are managed using the
same mssql-conf tool, replacing the SQL Server Configuration
Manager on Windows.

Inside OUT
How do you manage the SQL Server service on Linux?

Like Windows, Linux has services, called daemons. You can
start, stop, and restart the SQL Server service using the
following commands:

Stop SQL Server systemctl stop mssql-server

Start SQL Server systemctl start mssql-server

Restart SQL Server systemctl restart mssql-server

Remember to restart the SQL Server service after you have
changed the configuration.

There is a wide range of settings that you can use to customize your
SQL Server instance. This is a brief overview of what is available
(taken from https://learn.microsoft.com/sql/linux/sql-server-linux-
configure-mssql-conf):

Agent. Enables SQL Server Agent. Although SQL Server
Agent is installed along with the Database Engine, you still
need to enable it.

https://learn.microsoft.com/sql/linux/sql-server-linux-configure-mssql-conf


Collation. Sets a new collation for SQL Server on Linux.

Customer Feedback. Specifies whether SQL Server sends
feedback to Microsoft. This option cannot be disabled on free
editions.

 You can read more about the collection of usage and diagnostic
data at https://learn.microsoft.com/sql/sql-server/usage-and-
diagnostic-data-configuration-for-sql-server-tools.

Database Mail Profile. Sets the default database mail profile
for SQL Server on Linux.

Default Data Directory. Sets the default directory for new SQL
Server database data files (.mdf). As noted in Chapter 3, we
recommend moving this to a dedicated volume.

Default Log Directory. Changes the default directory for new
SQL Server database log (.ldf) files. As noted in Chapter 3, we
recommend moving this to a dedicated volume.

Default Master Database Directory. Changes the default
directory for the master database and log files. As noted in
Chapter 3, we recommend moving this to a dedicated volume.

Default Master Database File Name. Changes the name of
master database files. We do not recommend changing this in
the normal course of business, but it is useful in a disaster
recovery scenario when restoring a master database.

Default Dump Directory. Changes the default directory for
new memory dumps and other troubleshooting files. You can
set the dump file type using the Dump Type option (see below).

Default Error Log Directory. Changes the default directory for
new SQL Server ERRORLOG, Default Profiler Trace, System
Health Session XE, and Hekaton (Memory-Optimized) Session
XE files.

https://learn.microsoft.com/sql/sql-server/usage-and-diagnostic-data-configuration-for-sql-server-tools


Default Backup Directory. Changes the default directory for
new backup files. We recommend moving this to a dedicated
volume separate from the data and log files to ensure business
continuity should a drive failure occur.

Dump Type. Sets the type of memory dump file to collect in the
event of a crash or exception in a SQL Server process. Each
size setting (Mini, Miniplus, Filtered, and Full) provides a
different level of detail in a memory dump for troubleshooting
purposes. You can set the path for the dump directory using the
Default Dump Directory option (see above).

High Availability. Enables availability groups.

 See Chapter 11, “Implement high availability and disaster
recovery,” for more information about availability groups on
Linux.

Local Audit Directory. Sets a directory to add local audit files.

Locale. Sets the locale for SQL Server to use, in the form of a
language code identifier (LCID).

Memory Limit. Sets the memory limit for SQL Server. Avoid
going over the default of 80 percent of the maximum physical
memory available on the server; Linux will terminate the SQL
Server instance without warning if it detects high resource
utilization.

 You can read more about the aptly named out-of-memory (OOM)
killer at https://lwn.net/Articles/317814.

TCP Port. Changes the port on which SQL Server listens for
connections. Do so only if you have a specific business case.
We do not recommend changing it for security reasons
because a network sniffing tool will detect the new port almost
instantly.

https://lwn.net/Articles/317814


TLS. Configures Transport Layer Security (TLS). This is used
to enforce encryption and to configure the path to the certificate
and private key. You can also set TLS versions here, but
Microsoft recommends only using TLS 1.2 (and higher when
available). We cover TLS in more depth in Chapter 13. If you
use Kerberos authentication to connect your SQL Server
instance to AD, the Kerberos keytab file is also configured here.

Trace Flags. Sets the trace flags that the service is going to
use. We recommend enabling at least Trace Flag 3226, which
disables messages in the error log for successful database
backups.

Caveats of SQL Server on Linux
SQL Server on Linux is implemented using a thin translation layer
called the SQL Platform Abstraction Layer (SQLPAL), which maps
Windows system calls to Linux system calls. This allows the exact
same code for the Database Engine to be used on both operating
systems. So, the Linux version does not have internal awareness
that it is running on a different platform, and as far as SQL Server is
concerned, it is running inside Windows.

 You can read the introduction from the SQL Server team on
how SQLPAL came about at
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-
server-on-linux-how-introduction/.

This platform abstraction is both hugely powerful and limiting. It is
powerful because now SQL Server runs on Windows, Linux, in
containers, and on ARM64 devices with Azure SQL Edge. But it is
limiting because only enough Windows system calls have been
translated to the underlying OS to get these to work. Certain features
are not available due to this limitation, including access to the
Windows Registry. Only a very small stub of the Registry is included
to support the required Windows system calls (including the
Windows Data Protection API).

https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction/


 You can find out more about Azure SQL Edge at
https://azure.microsoft.com/products/azure-sql/edge/.

We covered the lack of a Registry to explain why mssql-conf
replaces SQL Server Configuration Manager in the previous section,
but several other features of SQL Server, which are dependent on
Windows features, have not been implemented.

Missing SQL Server features on Linux
The list of features not available for SQL Server 2022 on Linux has
shrunk since SQL Server 2017 was released. Microsoft has stated
that new features will be enabled over time. If you need any of the
following features, you must use SQL Server on Windows.

SQL Server Analysis Services (SSAS)

SQL Server Reporting Services (SSRS) (however, the SSRS
databases can be hosted on a Linux instance)

Master Data Services (MDS)

Data Quality Services (DQS)

FILESTREAM and FileTable (requires NTFS or ReFS)

Extended stored procedures

Volume Shadow Copy Service (VSS) snapshots

Buffer Pool Extension

SQL Server Agent Alerts

A few other features are available, but with limitations:

Database Mirroring. This feature is in maintenance mode. We
recommend that you use another high availability solution such
as log shipping or availability groups. We cover availability
groups on Linux and Windows in Chapter 11.

https://azure.microsoft.com/products/azure-sql/edge/


SQL Server Integration Services (SSIS). There is a
component that lets you run SSIS packages, but the feature is
quite limited otherwise. Another side effect is that the designer
for Maintenance Plans in SQL Server Management Studio does
not work.

SQL Server Browser Service. Linux does not allow more than
one instance, so this is not a significant gap.

Note
Stretch Database was never supported on Linux, and with
SQL Server 2022 it has been deprecated.

 To stay up to date on unsupported features on Linux, visit
https://learn.microsoft.com/sql/linux/sql-server-linux-editions-
and-components-2022#unsupported-features-and-services.

https://learn.microsoft.com/sql/linux/sql-server-linux-editions-and-components-2022#unsupported-features-and-services


Chapter 6

Provision and configure
SQL Server databases

Add databases to a SQL Server instance
Move and remove databases

This chapter reviews various strategies for creating new databases
and adding existing databases to a SQL Server. It covers
considerations for database migrations, including key points to
remember when moving databases from instance to instance and
various strategies for moving databases. It also reviews the creation
of new user databases and discusses important database properties
to be aware of throughout the application development lifecycle.

All scripts for this book are available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

Add databases to a SQL Server
instance
Chapter 3, “Design and implement an on-premises database
infrastructure,” discussed several database configurations, including

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


the physical configuration of files and storage.

Although many of the same database settings are available and
should be considered for Azure SQL Database, the remainder of this
chapter refers to SQL Server databases on both Windows and Linux
as well as on Azure SQL Managed Instance. For information on
Azure SQL Databases, see Chapter 17, “Provision Azure SQL
Database.”

Note
If you are tasked with moving or upgrading databases, you
must understand how to create new databases. Later in this
chapter, we’ll discuss tools to assist with upgrading database-
compatibility levels and other important considerations for
database migrations.

Inside OUT
If SQL Server installed databases on my instance, does
that make them system databases?

Just because a database is shipped and installed by
Microsoft as part of a SQL Server feature, it doesn’t mean it
counts as a system database.

In SQL Server Management Studio (SSMS), in Object
Explorer, you’ll see at least four system databases, and
perhaps additional databases for SQL Server Reporting
Services (SSRS) and SQL Server Integration Services
(SSIS) if you have installed these features.

Only the four standard system databases placed in the
system subfolder of Object Explorer are considered system
databases in various features inside SQL Server, namely
master, model, msdb, and tempdb.



The distribution database, for the replication feature, will also
appear in the systems subfolder if present. The
ReportServer, ReportServerTempDB, and SSISDB
databases are Microsoft-installed user databases.

In maintenance plans or catalog views such as
sys.databases, you will see these SSRS and SSIS
databases treated as user, not system, databases. This is an
important distinction for disaster recovery planning,
configuration, and policy enforcement.

Create a database
This section reviews the basics of database settings and
configuration. As a database administrator (DBA), you might not
regularly create databases from scratch, but you should be familiar
with most of the settings and design decisions that go into database
creation, including the addition of database files and the required
tools and/or syntax to set and validate your settings.

Manage default settings
It is important to understand the role of the model database when
creating new databases, regardless of the method of creation. The
model database and its entire contents and configuration options are
copied when creating most new databases, including tempdb upon
service restart. For this reason, you should never store any data
(even for testing) in the model database. Similarly, do not grow the
model database from its default size, because this will cause all
future databases to be that size or larger. Even if you specify a
smaller size than the model database, the files created will be the
size of the model database.

The location of the model database’s files is not, however, used as a
default for new databases. Instead, the default location for database
files is at the server level.



You can view these default storage locations, which we recommend
you change and must be valid, in the Server Properties window in
SSMS, on the Database Settings page. There you will find the
default locations for data, log, and backup files, which are stored in
the Windows Registry. On the Database Settings page, you’ll also
see the Recovery Interval setting, which is 0 by default, meaning
that SQL Server can manage the frequency of internal automatic
checkpoints. This typically results in an internal checkpoint frequency
of 1 minute.

Note
The Recovery Interval setting is not the same as the
TARGET_RECOVERY_TIME setting at the database level. We’ll
discuss TARGET_RECOVERY_TIME for individual databases later in
this chapter, in the section “Indirect checkpoints.” Just be
aware that changing the instance-level recovery interval setting
is not the same as changing the TARGET_RECOVERY_TIME in each
database.

Also on the Database Settings page of Server Properties are the
Default Index Fill Factor and Default Backup Compression
settings. These are server-level defaults applied to each database.
However, you cannot configure them separately for each database.
You can change fill factor with each index operation or choose a
different backup compression option each time you perform a
backup.

Inside OUT
Can default data and log file locations cause future
cumulative updates to fail?

Portions of cumulative updates reference the default file
locations. Patches will fail if these default database locations



change to an invalid path, if the complete subfolder path
does not exist, or if SQL Server loses permissions to access
the locations. You might see errors such as “Operating
system error 3 (The system cannot find the path specified.)”
in the detailed log of the cumulative update. You will need to
restart the cumulative update after correcting the problem
with the default locations.

The following settings are inherited by new databases from the
model database unless they are overridden at the time of creation:

Initial data and log file size

Data and log file autogrowth setting

Data and log file maximum size

Recovery model

Target recovery time (overrides the system default recovery
interval)

All database-scoped configurations, including the database-
level settings for legacy cardinality estimation, MaxDOP,
parameter sniffing, and Query Optimizer fixes

All automatic settings, including auto close, auto shrink, and
auto create/update statistics (discussed later in this chapter)

 View the full list at https://learn.microsoft.com/sql/relational-
databases/databases/model-database.

Inside OUT
Can your SSMS connections to the model database
block CREATE DATABASE statements?

https://learn.microsoft.com/sql/relational-databases/databases/model-database


User connections, including query windows in SSMS with the
model database context, can block the creation of user
databases. Close or disconnect any SSMS query windows
that use the model database context. If you are configuring
the model database by using Transact-SQL (T-SQL)
commands, you might inadvertently leave SSMS query
windows open. Create database statements need to
reference the model database.

You might see the error, “Could not obtain exclusive lock on
database ‘model.’ Retry the operation later. CREATE
DATABASE failed. Some file names listed could not be
created. Check related errors. (Microsoft SQL Server, Error:
1807).” For applications like SharePoint that create
databases, this could lead to application errors.

Own the databases you create
The login that runs the CREATE DATABASE statement will become the
owner of any database you create, even if the account you are using
is not a member of the sysadmin group. Any principal that can create
a database becomes the owner of that database, even if, for
example, they have only membership to the dbcreator built-in server
role.

Ideally, databases are not owned by named individual accounts. You
might decide to change each database to a service account specific
to that database’s dependent applications. You must do this after the
database is created.

 For more information on best practices with respect to
database ownership and how to change the database owner,
see Chapter 12, “Administer instance and database security
and permissions.”

Note



If your server is an Azure Arc–enabled server, you can change
the database to use an Azure Active Directory (Azure AD)
group using the AUTHORIZATION statement. For step-by-step
instructions, visit https://learn.microsoft.com/sql/t-
sql/statements/alter-authorization-transact-sql. You can read
more about installing Azure Arc–enabled servers in Chapter 4,
“Install and configure SQL Server instances and features.”

Create additional database files
Every SQL Server database needs at least one data file and one log
file. You can use additional data files to maximize storage capacity,
management, and performance. However, there is no performance
advantage to be gained with more than one transaction log file for a
database. SQL Server does not write to them randomly, but
sequentially.

 We discuss physical database architecture in detail in
Chapter 3.

The only scenario in which a second transaction log file could be
needed is if the first fills up its volume. If no space can be created on
the volume to allow for additional transaction log file data to be
written, the database cannot accept new transactions and will refuse
new application requests. In this scenario, one possible
troubleshooting method is to temporarily add a second transaction
log file on another volume to create the space to allow the database
transactions to resume accepting transactions. The end resolution
involves clearing the primary transaction log file, performing a one-
time-only shrink operation to return it to its original size, and
removing the second transaction log file. There is no other
performance or stability benefit to having a second transaction log
file.

Use SQL Server Management Studio to create a
new database

https://learn.microsoft.com/sql/t-sql/statements/alter-authorization-transact-sql


You can create and configure database files, specifically their initial
sizes, in SSMS. To begin, in Object Explorer, right-click Databases
and select New Database in the shortcut menu to open the New
Database dialog box.

After you have configured the new database’s settings, but before
you select OK, you can script the T-SQL for the CREATE DATABASE
statement.

Here are a few suggestions when creating a new database:

Pre-grow your database and log file sizes to an expected size.
This avoids autogrowth events as you initially populate your
database. You can greatly speed up this process by using the
Perform Volume Maintenance Task policy for the SQL Server
service account so that instant file initialization is possible.

 Chapter 3 covers instant file initialization.

Consider the simple recovery model for your database until it
enters production use. Then, the full or bulk-logged recovery
models might be more appropriate.

 For more information on database backups and the appropriate
recovery model, see Chapter 10, “Develop, deploy, and manage
data recovery.”

Review the logical and physical file names of your database
and the locations. The default locations for the data and log
files are server-level settings, but you can override them here.
You also can move the files later (covered later in this chapter).

As soon as the database is created, follow up with your backup
strategy to ensure that it is covered as appropriate with its role.
This may involve adding it to an existing maintenance plan,
SQL Server Agent job, or third-party backup application.

Deploy a database via SQL Server Data Tools



You can also deploy developed databases to a SQL Server instance
using a database project in SQL Server Data Tools (SSDT). SSDT
provides a professional and mature environment for teams across
your enterprise to develop databases, check them into source
control, generate change scripts for incremental deployments, and
reduce object scripting errors.

SSDT can generate incremental change scripts using the Data
Compare feature or deploy databases directly. It also has the option
to drop or re-create databases for each deployment, although this is
turned off by default.

You might find it easiest to create the new database by using SSMS
and then deploy incremental changes to it with SSDT.

Move existing databases
There are several strategies for moving or copying a SQL Server
database from one instance to another. You should consider each as
it relates to necessary changes to application connection strings,
DNS, storage, and security environments. This section reviews a few
options for migration.

Restore a database backup
Restoring a backup is an easily understandable way to copy data
from one instance to another. You can also carry out this method in a
way that minimizes outages.

Let’s compare two simplified migration processes. The following is a
sample migration checklist using only a full backup/restore:

1. Begin the application outage.

2. Perform a full backup of the database on the old instance.

3. Copy the database backup file to the new server.

4. Restore the full backup on the new instance.



5. Resolve any SQL-authenticated login issues or any other
changes necessary before directing database queries to the
new instance.

 This is covered in more detail in Chapter 12, in the section,
“Perform common security administration tasks.”

6. Change the connection strings in applications and/or DNS
and/or aliases.

7. End the application outage.

 For more information on types of database backups and
database restores, see Chapter 10.

In the preceding scenario, the application outage must last the entire
span of the backup, copy, and restore, which for large databases
could be quite lengthy—even with native SQL Server backup
compression reducing the file size. Ultimately, however, doing it with
the downtime is faster and less complex.

Instead, consider the following strategy:

1. Perform a full backup of the database on the old instance.

2. Copy the database backup file to the new server.

3. Restore the full backup using the WITH NORECOVERY option on
the new instance.

4. Begin the application outage.

5. Take a differential backup and then a log backup of the
database on the old instance.

6. Copy the differential backup file and the log backup file to the
new server.

7. Restore the differential backup file WITH NORECOVERY on the new
instance.



8. Restore the transaction log backup WITH RECOVERY on the new
instance.

9. Resolve any SQL-authenticated login issues or any other
changes necessary before directing database queries to the
new instance.

10. Change the connection strings in applications, DNS, and/or
aliases.

11. End the application outage.

In this scenario, the application outage spans only the duration of the
differential and transaction logs’ backup/copy/restore operations,
which for large databases should be a tiny fraction of the overall size
of the database.

This scenario does require more preparation and scripting in
advance, as well as coordination with the usual backup system
responsible for transaction log backups. By taking a manual
transaction log backup, you can create a split transaction log backup
chain for another system. You’ll want to account for this in your
planning.

Attach detached database files
Detaching, copying, and attaching database files also accomplishes
the goal of placing the database on a new instance. It is relatively
straightforward to disassociate (detach) the files from the old SQL
Server, copy the files to the new instance, and then attach the files to
the new SQL Server. This is largely limited by the data-transfer
speed of copying the files. You might also consider moving the SAN
drives to the new server to decrease the time spent waiting for files
to copy.

Attaching copied database files can be faster than restoring a full
database backup; however, it cannot minimize the outage by taking
advantage of transaction log backups (see earlier).



Copying the full set of database files (remember, these might contain
many more files than just the .mdf and .ldf files, including secondary
data files and FILESTREAM containers) is not faster than restoring a
transaction log backup during the application outage, and is not a
true recovery method. Because database backup files can also be
compressed natively by SQL Server, the data-transfer duration
between old and new servers will be reduced by using the
backup/restore strategy.

Move data with BACPAC files
A BACPAC file is an XML format file that contains the database
schema and row data, allowing for the migration of databases,
ideally at the start of a development/migration phase (although not
for large databases). SSMS can both generate and import BACPAC
files, and the Azure portal can import them when moving an on-
premises SQL Server to Azure SQL Database.

Note
Some features of SQL Server change how the engine stores
information in database files. Databases that contain these
features cannot be moved to editions of SQL Server that do not
support them. To check if the database you are moving has
any of these features, and to find out what they are, query
sys.dm_dm_persisted_sku_features.

Upgrade database compatibility levels
SQL Server databases upgraded from an older version to a newer
version will retain the prior compatibility level. Compatibility level is a
database-level setting.

For example, restoring or attaching a database from SQL Server
2012 to SQL Server 2022 will result in the database assuming the
SQL Server 2012 (110) compatibility mode. This is not necessarily a



problem, but it does have consequences with respect to how you
can use features or whether you can leverage improvements to
performance. You will have to manually promote the database to
SQL Server 2022 compatibility level 160.

Inside OUT
Are there any Microsoft-provided tools to assist with a
database migration and/or upgrade?

To assist upgrade projects and aid consumption of Azure
services, Microsoft has developed tools for the evaluation
and even the migration of data.

The Data Migration Assistant (DMA) is important for legacy
upgrades of databases from older versions. A clean
assessment from DMA is needed and highly recommended
for a Microsoft-supported upgrade of an old database. The
DMA can help identify T-SQL code, features, or options not
supported in a newer version, and can suggest the
necessary remediation. The target of a DMA-supported
migration can be any of the three Azure SQL platforms or an
on-premises SQL Server installation.

The Azure Database Migration Service (DMS) is a managed
service to handle the upgrade and migrations of SQL Server
databases to Azure. It relies on the DMA’s assessment and
recommendations, but can help you take the next step of
moving the data to an Azure platform—especially when a
simple backup and restore is not possible, as with Azure SQL
Database.

We’ll discuss Azure Database Migration Service in more
detail in Chapter 18, “Provision Azure SQL Managed
Instance,” and Chapter 19, “Migrate to SQL Server solutions
in Azure.”



You can view the compatibility level of a database in SSMS. To do
so, right-click a database in Object Explorer and select Properties.
Then, on the Options page, notice the current setting in the
Compatibility Level list box. You can also view this setting for all
databases in the system catalog via sys.databases, in the
compatibility_level column.

You can change the compatibility level setting by choosing a new
value from the Compatibility Level list box. Alternatively, you can
use the ALTER DATABASE command to change the
COMPATIBILITY_LEVEL setting.

SQL Server provides database compatibility modes for backward
compatibility with database-level features, including improvements to
the Query Optimizer, additional fields in dynamic management
objects, syntax improvements, and other database-level objects.

Inside OUT
Are there any new breaking code changes to SQL
Server?

Since SQL Server 2005 and database compatibility level 90,
there have been very few changes to allowed syntax that
would cause working T-SQL code to break in a newer version
of SQL Server. As a rare example, the FASTFIRSTROW syntax
stopped working in compatibility level 110. T-SQL code that
works as far back as compatibility level 90 will almost
certainly execute in SQL Server 2022 and compatibility level
160, though performance could vary. As mentioned, it is
strongly recommended to use the Microsoft Data Migration
Assistant (DMA) tool on SQL Server 2008 and later versions
to assess a database.



For example, some recent syntax additions, such as the
STRING_SPLIT() and OPENJSON functions, added in SQL Server 2016,
do not work when run on a database in a prior compatibility level.
Some syntax improvements, such as DATEFROMPARTS() and AT TIME
ZONE, will work in any database in any database compatibility mode
in SQL Server 2017 or later.

SQL Server 2022 supports compatibility levels down to SQL Server
2008 (internal version 100). Any database attached or restored that
was on compatibility level 90 will be upgraded to version 100. This
minimum has been the same since SQL Server 2016. Any attempt to
set a database compatibility level lower than 100 will fail.

Changing the database compatibility level does not require a service
restart, but we strongly recommend that you not perform this
operation during normal operating hours. Promoting the database
compatibility level should be thoroughly tested in preproduction
environments. Even though syntax errors are unlikely in the newer
compatibility level, other changes to the Query Optimizer engine
from version to version could result in performance changes that
must be evaluated prior to rollout to a production system. At the very
least, the compatibility level change could cause widespread cached
plan invalidation and an immediate CPU spike due to plan
compilation.

 For more information on the differences between compatibility
levels in SQL Server versions, see “Differences between
compatibility levels” at https://learn.microsoft.com/sql/t-
sql/statements/alter-database-transact-sql-compatibility-
level#differences-between-compatibility-levels.

Inside OUT
When should you keep a database in a prior
compatibility mode?

https://learn.microsoft.com/sql/t-sql/statements/alter-database-transact-sql-compatibility-level#differences-between-compatibility-levels


It is a common forget to promote the database compatibility
level to the new SQL Server version level after a database
upgrade. You will miss out on new database features, but
there can be good—albeit temporary—reasons to keep a
database in a prior compatibility mode. Changes from version
to version in SQL Server are additive and rarely regressive.

The most common reason to run a database in a prior
compatibility mode is not technical; rather, the administrator
might be limited by vendor support or software certification.

One notable exception relates to a feature introduced in SQL
Server 2014: Improvements to the cardinality estimator
resulted in the same or better performance for most
situations, but poor query performance in rare situations. In
the case of a query whose performance regressed when
executed in compatibility level 120 or higher, forcing the
legacy cardinality estimator back into use is the most realistic
near-term solution. Changing the database’s compatibility
mode down to SQL Server 2012 (110) would accomplish this,
but three more appropriate options are available, listed here
in order of preference:

The LEGACY_CARDINALITY_ESTIMATION database-scoped
configuration option, introduced in SQL Server 2016, can
force the old cardinality estimation model into use only for
that database. It has the same effect on the database at
Trace Flag 9481.

Trace Flag 9481 will force a database in SQL Server 2014
compatibility mode to use the legacy cardinality estimation
model from SQL Server 2012 and earlier.

You can modify an individual query to use the legacy
cardinality estimator with OPTION (USE HINT
('FORCE_LEGACY_CARDINALITY_ESTIMATION'));, which has
been available since SQL Server 2016 with Service Pack
1.



Note
You can upgrade the SSISDB database, which contains the
SSIS Catalog, independently of other databases by using the
SSISDB Upgrade Wizard. This makes it easier to move your
SSIS packages and environments from instance to instance by
restoring or attaching a database from a previous version to a
SQL Server 2022 instance. For more information, visit
https://learn.microsoft.com/sql/integration-services/install-
windows/upgrade-integration-services-packages-using-the-
ssis-package-upgrade-wizard.

Other considerations for migrating databases
As an administrator, you’ll need to move a database from one
instance to another—perhaps to refresh a preproduction
environment, to move to a new SQL Server instance, or to promote a
database into production for the first time.

In addition to database compatibility levels and SQL Server
database version and compatibility modes, when copying a database
into a new environment, you’ll need to keep the following in mind:

SQL Server edition

SQL logins

Encryption

Database settings

Let’s look at each of these in more detail.

SQL Server edition

https://learn.microsoft.com/sql/integration-services/install-windows/upgrade-integration-services-packages-using-the-ssis-package-upgrade-wizard


Editions generally progress upward in terms of cost and feature set,
beginning with Express, Web, Standard, and finally Enterprise
edition. (Developer edition is the same as Enterprise edition, except
you can use it in a production environment.) Moving a database
instance up from Express, Web, or Standard edition expands the
features available for use in the database.

The concern for DBAs is when database instances need to move
down from Enterprise, Standard, or Web edition. Many features that
were historically exclusive to Enterprise edition were included in
Standard edition for the first time in SQL Server 2016 with Service
Pack 1, expanding what we could do with Standard edition as
developers and administrators.

You will encounter errors related to higher-edition features when
restoring or attaching to an instance that does not support that
edition. There are fewer of these all the time, and many are in the
realm of capacity or tuning more than in core features. This is
important because you cannot turn off the use of higher-edition
features on the lower-edition instance; you must disable the use of
these features before restoring or attaching the database to a lower-
edition instance.

You can avoid this problem by using a dynamic management view
that lists all edition-specific features in use. Keep in mind that some
features are supported in all editions but are limited. For example,
memory-optimized databases are supported even in the Express
edition, but with only a small amount of allocated memory.

To view all edition-specific features in use in each database, run the
following query:
Click here to view code image

SELECT feature_name 
FROM sys.dm_db_persisted_sku_features;

This DMV may return no records if no edition-sensitive features are
in use in the current database context. However, if, for example, you



create a partitioning function for horizontal table partitioning, the
DMV will immediately return a row for the feature name
“Partitioning.” While table partitioning is supported in all editions of
SQL Server, certain performance benefits of table partitioning are
supported only in the Enterprise edition—for example, partitioned
table parallelism and distributed partitioned views. Thus, the
performance of your partitioned tables may vary from edition to
edition.

 For more information on the data returned by
sys.dm_db_persisted_sku_features, visit
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-persisted-sku-
features-transact-sql. For more information on features by
edition, visit https://learn.microsoft.com/sql/sql-
server/editions-and-components-of-sql-server-2019.

SQL logins
SQL-authenticated logins and their associated database users are
connected via security identifier (SID), not by name. When moving a
database from one instance to another, the SIDs in the SQL logins
on the old instance might be different from the SIDs in the SQL
logins on the new instance, even if their names match. After
migration to the new instance, SQL-authenticated logins will be
unable to access databases where their database users have
become “orphaned,” and you must repair this. This does not affect
Windows Authenticated logins for domain accounts.

This condition must be repaired before applications and end users
can access the database in its new location. Refer to the “Orphaned
SIDs” section in Chapter 12.

The database owner should be included in the security objects to be
accounted for on the new server. Ensure that the owner of the
database, listed either in the Database Properties window or the
owner_sid column in the sys.databases catalog view, is still a valid
principal on the new instance.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-persisted-sku-features-transact-sql
https://learn.microsoft.com/sql/sql-server/editions-and-components-of-sql-server-2019


For databases with partial containment, contained logins for each
type will be restored or attached along with the database. This
should not be a concern.

Transparent data encryption
Transparent data encryption (TDE) settings will follow the database
as it is moved from one instance to another, but the certificate and its
security method will not. For example, the server certificate created
to encrypt the database key, and the private key and its password,
are not backed up along with the database. This is, after all, the
entire purpose of TDE—to prevent a database from being attached
or restored to a server that lacks the proper certificate.

These objects must be moved to the new instance along with the
database before any attempt to restore or attach the database. They
must also be backed up and securely stored with the rest of your
enterprise security credentials, certificates, and sensitive data.

Note
Restoring an unencrypted database over an encrypted
database is allowed. When might you inadvertently do this? If
you restore a backup from the database before it is encrypted,
you will end up with an unencrypted database. You must then
reapply TDE.

 For more information on TDE, see Chapter 13, “Protect data
through classification, encryption, and auditing.”

Database configuration settings
You should review database-specific settings at the time of
migration. You can review them with a quick glance of the
sys.databases catalog view or from the database Properties window
in SSMS.



The following is not a complete list of database settings; we cover
these and many more later in the chapter. You should pay special
attention to these settings when restoring, deploying, or attaching a
database to a new instance:

Read only. If the database was put in READ_ONLY mode before
the migration to prevent data movement, be sure to change this
setting back to READ_WRITE.

Recovery model. Different servers might have different backup
and recovery methods. In a typical environment, the full
recovery model is appropriate for production environments
when the data loss tolerance of the database is smaller than
the frequency of full backups, or when point-in-time recovery is
appropriate. If you are copying a database from a production
environment to a development environment, you will likely want
to change the recovery model from Full to Simple. If you are
copying a database from a testing environment to a production
environment for the first time, you will likely want to change the
recovery model from Simple to Full.

Note
After changing a database recovery model from Simple to
Full, immediately take a full backup of the database to start
the transaction log recovery chain. Then, you can start taking
transaction log backups at regular intervals.

 For more information about database backups and the
appropriate recovery model, see Chapter 10.

Page verify option. For all databases, this setting should be
CHECKSUM. The legacy TORN_PAGE_DETECTION option is a sign that
this database has been moved over the years up from a pre-
SQL Server 2005 version but this setting has never changed.
Since SQL Server 2005, CHECKSUM has been the superior and
default setting, but it requires an administrator to manually



change. Always take a full database backup before changing
this setting.

Unfortunately, just changing this setting is not sufficient.
Checksums are not immediately created when you change the
page verify option to CHECKSUM, so the data pages are not
protected right away. To apply the checksums manually, rebuild
all indexes in the database.

 For more information about the important page verify option in
each database, see the section “Set the database’s page verify
option” in Chapter 8, “Maintain and monitor SQL Server.”

Trustworthy. It is not recommended to ever enable this setting
unless doing so is necessary because of an inflexible
architecture requirement. Using this setting to mark a database
as trustworthy could allow malicious activity on one database to
affect other databases, even if specific permissions have not
been granted. It is crucial not only to ensure this setting is
disabled, but also to understand cross-database permission
chains in a multitenant or web-hosted shared SQL Server
environment.

If this setting was enabled on a previous system and was
required because of external assemblies, cross-database
queries, and/or Service Broker, you will need to turn it on again
on the new server (assuming it’s still needed).
If your application security model depends on the Trustworthy
setting, you must remember to enable it after restoring or
attaching the database. When restoring a database,
Trustworthy is set to off no matter the value when it is backed
up.

Note
The Trustworthy setting tells SQL Server that the contents of
the database should be trusted. It allows certain operations
like cross-database access and common language runtime



(CLR) assemblies to access data outside the server. It is not
recommended unless there are no other options available,
as it is not a secure method of communication between
servers.

 For more on object ownership, see Chapter 12.

Database-scoped configurations
Database-scoped configurations were introduced in SQL Server
2016 and Azure SQL Database v12. They represent a container for
a set of configuration options available at the database level. In
earlier versions, these settings were available only at the server or
individual query level, such as Max Degree of Parallelism
(MaxDOP).

 For more information on parallelism and MaxDOP, see
Chapter 14, “Performance tune SQL Server.”

You should evaluate these options for each database after it is
copied to a new instance to determine whether the settings are
appropriate. The desired MaxDOP, for example, could change if the
number of logical processors differs from the original system.

You can view each of these database-scoped configurations in
SSMS. In Object Explorer, right-click a database and select
Properties in the shortcut menu. In the Database Properties
window, in the pane on the left, select Options. On the Options
page, a Database-Scoped Configurations heading appears at the
top of the Other Options list.

The current database context is important for determining which
database’s properties will be applied to a query that references
objects in multiple databases. This means the same query, run in
two different database contexts, will have different execution plans—
potentially because of differences in each database’s MaxDOP
setting, for example. If there is a discrepancy between levels, such



as the server level or query level, the more granular level overrides
higher levels.

Among the new features introduced in SQL Server 2022 are two new
and related database-scoped configurations you should know about:

Degree of Parallelism Feedback (DOP_FEEDBACK). This is
a Query Store–dependent feature that automatically adjusts the
degree of parallelism for repeated queries. (See the next
section for more information about Query Store.) It compares
the runtime statistics with previous plans after each execution.
If the new plan is not the same or better, the feedback is
cleared.

ASYNC_STATS_UPDATE_WAIT_AT_LOW_PRIORITY. This
option enables you to avoid concurrency issues with the Auto
Update Statistics Asynchronously setting.

Database properties and options
This section reviews some commonly changed and managed
database settings. There are quite a few settings on the Options
page in the Database Properties window, many involving rarely
changed defaults or ANSI-standard deviations for legacy support.

You can view each of these settings in SSMS via Object Explorer. To
do so, right-click a database and select Properties in the shortcut
menu. Then, in the Database Properties window, in the pane on the
left, select Options. You also can review database settings for all
databases in the sys.databases catalog view.

The subsections that follow discuss the settings that you need to
consider when creating and managing SQL Server databases.

Collation
Collations exist at three levels in a SQL Server instance:



Database

Instance

tempdb

By default, the collation of the tempdb database matches the
collation of the instance and should differ only in otherwise
unavoidable circumstances. Ideally, the collations in all user
databases match the collation at the instance level and for tempdb,
but there are scenarios in which an individual database might need
to operate in a different collation.

Often, databases differ from the server-level collation to enforce
case sensitivity. But you can also enforce language usage
differences (such as kana or accent sensitivity) and sort order
differences at the database level.

The default collation for the server is decided at installation and is
preselected for you based on your operating system’s regionalization
settings. You can (and should) override this during installation. Some
applications require a case-sensitive collation.

Although the server-level collation is very difficult to change (see
Chapter 4), databases can change collation. You should change a
database’s collation only before code is developed for the database,
or only after extensive testing of existing code.

Unmatched collations in databases could cause performance issues
when querying across those databases, so you should try to avoid
collation differences between databases that will be shared by
common applications. For example, if you write a query that includes
a table in a database that’s set to the collation
SQL_Latin1_General_CP1_CI_AS (which is case insensitive and
accent sensitive) and a join to a table in a database that’s set to
SQL_Latin1_General_CP1_CS_AS (which is case sensitive and accent
sensitive), you will receive the following error:
Click here to view code image



Cannot resolve the collation conflict between 
"SQL_Latin1_General_CP1_CI_AS" and "SQL_ 
Latin1_General_CP1_CS_AS" in the equal to operation.

Short of changing either database to match the other, you will need
to modify your code to use the COLLATE statement when referencing
columns in each query. The following sample succeeds in joining two
sample database tables together, despite the mismatched database
collations:
Click here to view code image

SELECT * FROM CS_AS.sales.sales s1 
INNER JOIN CI_AS.sales.sales s2 
ON s1.[salestext] COLLATE SQL_Latin1_General_CP1_CI_AS = s2.
[salestext];

Note
In contained databases, collation is defined at two different
levels: the database and the catalog. You cannot change the
catalog collation from Latin1_General_100_CI_AS_WS_KS_SC.
Database metadata and variables are always in the catalog’s
collation. The COLLATE DATABASE_DEFAULT syntax can
also be a very useful tool if you know the collation before
execution.

Inside OUT
How do you take advantage of the new UTF-8 support?

SQL Server 2019 introduced support for UTF-8 collations,
such as Latin1_General_100_CI_AS_SC_UTF8. Now you can
choose an instance-level UTF-8 collation or configure
databases or individual tables with UTF-8 collations.



UTF-8 is the most popular character-encoding set for XML,
HTML, and the World Wide Web. More than 90 percent of
web pages are encoded with UTF-8. Until SQL Server 2019,
nvarchar and nchar data types supported only UTF-16, while
varchar and char support encoding via a code page, such as
Windows Latin 1, Code Page 1252. You may be familiar with
these options if you worked with flat files in SSIS
development.

Choosing a UTF-8 collation allows for a wider variety of
character values inside the varchar and char data types, at a
fraction of the storage compared to UTF-16 in nvarchar or
nchar in most cases.

 For more about UTF-8 in SQL Server 2019, see Chapter 7,
“Understand table features.”

Recovery model
The full recovery model is appropriate for production environments in
which the database’s data-loss tolerance is smaller than the
frequency of full backups or when point-in-time recovery is
necessary. As mentioned earlier in this chapter, if you are copying a
database from a production environment to a development
environment, you will likely want to change the recovery model from
Full to Simple. If you are copying a database from a testing
environment to a production environment for the first time, you will
likely want to change the recovery model from Simple to Full, then
immediately take a full backup to begin the recovery chain.

 For more information on database backups and the
appropriate recovery model, see Chapter 10.

Compatibility level



SQL Server provides database compatibility levels for backward
compatibility to database-level features, including improvements to
the Query Optimizer, additional fields in dynamic management
objects, syntax improvements, and other database-level objects.

Compatibility level is a database-level setting. Databases upgraded
from an older version to a newer version will retain a prior
compatibility level. You must manually promote a database’s
compatibility level when restoring up to a new version of SQL Server.

Note
As mentioned, reverting the database’s compatibility level to
SQL Server 2012 (110) was a common tactic when databases
were first upgraded to SQL Server 2014 because of changes to
the cardinality estimator. There are multiple more nuanced and
less drastic methods for dealing with the new cardinality
estimator, however. Refer to the section “Upgrade database
compatibility levels” earlier in this chapter for more information.

Containment type
Partially contained databases represent a fundamental change in the
relationship between server and database. They are an architectural
decision that you make when applications are intended to be
portable between multiple SQL Server instances or when security
should be entirely limited to the database context, not in the
traditional server login/database user sense.

 For more information about the security implications of
contained databases, see Chapter 12.

Azure SQL databases are themselves a type of contained database.
They can move from host to host in the Azure platform-as-a-service
(PaaS) environment, transparent to administrators and users. You
can design databases that can be moved between SQL Server



instances in a similar fashion, should the application architecture call
for such capability.

Changing the containment type from None to Partial converts the
database to a partially contained database and should not be taken
lightly. We do not advise changing a database that has already been
developed without the partial containment setting, because there are
differences with how temporary objects behave and how collations
are enforced. Some database features, including change data
capture (CDC), change tracking, replication, and some parts of
Service Broker, are not supported in partially contained databases.
You should carefully review, while logged in as a member of the
sysadmin server role or the db_owner database role, the system
dynamic management view sys.dm_db_uncontained_entities for an
inventory of objects that are not contained.

Auto close
You should enable this setting only in very specific and resource-
exhausted environments. When this feature is enabled, it can cause
performance degradation on busy databases because of the
increased overhead of opening and closing the database after each
connection. AUTO_CLOSE also flushes the procedure cache after each
connection. When active, it unravels the very purpose of application
connection pooling—for example, rendering certain application
architectures useless and increasing the number of login events. You
should never enable this setting as part of performance tuning or a
troubleshooting exercise on a busy environment.

Auto create statistics
When you enable this setting, the Query Optimizer automatically
creates statistics needed for runtime plans, even for read-only
databases. (Statistics are stored in tempdb for read-only databases.)
Some applications, such as SharePoint, handle the creation of
statistics programmatically; due to the dynamic nature of its tables
and queries, SharePoint handles statistics creation and updates by



itself. Unless a sophisticated, complex application like SharePoint
insists otherwise, you should enable this setting. You can identify
auto-created statistics in the database; they use a naming
convention similar to _WA_Sys_<column_number>_<hexadecimal>.

Inside OUT
What are statistics?

SQL Server uses statistics to describe the distribution and
nature of data in tables. The Query Optimizer needs the auto
create statistics setting to be enabled so it can create single-
column statistics when compiling queries. These statistics
help the Query Optimizer create optimal runtime plans.
Without relevant and up-to-date statistics, the Query
Optimizer might not choose the best way to execute queries.

 For much more about statistics objects, see Chapter 15,
“Understand and design indexes.”

Auto create incremental statistics
Introduced in SQL Server 2014, this setting allows for the creation of
statistics that take advantage of table partitioning, reducing the
overhead of statistics creation. This setting has no impact on
nonpartitioned tables. You should enable this setting because it can
reduce the cost of creating and updating statistics.

Once enabled, this setting will have an effect only on newly created
statistics. To affect existing statistics objects on tables with partitions,
you should update the statistics objects to include the INCREMENTAL =
ON parameter, as shown here:
Click here to view code image



UPDATE STATISTICS [Purchasing].[SupplierTransactions] 
[CX_Purchasing_SupplierTransactions] WITH RESAMPLE, 
INCREMENTAL = ON;

When INCREMENTAL = ON, the statistics are re-created as per partition
statistics. When OFF, the statistics tree is dropped and SQL Server
recomputes the statistics. This is why you need to change the
setting. You should also, when applicable, update any manual scripts
you have implemented to update statistics to use the ON PARTITIONS
parameter, as demonstrated here:
Click here to view code image

UPDATE STATISTICS [Purchasing].[SupplierTransactions] 
[CX_Purchasing_SupplierTransactions] WITH RESAMPLE ON 
PARTITIONS (1);

To determine whether statistics were created incrementally, you can
check the value of the is_incremental column in the sys.stats
catalog view.

Auto shrink
You should never enable this setting. It will automatically return any
free space of more than 25 percent of the data file or transaction log
to the file system. You should shrink a database only as a manual,
one-time operation to reduce file size after unplanned or unusual file
growth. This setting will result in unnecessary fragmentation and
overhead. After completion, it may result in frequent rapid log
autogrowth events as the database resizes itself again.

Auto update statistics
When this setting is enabled, statistics will be updated periodically.
The Query Optimizer considers statistics to be out of date when a
ratio of data modifications to rows in the table has been reached.
The Query Optimizer checks for and updates the out-of-date statistic
before running a query plan and therefore has some overhead,



though the performance benefit of updated statistics usually
outweighs this cost. This is especially true when the updated
statistics result in a better optimization plan. Because the Query
Optimizer updates the statistics first and then runs the plan, the
update is described as synchronous.

Auto update statistics asynchronously
This setting changes the behavior of the auto update statistics
setting in one important way: Query runs will continue even if the
Query Optimizer has identified an out-of-date statistics object. The
statistics will be updated afterward.

Note
Enabling the Auto Update Statistics setting is a prerequisite for
the Auto Update Statistics Asynchronously setting to have any
effect. There is no warning or enforcement in SSMS for this.

Inside OUT
Should you enable Auto Update Statistics and Auto
Update Statistics Asynchronously in SQL Server 2022?

Yes! (Again, unless the application specifically recommends
not to, such as SharePoint.)

Starting with database compatibility level 130, the ratio of
data modifications to rows in the table that helps identify out-
of-date statistics has been aggressively lowered, causing
statistics to be automatically updated more frequently. This is
especially evident in large tables in which many rows are
regularly updated. In SQL Server 2014 and earlier, this more
aggressive behavior was not on by default, but could be



enabled via Trace Flag 2371, starting with SQL Server 2008
R2 with Service Pack 1.

Since SQL Server 2016, it is more important than in previous
versions to enable Auto Update Statistics Asynchronously,
which can reduce the overhead involved in automatic
statistics maintenance and provide for more consistent query
performance.

Allow snapshot isolation
This setting allows for the use of snapshot isolation (SI) mode at the
query level. When you enable this setting, the row versioning
process begins in tempdb, though this setting does little more than
allow for this mechanism to be used in this database. To begin to use
SI mode in the database, you must change code—for example, to
include SET TRANSACTION ISOLATION LEVEL SNAPSHOT.

 For much more on snapshot isolation, see Chapter 14.

Read committed snapshot isolation (RCSI)
Enabling the read committed snapshot isolation (RCSI) setting
changes the default isolation mode of the database from READ
COMMITTED to READ COMMITTED SNAPSHOT (RCSI). While RCSI can be
beneficial and is the enterprise, scalable solution for concurrency
issues, you should not enable this setting during regular business
hours; instead, do it during a maintenance window. Ideally, however,
this setting is on and accounted for during development.

When RCSI is enabled, the snapshot uses optimistic concurrency
control, withholding any locks that would prevent other transactions
from updating rows. If a snapshot transaction attempts to commit an
update to a row that was changed after the transaction began, the
transaction is rolled back and an error is raised.



Enabling RCSI will have an immediate impact to the use of the local
database, and potentially the tempdb database as well, in the form of
rising IO_COMPLETION and WAIT_XTP_RECOVERY wait types, so you
need to perform proper load testing. This setting, however,
potentially results in a major performance improvement and this is
the core of enterprise-level concurrency.

Multiple factors could determine whether snapshot versions are
contained in the user database or in tempdb. When RCSI is enabled,
long-running transactions can also prevent the cleanup of the
persistent version store (PVS) when the accelerated database
recovery (ADR) feature is enabled. This isn’t typically a problem, but
you should understand and monitor for a growing PVS when ADR is
enabled.

 SQL Server 2022 introduced performance improvements for
ADR and its PVS cleanup process. For more information, see
https://learn.microsoft.com/sql/relational-
databases/accelerated-database-recovery-troubleshoot.

 For much more about RCSI, see Chapter 14.

Page verify option
For all databases, this setting should be CHECKSUM. The presence of
the legacy TORN_PAGE_DETECTION or NONE option is a sign that this
database has been restored up from a pre-SQL Server 2005 version,
but this setting has never changed. Since SQL Server 2005,
CHECKSUM has been the superior and default setting. Always take a
full database backup before changing this setting.

Unfortunately, just changing this setting is not sufficient to apply
checksums to each data page. Checksums are not immediately
created when you change the page verify option to CHECKSUM, so the
data pages are not protected right away. To apply the checksums
manually, rebuild all indexes in the database.

https://learn.microsoft.com/sql/relational-databases/accelerated-database-recovery-troubleshoot


For more information about the important page verify option setting
in each database, see the section “Set the database’s page verify
option” in Chapter 8.

Trustworthy
It is not recommended to ever enable this setting unless it is made
necessary because of an inflexible architecture requirement. Using
this setting to mark a database as trustworthy could allow malicious
activity on one database to affect other databases, even if specific
permissions have not been granted. Before enabling this setting, you
should understand the implications of cross-database ownership
chains in a multitenant or web-hosted shared SQL Server
environment.

 For more on object ownership, see Chapter 12.

Database Read-Only
You can set an older database, or a database intended for
nonchanging archival, to READ_ONLY mode to prevent changes. Any
member of the server sysadmin role or the database db_owner role
can revert this to READ_WRITE, so you should not consider this setting
a security measure.

Query Store
Introduced in SQL Server 2016, the Query Store is a built-in data
gathering and reporting mechanism for measuring and tracking
cached runtime plans. It is highly recommended, as it provides
historical data for queries, not just for cached plans.

Though extremely useful, Query Store is not active by default in
older versions of SQL Server. With the introduction of SQL Server
2022, Query Store is enabled by default in new databases. Shortly
after the release of SQL Server 2022, the Query Store will be
enabled by default in new databases in Azure SQL Database and



Azure SQL Managed Instance. You should turn it on as soon as
possible if you intend to use it to aid performance tuning and
troubleshooting cached runtime plans.

 For more information on the Query Store, as well as retrieving
cached query plans, see Chapter 14.

Inside OUT
How can you best use the Query Store to help with a
database compatibility level upgrade?

Consider using the Query Tuning Assistant (QTA) tool, which
has been part of SSMS since version 18. The QTA leverages
the Query Store to evaluate workloads before and after a
compatibility level change and to identify regressed queries.

The QTA also works hard to generate the best possible plan
from various Query Optimizer models. Unlike the Database
Engine Tuning Advisor (DTA), the QTA does not and cannot
generate workloads; it only observes workloads. For more
information on the QTA, other tools, and strategies for
migrating a SQL Server database to Azure, see Chapter 19.

Indirect checkpoints
If your database was created in SQL Server 2016 or later, it is
already configured to use indirect checkpoints, as it has been the
default setting for all new databases since then—even if you created
the database in a previous compatibility level.

By default, in databases created in SQL Server 2016 or higher, this
setting is 60 seconds. In databases created in SQL Server 2012 or
2014, this option was available, but set to 0, which indicates that
legacy automatic checkpoints are in use.



Databases created on prior versions of SQL Server, however, will
continue to use the classic automatic checkpoint, which has been in
place since the 1990s (SQL Server 7.0) with only minor tweaks.

Inside OUT
What is a checkpoint?

A checkpoint is the process by which SQL Server writes to
the drive both data and transaction log pages modified in
memory, also known as dirty pages.

You can issue checkpoints manually by using the CHECKPOINT
command, but doing so is rarely necessary, and is usually
limited to troubleshooting, because checkpoints are issued
automatically in the background for you.

Before SQL Server 2016 and since SQL Server 7.0, all databases
use automatic checkpoints by default. The rate at which dirty pages
are committed to memory has increased with versions, as disk I/O
and memory capacities of servers have increased. The aim of
automatic checkpoints was to ensure that all dirty pages were
managed within a goal defined in the recovery interval server
configuration option. By default, this was 0, which meant automatic
checkpoints were in effect. The effective timing of a checkpoint
tended to be around 60 seconds, but was highly variable, and was
generally unrelated to the number of pages dirtied by transactions
between checkpoints.

An indirect checkpoint follows a new strategy of taking care of dirty
pages that is far more scalable and can improve performance,
especially on modern systems with a large amount of memory.
Indirect checkpoints manage dirty pages in memory differently;
instead of scanning memory, they proactively gather lists of dirty
pages. Indirect checkpoints then manage the list of dirty pages and



continuously commit them from memory to the drive, on a pace to
not exceed an upper bound of recovery time. This upper bound is
defined in the TARGET_RECOVERY_TIME database configuration option.

So, even though the recovery time goal hasn’t really changed, the
method by which it is achieved has. Indirect checkpoints are
significantly faster than automatic checkpoints, especially as servers
are configured with more and more memory. You might notice an
improvement specifically in the performance of backups.

You can configure a database created on an older version of SQL
Server to use indirect checkpoints instead of automatic checkpoints
with a single command: TARGET_RECOVERY_TIME. The value will be 0
for databases still using automatic checkpoint. The master database
will also have a TARGET_RECOVERY_TIME of 0 by default. Consider
setting TARGET_RECOVERY_TIME to 60 seconds to match the default for
all databases created in SQL Server 2016 or higher, as shown here:
Click here to view code image

ALTER DATABASE [database_name] SET TARGET_RECOVERY_TIME = 60 
SECONDS;

You can check this setting for each database in the
TARGET_RECOVERY_TIME_IN_SECONDS column of the sys.databases
catalog view.

Note
As of SQL Server 2016, a specific performance degradation
involving nonyielding schedulers or excessive spinlocks can
arise due to the TARGET_RECOVERY_TIME setting being applied to
the tempdb by default. It is not common, however. It is
identifiable and resolvable with analysis and a custom solution
to disable indirect checkpoints on the tempdb, as detailed in
this blog post from the SQL Server Tiger Team at
https://learn.microsoft.com/archive/blogs/sql_server_team/indir
ect-checkpoint-and-tempdb-the-good-the-bad-and-the-non-
yielding-scheduler.

https://learn.microsoft.com/archive/blogs/sql_server_team/indirect-checkpoint-and-tempdb-the-good-the-bad-and-the-non-yielding-scheduler


 For more on the differences between the different checkpoint
types and on the interaction between the database
TARGET_RECOVERY_TIME setting and the server’s recovery
interval setting, see https://learn.microsoft.com/sql/relational-
databases/logs/database-checkpoints-sql-server.

Accelerated database recovery (ADR)
New in SQL Server 2019, accelerated database recovery (ADR)
does not appear in the SSMS Database Properties page as of this
writing, nor is it enabled by default. There are trade-offs to be aware
of that we’ll discuss later, but this is a powerful, much-desired feature
of SQL Server that is available in both Enterprise and Standard
editions.

You can enable ADR with the following T-SQL statement:
Click here to view code image

ALTER DATABASE [database_name] SET 
ACCELERATED_DATABASE_RECOVERY = ON;

Note
ADR is enabled by default in Azure SQL Database and Azure
SQL Managed Instance, and cannot be disabled.

Enabling ADR requires exclusive access to the database and could
be blocked by other connections to the database, which might
require the closure of other connections. You can see the status of
this setting in the catalog view sys.databases, in the new column
is_accelerated_database_recovery_on.

ADR represents a significant overhaul of the SQL Server recovery
process. It is a reworking of the machinery that the Database Engine
uses to recover each database on:

https://learn.microsoft.com/sql/relational-databases/logs/database-checkpoints-sql-server


SQL Server instance startup, especially after an unexpected
shutdown

Rollback of a long-running transaction

Availability group failover

ADR results in much faster recovery times in these scenarios,
including near-instant recovery for many operations. ADR
accomplishes this by way of a new progressive log management
pattern inside the transaction log that eliminates the need for the
transaction log to ever be scanned from the beginning of the oldest
active transaction. Instead, it can be processed at recovery from only
the last successful checkpoint. With ADR, the transaction log is
aggressively truncated, even in the presence of active long-running
transactions, which prevents it from growing out of control.

The trade-offs include an increase in storage requirements for each
user database with ADR enabled. This could require a sudden
increase of 10 percent or more space in the user database file, so
administrators should be aware of this impact.

You should monitor and consider the growth of the persistent version
store (PVS) for ADR. The PVS is a local version store to retain
previous state information for transactions, especially long-running
transactions. The presence of snapshot isolation queries and/or
enabling the RCSI database setting can increase retention of
versions in the PVS.

 Microsoft has provided a variety of troubleshooting scenarios
and monitoring solutions, including using the
sys.dm_tran_persistent_version_store_stats DMV. For
more information, see
https://learn.microsoft.com/sql/relational-
databases/accelerated-database-recovery-troubleshoot.

SQL Server 2022 brings several improvements to ADR and the PVR
cleanup process, including lower memory usage for tracking pages
that require cleanup and the ability to clean locked pages.

https://learn.microsoft.com/sql/relational-databases/accelerated-database-recovery-troubleshoot


Note
Database mirroring, the maintenance mode ancestor to
availability groups, is not supported for databases with ADR
enabled.

Move and remove databases
Earlier in this chapter, we discussed database migrations from older
to newer servers and the considerations involved. This section
reviews the steps and options for moving databases inside a SQL
Server instance and the various methods and stages of removing
databases from use.

Move user and system databases
This section discusses moving the physical location of database
files, the most common reasons for this being either because of
improper initial locations or the addition of new storage volumes to a
server. Relocating system and user databases involves similar
processes, with the master database being an exception. Let’s look
at each scenario.

Locate SQL Server files
As discussed in the checklist earlier in this chapter, you can review
the location of all database files by querying the sys.master_files
catalog view. If you did not specify the intended location for the data
files while you were on the Data Directories page of the Database
Engine Configuration step of SQL Server Setup, you will generally
find your system database files on the OS volume at
%programfiles%\Microsoft SQL Server\instance\MSSQL\Data.

Note



In the sys.master_files catalog view, the physical name of each
file, the logical name (specified when you create/add a file to a
database), and the name of the database may not match in
some situations. It is possible, through restore operations, to
accidentally create multiple databases with the same logical file
names. Before moving database files around, consider setting
the values in sys.master_files as reference, and be sure you
understand the difference between the database names,
logical file names, and physical file locations.

Ideally, there should be no data or log files on the OS volume, even
system database files. You can, however, move these after SQL
Server Setup is complete.

When you’re planning to move your database data or log files on
Windows, prepare their new file path location by granting FULL
CONTROL permissions to the per-SID name for the SQL Server
instance. (This is not necessarily the SQL Server service account.)
For the default instance, this will be NT SERVICE\MSSQLSERVER; for
named instances, it will be NT SERVICE\ MSSQL$instancename.

Moving database data or log files on Linux only requires that the
mssql account has access to the new file path.

Inside OUT
Where does SQL Server keep track of the locations of
database files?

The location of the master database is stored separately from
all others, and can be modified in SQL Server Configuration
Manager.

All other database file locations are stored in the master
database. When the SQL Server process is started, three
pieces of location information are provided to the service:



The location of the master database data file

The location of the master database log file

The location of the SQL Server error log

You can find this information in the startup parameters of the
SQL Server service in the SQL Server Configuration
Manager application.

Move databases within instances
Earlier in this chapter, we discussed reasons for moving user
database files. Let’s review the differences between various ways to
move a database within the same SQL Server instance.

The OFFLINE option is one way to quickly remove a database from
usability:
Click here to view code image

ALTER DATABASE [database_name] SET OFFLINE;

Because this requires exclusive access to the database, you can use
the ROLLBACK IMMEDIATE syntax to end all other user sessions:
Click here to view code image

ALTER DATABASE [database_name] SET OFFLINE WITH ROLLBACK 
IMMEDIATE;

It is also the most easily reversed:
Click here to view code image

ALTER DATABASE [database_name] SET ONLINE;

You should set maintenance activities to ignore databases that are
offline because they cannot be accessed, maintained, or backed up.
While the database is offline, the data and log files remain in place in



their location on the drive and can be moved. The database is still
listed with its files in sys.master_files.

Taking a database offline is an excellent intermediate administrative
step before you DETACH or DROP a database—for example, a
database that is not believed to be used anymore. Should a user
report that they can no longer access the database, the administrator
can simply bring the database back online, which is an immediate
action.

You can separate a database’s files from the SQL Server by using
DETACH. The data and log files remain in place in their location on the
drive and can be moved. But detaching a database removes it from
sys.master_files.

To reattach the database, in SSMS, in Object Explorer, follow the
Attach steps. It is not as immediate an action and requires more
administrative intervention than taking the database offline.

When reattaching the database, you must locate at least the primary
data file for the database. The Attach process will then attempt to
reassociate all the database files to SQL Server control, in their
same locations. If their locations have changed, you must provide a
list of all database files and their new locations.

Note
If you are detaching or restoring a database to attach or copy it
to another server, do not forget to follow up by also moving
logins and then reassociating orphaned database users with
their logins. For more information, review Chapter 12.

Inside OUT
When moving user database files on the same instance,
why should you use offline/online instead of



detach/attach?

There are a few reasons you need to take a user database
offline instead of detaching, moving, and reattaching the files.

While the database is offline, database information remains
queryable in sys.master_files and other system catalog
views. You can still reference the locations of database files
after taking the database offline to ensure that everything is
moved. Also, it is not possible to detach a database when the
database is the source of a database snapshot or part of a
replication publication. Taking a database offline is the only
method possible in these scenarios.

Note that you cannot detach or take system databases offline
to move them. A service restart is necessary to move system
databases, including the master database.

Finally, a DROP DATABASE command, issued when you use the Delete
feature in Object Explorer, removes the database from the SQL
Server and deletes the database files on the drive. An exception to
this behavior is if the destination database is offline. Deleting an
offline database and detaching a database are therefore similar
actions.

Dropping a database does not by default remove its backup and
restore history from the msdb database, though there is a check box
at the bottom of the SSMS Drop Database dialog box that you can
select for this action. The stored procedure
msdb.dbo.sp_delete_database_backuphistory is run to remove this
history.

For databases with a long backup history that has not been
maintained by a log history retention policy, the step to delete this
history can take a long time and could cause SSMS to stop
responding. Instead, delete old backup and restore history
incrementally by using msdb.dbo.sp_delete_backuphistory and/or



run multiple instances of the
msdb.dbo.sp_delete_database_backuphistory stored procedure in
separate SSMS query windows.

 For more information on this and related stored procedures,
visit https://learn.microsoft.com/sql/relational-
databases/system-stored-procedures/sp-delete-database-
backuphistory-transact-sql.

 For more information on backup and restore history, see
Chapter 8.

Move user database files
You can move user databases without a SQL Server instance restart
and without disrupting other databases by taking the database
offline, updating the locations and/or metadata, moving them, and
then bringing the database online again.

Use the following steps to move user database files:

1. Take a manual full backup of the soon-to-be-affected
databases.

2. During a maintenance outage for the database and any
dependent applications, take the user database offline. Then
run a T-SQL script to alter the location of each database file.
Here’s an example of the T-SQL statements required:

Click here to view code image

ALTER DATABASE [database_name] SET OFFLINE WITH ROLLBACK 
IMMEDIATE 
ALTER DATABASE [database_name] MODIFY FILE ( NAME = 
logical_data_file_name, 
FILENAME = 'location\physical_data_file_name.mdf' ); 
ALTER DATABASE [database_name] MODIFY FILE ( NAME = 
logical_log_file_name, 
FILENAME = 'location\physical_log_file_name.ldf' ); 
ALTER DATABASE [database_name] SET ONLINE;

https://learn.microsoft.com/sql/relational-databases/system-stored-procedures/sp-delete-database-backuphistory-transact-sql


3. While the database is offline, physically copy the database files
to their new location. (You will delete the old copies when
you’ve confirmed the new configuration.) When the file
operation is complete, bring the database back online.

4. Verify that the data files have been moved by querying
sys.master_files. The physical_name column should reflect the
new location correctly.

5. Delete the files in the original location to reclaim the space. To
be safe and for rollback reasons, back up the database and the
master database before the deletion.

6. Perform a manual backup of the master database.

Move system database files, except for master
You cannot move system database files while the SQL Server
instance is online; thus, you must stop the SQL Server service.

1. Take a manual full backup of the soon-to-be-affected
databases.

2. For model, msdb, and tempdb, run a T-SQL script (like the
script for moving user databases provided previously). SQL
Server will not use the new locations of the system databases
until the next time the service is restarted. You cannot set the
system databases to offline.

3. During a maintenance outage for the SQL Server instance, stop
the SQL Server instance. Then copy the database files to their
new location. (You will delete the old copies when you’ve
confirmed the new configuration.) The only exception here is
that the tempdb data and log files do not need to be moved—
they will be re-created automatically by SQL Server upon
service start.

4. When the file operation is complete, start the SQL Server
service again.



5. Verify that the data files have been moved by querying
sys.master_files. Look for the physical_name column to reflect
the new location correctly.

6. Delete the files in the original location to reclaim the space.

7. Perform a manual backup of the master database.

If you encounter problems starting SQL Server after moving system
databases to another volume—for example, if the SQL Server
service account starts and then stops—do the following:

1. Verify that the SQL Server service account and SQL Server
Agent service account have permissions to the new file
location.

 Review the list of File System Permissions Granted to SQL
Server service accounts at
https://learn.microsoft.com/sql/database-engine/configure-
windows/configure-windows-service-accounts-and-
permissions#Reviewing_ACLs.

2. Check the Windows Application Event Log and System Event
Log for errors.

3. If you cannot resolve the issue, start SQL Server with Trace
Flag 3608, which does not start the SQL Server fully, only the
master database.

4. If necessary, move all other database files, including the other
system databases, back to their original location by using T-
SQL commands issued through SSMS.

Note
For more information on moving system database files, visit
https://learn.microsoft.com/sql/relational-
databases/databases/move-system-databases.

https://learn.microsoft.com/sql/database-engine/configure-windows/configure-windows-service-accounts-and-permissions#Reviewing_ACLs
https://learn.microsoft.com/sql/relational-databases/databases/move-system-databases


Move master database files
Moving the master database files is not difficult, but it is a more
complicated process than moving the other system databases.
Instead of issuing an ALTER DATABASE … ALTER FILE statement, you
must edit the parameters passed to the SQL Server service in SQL
Server Configuration Manager.

1. Open SQL Server Configuration Manager and select SQL
Server Services on the left.

2. Right-click the SQL Server service and choose Properties.

3. The Startup Parameters page contains three entries with three
files in their current paths. Edit the two parameters beginning
with -d and -l (lowercase L). The -e parameter is the location
of the SQL Server Error Log; you might want to move that, as
well.

4. After editing the master database data file (-d) and the master
database log file (-l) locations, select OK. Keep in mind that
the SQL Server service will not look for the files in their new
location until the service is restarted. (If you have other startup
parameters in this box, do not modify them now.)

5. Stop the SQL Server service. Then copy the master database
data and log files to their new location. (You will delete the old
copies when you’ve confirmed the new configuration.)

6. When the file operation is complete, restart the SQL Server
service.

7. Verify that the data files have been moved by querying
sys.master_files, a dynamic management view that returns all
files for all databases. Look for the physical_name column to
correctly reflect the new location.

8. After you have verified that SQL Server is recognizing the
database files in their new locations, delete the files in the
original location to reclaim the space.



Inside OUT
Anything else you should move if moving the system
databases?

If you plan to move all system databases to a different
volume and get rid of the old file paths, you also will need to
move the SQL Server Agent Error Log, or the SQL Server
Agent will not be able to start. You can do this in SSMS. In
Object Explorer, connect to the SQL Server instance, and
expand the SQL Server Agent folder. Then right-click Error
Logs and select Configure in the shortcut menu. Finally,
provide a new Error Log file location for the SQLAGENT.OUT
file.

Verify that the SQL Server Agent per-SID name for the SQL
Server Agent service has FULL CONTROL permissions to the
new folder. The per-service SID account will be NT
Service\SQLSERVERAGENT for default instances or NT
Service\SQLAgent$instancename for named instances.

When you later restart the SQL Server service and the SQL
Server Agent service, the Agent error log will be written to the
new location.

Single-user mode
By default, all databases are in MULTI_USER mode. Sometimes, it
is necessary to gain exclusive access to a database with a single
connection, typically in SQLCMD or in an SSMS query window.

For example, when performing a restore, the connection must have
exclusive access to the database. By default, the restore will wait
until it gains exclusive access. You could attempt to discontinue all
connections, but there is a much easier way: Setting a database to
SINGLE_USER mode removes all other connections but your own.



Setting a database to SINGLE_USER mode also requires exclusive
access. If other users are connected to the database, running the
following statement will be unsuccessful:
Click here to view code image

ALTER DATABASE [database_name] SET SINGLE_USER;

It is then necessary to provide further syntax to decide how to treat
other connections to the database.

WITH NO_WAIT. The ALTER DATABASE command will fail if it
cannot gain exclusive access to the database. Note that without
this statement or other WITH commands below, the ALTER
DATABASE command will wait indefinitely.

WITH ROLLBACK IMMEDIATE. Roll back all conflicting
requests, killing other SSMS Query window connections, for
example.

WITH ROLLBACK AFTER n SECONDS. Delays the effect of
WITH ROLLBACK IMMEDIATE by n SECONDS. (This is not particularly
more graceful to competing user connections, just delayed.)

For example:
Click here to view code image

ALTER DATABASE [database_name] SET SINGLE_USER WITH ROLLBACK 
IMMEDIATE;

Instead of issuing a WITH ROLLBACK, you might choose to identify
other sessions connected to the destination database—for example,
by using the following:
Click here to view code image

SELECT * FROM sys.dm_exec_sessions 
WHERE db_name(database_id) = 'database_name';



and then evaluate the appropriate strategy for dealing with any
requests coming from that session, including communication with
that user and the closing of unused connections to that database in
dialog boxes, SSMS query windows, or user applications.

After you have completed the activities requiring exclusive access,
set the database back to MULTI_USER mode:
Click here to view code image

ALTER DATABASE [database_name] SET MULTI_USER;

You need to gain exclusive access to databases before a restore or
to take a database offline. This script to change the database to
SINGLE_USER and back to MULTI_USER is a common step wrapped
around a database restore. This is done to avoid users gaining
access while the script is being run and then it is set to MULTI_USER
again after the work is done.

 For more information on database restores, see Chapter 10.



Chapter 7

Understand table features

Review table structures
Special table types
Store large binary objects
Table partitions
Capture modifications to data
Benefits of PolyBase for external data sources and external
tables

A key aspect of relational databases is how data is stored in tables. It
is important to understand both how tables should look to the user
and how they are structured internally.

This chapter covers fundamentals including data types, keys, and
constraints. It also covers special table types, including temporal
tables and graph tables. At times, organizations choose to store
binary large objects (BLOBs) within relational tables. This chapter
covers the implications of storing this type of data within SQL Server,
as well as other important table-related concepts including vertical
and horizontal partitioning and change-tracking methods. Finally, it
covers how PolyBase can help you use connectors to interact with
data sources outside of SQL Server.



A proper relational database design requires considerations beyond
the SQL Server features included in this chapter. Mapping application
requirements, normalization, and organization-specific requirements
are not covered in this book. There are many texts available to teach
you those elements of relational database design, starting perhaps
with the theory writings of relational model innovators C. J. Date and
E. F. Codd.

All scripts for this book are available at
https://www.microsoftpressstore.com/SQLServer2022InsideOut/down
loads.

Review table structures
This section reviews information that is relevant when creating tables.
First, it looks at system data types, emphasizing the data design
decisions surrounding their use. Next, it briefly discusses primary and
foreign key concepts. Then, it covers constraints, their impact on
table design, and how they can help meet data integrity requirements.
The section ends with user-defined data types and computed
columns.

Note
Beyond coverage of primary keys and unique constraints,
indexing is not covered in this chapter, although table design is
not complete without considering it. For guidance on indexing,
read Chapter 14, “Performance tune SQL Server,” and Chapter
15, “Understand and design indexes.”

General-purpose data types
Selecting the appropriate data type when designing relational
databases is crucial. You can change a column’s data type after the
fact, but doing so can be an expensive operation. A poorly chosen
data type can result in suboptimal performance or might allow for

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


unexpected values to be stored in the column. Therefore, proper data
type choice becomes a decision point about performance, data
integrity, and even application security.

The intent of this section is not to provide exhaustive coverage of
each system data type available in SQL Server; rather, it’s to provide
the information and guidance necessary to make solid table design
decisions.

Alphanumeric types
Alphanumeric types (also known as strings) are commonly discussed
in terms of fixed versus variable length, and with Unicode versus
without Unicode support. The char and nchar data types are fixed
length, and varchar and nvarchar are variable length. The difference
is how each is encoded. The nchar and nvarchar data types are
always encoded as 16-bit Unicode, using UTF-16. In contrast, char
and varchar use 8-bit data types that store data in ASCII or, starting
in SQL Server 2019, UTF-8. More information about these new
collations and their purpose is included later in this section.

As a database designer, you must understand that the (n) in a
[var]char(n) column definition indicates the number of bytes
allocated for the column, not the number of characters that can be
stored. The same is true for n[var]char(n) columns, though the size
indicates the number of byte-pairs that can be stored. This is
important because:

[var]char columns can store strings from double-byte character
sets, and can use UTF-8 collations, which may require 2 or 4
bytes to store one character. The following subsection includes
full coverage of UTF-8 collations.

n[var]char columns can store characters in the Unicode
supplementary character range, which may require 4 bytes.

Note



You might be tempted to use an ASCII varchar data type to
save space. However, you may need Unicode support more
often than you think, and it often starts with people’s names.
Additionally, users expect to store emojis and other Unicode
character data in columns. Finally, increasing
internationalization of applications is also best supported by
using Unicode string data types.

Collation
With string data, collation becomes an important consideration. This
is determined using the code page, which is one element of the
collation. Collation also determines how data is compared and sorted,
such as whether casing and accented letters are considered to be
different.

Note
If the full range of Unicode characters must be supported in a
column, the collation should be set to a supplementary
characters collation. These collations’ names end in _SC and
have been available since SQL Server 2012. The most
frequently used characters have Unicode point values between
0x20 and 0xFFFF (point values below 0x20 are control
characters). Thus, without using supplementary characters,
65,515 characters can be represented. Those include accented
letters for most languages, many symbols, characters for Asian
and Cyrillic languages, and many more.

 For more information about Unicode supplementary
characters, see https://learn.microsoft.com/sql/relational-
databases/collations/collation-and-unicode-
support#Supplementary_Characters.

SQL Server 2019 introduced a new family of collations that support
UTF-8. These collations apply only to the char and varchar data

https://learn.microsoft.com/sql/relational-databases/collations/collation-and-unicode-support#Supplementary_Characters


types and store the string data using UTF-8 encoding. They
effectively turn these two data types into Unicode data types,
including support for supplementary characters. When you define a
column or conversion to use a UTF-8 collation, the encoding is
automatically updated.

Among other things, collation determines how the high-order bits in
each character’s byte(s) are interpreted. Collation supports
internationalization by allowing different character representations for
characters whose integer values are greater than 127, up to 255.

Inside OUT
Should you expect space savings when using UTF-8
collations?

Answering this question requires at least a cursory
understanding of how character data is encoded in UTF-8.
The number of bytes required to encode characters varies
from 1 to 4. The characters at the lowest code points (0–127)
require only 1 byte, just like other collations. This is designed
to maintain compatibility with ASCII. These 128 characters are
the most common characters in Latin script, including
uppercase and lowercase letters, digits, and many
punctuation marks. However, code points 128–2,047 already
require 2 bytes in UTF-8, while only requiring 1 byte in the
non-UTF-8 collations. That code point range includes Latin
accented characters, some additional punctuation marks,
such as the inverted exclamation point (¡), and symbols (such
as currency symbols). UTF-8 requires more storage space
than UTF-16 for characters in the code point range 2,048–
65,535. An extra script file in the book’s downloads illustrates
some of these caveats.

Thus, whether you should expect space savings is quite
nuanced and depends on how many characters in the
average varchar column will require more than 1 byte to be



encoded (when compared to varchar using collations other
than UTF-8) or more than 2 bytes (when compared to nchar
or nvarchar). For an internationalized application, this might
be difficult to forecast.

We do not suggest switching collations to UTF-8 for the
purpose of saving storage space. UTF-8 collations are
designed to support internationalization of existing
applications and databases without incurring massive
changes and associated test requirements. For new
application or database development where
internationalization is expected, using UTF-16 encoding (with
the nchar and nvarchar data types) is highly recommended.

 For complete details about collation and Unicode support, visit
https://learn.microsoft.com/sql/relational-
databases/collations/collation-and-unicode-support.

Caution
You define the column width by the number of bytes, never by
the number of characters that can be stored. If you decide that
UTF-8 is the right encoding to use for an existing database, you
need to ensure that the column width in bytes can
accommodate the potentially larger size of the existing column
values once converted to UTF-8. During the collation
conversion, SQL Server will silently truncate any values that do
not fit.
Before converting, you can determine if any strings will require
more bytes than the column width supports using a Transact-
SQL (T-SQL) statement like the one that follows, where val is a
varchar(8) column in a table called CollationTest:
Click here to view code image

-- If COUNT > 0, then there are rows whose data size 
will be larger than the 

https://learn.microsoft.com/sql/relational-databases/collations/collation-and-unicode-support


-- current column width supports 
SELECT COUNT(*) 
FROM dbo.CollationTest 
WHERE DATALENGTH( 
    CAST(CAST(val AS VARCHAR(32)) 
        COLLATE Latin1_General_100_CS_AS_SC_UTF8 AS 
VARCHAR(32))) > 8;

This WHERE clause is used to determine which values will no
longer fit in the width of the column (8 bytes), after altering the
column to use a collation from the UTF-8 family of collations,
where a single character might take up four times as much
space (8 * 4 = 32). Quadrupling the byte count of the source
column is not necessary; any value larger than the source
column width will do.
Two CASTs are required:

The inner CAST converts val from varchar(8) to varchar(32)
to simulate the UTF-8 column width.

The outer CAST converts val at the UTF-8 collation. This
needs to be varchar(32) to analyze the converted UTF-8
records in the column val.

Large value data
No discussion of alphanumeric types would be complete without an
examination of varchar(max) and nvarchar(max). By specifying max
instead of a value between 1 and 8,000 bytes (for varchar) or
between 1 and 4,000 byte-pairs (for nvarchar), the storage limit
increases to 2 GB. If the column’s value exceeds 8,000 bytes, the
data is not stored in the table’s storage structure. Large value data is
stored out of row, though for each such column, 24 bytes of overhead
is stored in the row. Of those 24 bytes, the first 16 bytes are used to
store metadata, and the last 8 bytes contain the pointer to the row in
the row-overflow page.



Note
The details of storing large value data also apply to the
varbinary(max) and xml data types, both of which are
discussed later in this chapter.

SQL Server has a row size limit of 8,060 bytes. Even if you do not
use [n]varchar(max) columns, some data may be stored out of row
or “off-row.” Any data that is stored off-row will incur some overhead
when it is read. The flip side is that when a T-SQL statement does not
reference a column whose data is stored off-row, there is a
performance benefit. If your table’s usage patterns indicate that large
value type columns are not frequently included in statements, you
can optimize performance by storing the data off-row, even if the row
size is less than 8,000 bytes. The following T-SQL statement enables
the large_value_types_out_of_row option for the PurchaseOrders
table in the WideWorldImporters sample database:
Click here to view code image

DECLARE @TableName NVARCHAR(776) = 
N'Purchasing.PurchaseOrders'; 
-- Turn the option on 
EXEC sp_tableoption @TableNamePattern = @TableName 
    , @OptionName = 'large value types out of row' 
    , @OptionValue = 1; 
GO 
-- Verify the option setting 
SELECT [name], large_value_types_out_of_row 
FROM sys.tables 
WHERE object_id = OBJECT_ID(@TableName);

After this is run, the values are not immediately migrated to out of row
storage. This is true for any table, regardless of whether there is data
populated. For example, the preceding table has no values in any of
the varchar(max) columns; only when an existing data row is updated
will the values be stored out of row. You could force such updates to
happen by executing an UPDATE statement that sets the column value
to any value or even itself, although this operation will be quite



expensive on large tables. We don’t recommend this unless you have
determined that the immediate benefit of forcing those values to be
stored off-row exceeds the cost of the update operation.

In the T-SQL CREATE statement (but not in an ALTER statement), you
can opt to store the data for large value type columns in a separate
filegroup. In the CREATE TABLE statement, use the TEXTIMAGE_ON
clause to specify the name of the filegroup where large object (LOB)
data should be stored. If you want to change the TEXTIMAGE_ON
setting, you will need to create a new table and copy the data in the
table.

 If you need to store more than 2 GB in a single column,
consider using the FILESTREAM feature, discussed in the
“Store large binary objects” section later in this chapter.

Numeric types
When considering numeric types in computer systems, it is important
to understand the nature of your data. One of the most important
concepts to understand is the difference between exact and
approximate numeric types.

Approximate numeric types store values using a floating-point
structure. In SQL Server, the number of bits in the mantissa is limited
to 24 or 53, resulting in a respective precision of 7 or 15 digits. Due to
the nature of the structure and the limited number of bits, these types
cannot accurately store all numbers in the supported range. On the
other hand, although exact types store numbers without losing
precision, this comes at a loss of range. For approximate floating-
point types, the range is very large and useful for scientific-like
numbers and operations, where a small loss of precision might not
matter. Math with these values is implemented in hardware, so
performance is far better than anything other than integers. For exact
types, the range is limited, but sufficient for operations requiring
precision, such as those involving monetary values.



SQL Server provides real and float as approximate data types,
although their implementation is closely related. The real data type is
lower precision than the float data type. It is possible to specify the
number of bits for the mantissa when defining float, but SQL Server
will always use either 24 bits or 53 bits; any other value you specify is
rounded up to either 24 or 53. The real data type is the same as
specifying float(24), or in effect any number of mantissa bits
between 1 and 24.

 For more information about floating-point values, see
Randolph West’s blog post on how these values are
implemented, at https://bornsql.ca/blog/how-sql-server-stores-
data-types-floating-points.

Note
The sample scripts for this chapter include an extra file that
illustrates important caveats when converting from approximate
floating-point numbers to exact types.

Exact numeric types include tinyint, smallint, int, and bigint,
which are all whole numbers of varying byte sizes and therefore
range. SQL Server does not support unsigned integers.

Some exact numeric types support decimal-point numbers. Foremost
among these is the decimal data type. In SQL Server, another name
for decimal is numeric. The decimal data type supports a precision of
up to 38 digits, before or after the decimal point. The number of digits
determines the storage size. In addition, you can specify the scale,
which determines the number of digits to the right of the decimal
point.

Other exact numeric types that support decimal point numbers are
money and smallmoney. They have the same range as int and bigint,
but with the decimal point shifted four places to the left. Because of
this, any math calculations will be treated like integers and can be
done in registers in the CPU. This enables them to perform
calculations faster than non-integer numbers. These data types can

https://bornsql.ca/blog/how-sql-server-stores-data-types-floating-points


store monetary data with a precision of up to four digits to the right of
the decimal point—in other words, to the ten-thousandth.

Choosing between decimal and money or smallmoney is primarily
determined by your need for range and precision. For monetary
values, and if your multiplications and divisions will always return the
desired result when using only four significant digits to the right of the
decimal point, smallmoney and money may be good choices because
they are more efficient in terms of storage space. For higher precision
and larger scale, decimal is the right choice. In addition, decimal may
be a better choice if the operations performed on the data create
precision issues due to intermediate steps in math using only four
digits.

Inside OUT
When should you use a numeric data type instead of a
character data type?

You can store any numeric value, such as an amount or an
identifier consisting only of digits, in an alphanumeric column
or in a numeric data type column. Generally, you should
choose a numeric data type if the values will be used in some
type of calculation or when magnitude matters—for example,
to calculate a discount on a monetary value. Another example
for which numeric data types are used is in quantities because
you might need to adjust the quantity by adding or subtracting
additional units. On the other hand, a US ZIP code is best
stored as an alphanumeric value because leading zeros must
be preserved. The same can be true in an employee ID
number or any other values that are not used in mathematical
functions.

In addition to considering whether you need to use the value
in calculations, you also need to consider the differences in
how values are sorted. In a numeric column sorted in
ascending order, the value 12 will come before 100. But in an



alphanumeric column, 100 will come before 12. Either one
can produce the desired answer based on your use case.

Date and time types
Date and time data types available in SQL Server 2022 include the
aged datetime and smalldatetime types. Although these are not
technically deprecated, we strongly caution against using them for
new development due to issues surrounding precision, available date
range, and lack of control over the precision and storage size.
Additionally, these data types are not aligned with the SQL standard,
lowering portability of the data between platforms. Their immediate
replacement is datetime2, which in no case consumes more than 8
bytes of storage space (the same as datetime), but addresses
precision, increases the date range, and can store dates in less than
8 bytes in return for lower precision. As a matter of detail, specifying
datetime2(3) provides the same precision as datetime, but does so
while requiring 1 fewer byte.

Note
All date and time data types discussed here are available in all
currently supported versions of SQL Server. They are by no
means new data types, but, unfortunately, are too frequently left
unused for fear of backward-compatibility problems.

This does not mean, however, that all date and time-of-day values
should be stored in datetime2. There are three additional data types
that you should consider for storing date or time values:

date. If you need to store only a date without time or time zone
information, this is your best choice. The date data type stores
only a date and supports the same date range as datetime2. It
stores the date in only 3 bytes, making it much more efficient
than datetime (fixed at 8 bytes) and datetime2 (minimally 6
bytes). An example of such a case is a date of birth. A date of



birth is commonly stored to calculate someone’s age, which is
not generally treated as dependent on the time zone or on the
time. Assume a person is born at 11 p.m. Central European
Summer Time. If they moved to Southeast Asia, they would not
celebrate their birthday a day later, even though the actual point
in time of their birth was the next day in Southeast Asia. (That
being said, some applications, such as one used in a neonatal
facility, might need to store a more precise “time of birth,” so
make sure you understand the requirements before choosing
your data type.)

datetimeoffset. This data type provides the same precision and
range as datetime2 but includes an offset value in hours and
minutes to indicate the difference from UTC. This data type
neither tracks nor understands actual time zones or daylight
saving time (DST). It would be up to the application to track the
time zone where the value originated to allow the application or
recent versions of SQL Server to perform correct date
arithmetic. (See the following note for more information.)

Note
Before SQL Server 2016, SQL Server had no understanding
of time zones or DST. SQL Server 2016 and Azure SQL
Database introduced the AT TIME ZONE function, which
converts between time zones and applies or reverts a DST
offset. The rules SQL Server applies are based on the
Windows functionality for time zones and DST. These rules
are explained and illustrated with examples at
https://learn.microsoft.com/sql/t-sql/queries/at-time-zone-
transact-sql.
With SQL Server on Linux, AT TIME ZONE returns the same
results as executing the function on a Windows host.

time. This data type stores a time-of-day value consisting of
hours, minutes, seconds, and fractional seconds, with a
precision up to 100 nanoseconds. The exact fractional second
precision and storage size is user defined by specifying a

https://learn.microsoft.com/sql/t-sql/queries/at-time-zone-transact-sql


precision between 0 and 7. The time data type is a good choice
when storing only a time-of-day value that is not time-zone
sensitive, such as for a reminder. A reminder set for 11 a.m.
might need to be activated at 11 a.m. regardless of time zone
and date.

Note
The time data type can store no more than 23 hours, 59
minutes, 59 seconds, and 0.9999999 fractions of a second.
This can make this data type unsuitable for storing elapsed
time if there is a chance that elapsed time will be 24 hours or
more. We typically suggest storing elapsed time in an integer
value that holds the number of time units that have passed,
based on the minimum precision you desire. Any fields that
could exceed 2.1 billion in the lifetime of the application
should use the bigint data type.

Inside OUT
How do you correctly retrieve the current system date
and time?

In addition to continued use of the datetime data type despite
the availability of the better datetime2 type, we also observe
the common use of the lower-precision functions
CURRENT_TIMESTAMP, GETDATE(), and GETUTCDATE(). Although
these functions continue to work, they return values of the
datetime type.

There are replacement functions available in SYSDATETIME(),
SYSDATETIMEOFFSET(), and SYSUTCDATETIME(). Although their
names don’t make it immediately clear, SYSDATETIME() and
SYSUTCDATETIME() return the improved datetime2(7) type.
SYSDATETIMEOFFSET() also returns a value of type
datetimeoffset(7). SYSDATETIME() and SYSUTCDATETIME() are
functionally equivalent to GETDATE() and GETUTCDATE(),



respectively. SYSDATETIMEOFFSET() does not have a functional
equivalent and is thus the only option if you need to include
the time zone offset on the server other than using the AT
TIME ZONE function.

Even if you cannot modify the schema of your database to
change all datetime columns to datetime2 (or
datetimeoffset), you might benefit in the long term from
adopting the improved functions now. Even though the range
of valid dates for datetime is much smaller on the lower end
than for datetime2 and datetimeoffset, the upper end is the
same (December 31, 9999). Discarding the future possibility
of time-travel to before the year 1753, none of the improved
functions will return a datetime2 or datetimeoffset value that
cannot be cast to datetime.

 For detailed technical comparisons between the available date
and time data types, visit https://learn.microsoft.com/sql/t-
sql/functions/date-and-time-data-types-and-functions-transact-
sql.

Binary types
Some data cannot be efficiently represented as an alphanumeric
string. For example, data that has been encrypted by the application
should be stored as a binary value. The same might also apply to
storing contents of binary file formats, such as PDF files.

SQL Server provides the binary data type to store fixed-length binary
values, and varbinary to store variable-length binary values. (The
image data type has been deprecated for almost two decades, and
you should not use it.) For both data types, you specify the number of
bytes that will be stored, up to 8,000. If you need to store more than
8,000 bytes, you can specify varbinary(max). This will allow up to 2
GB to be stored, although if the value exceeds 8,000 bytes, those
bytes are not stored in the data row. As with [n]varchar, varbinary

https://learn.microsoft.com/sql/t-sql/functions/date-and-time-data-types-and-functions-transact-sql


values may be stored out of row if the total row size would exceed
8,000 bytes.

Note
When storing binary values that are on average larger than 1
MB, you should review whether using FILESTREAM is not a
better choice. FILESTREAM is discussed in the “Understand
FILESTREAM” section later in this chapter.

 Refer to the section “Large value data” earlier in this chapter
for details on how varbinary(max) data is stored and access
can be optimized.

Specialized data types
In addition to the data types that are designed to store traditional
numeric, alphanumeric, and date and time values, SQL Server
provides more specialized data types. These data types are more
specific to certain use cases than the general-purpose data types.

Some specialized data types have SQL common language runtime
(CLR) functions that make working with them significantly easier. For
example, the hierarchyid data type has a ToString() function that
converts the stored binary value into a human-readable format.
These SQL CLR function names are case-sensitive, regardless of the
case sensitivity of the instance or database.

Spatial data types: geometry and geography
The spatial data types provide a way to work with flat (planar) or
ellipsoidal (round-earth) coordinates. The geometry data type is for a
flat coordinate system, whereas the geography data type is for round-
earth coordinates. In addition, both data types also support elevation,
or Z, values. Both data types are CLR types that are available in
every database, regardless of whether the SQL CLR feature is
enabled.



SQL Server provides several methods to work with the values of
these data types, including finding intersections, calculating surface
area and distance, and many more. SQL Server supports methods
defined by the Open Geospatial Consortium (OGC) as well as
extended methods designed by Microsoft. The methods defined by
the OGC are identified by their ST prefix.

Generally, you create a geometry or geography value by using the
static STGeomFromText method. You can use this method to define
points, lines, and polygons (closed shapes). The code example that
follows creates two geometric points, one with coordinates (0, 0) and
the second with coordinates (10, 10). Then, it calculates and outputs
the distance between both points:
Click here to view code image

-- Define the variables 
DECLARE @point1 GEOMETRY, @point2 GEOMETRY, @distance FLOAT; 
-- Initialize the geometric points 
SET @point1 = geometry::STGeomFromText('POINT(0  0)', 0); 
SET @point2 = geometry::STGeomFromText('POINT(10 -10)', 0); 
-- Calculate the distance 
SET @distance = @point1.STDistance(@point2); 
SELECT @distance;

The result in the output is approximately 14.14. (See Figure 7-1; note
that no units are defined here.) The second argument in the
STGeomFromText method is the spatial reference ID (SRID), which is
relevant only for the geography data type. Still, it is a required
parameter for the function, and you should specify 0 for geometry
data.



Figure 7-1 The geometry defined in the sample script.

Using spatial data types in a database is valuable when you use the
Database Engine to perform spatial queries. You have probably
experienced the results of spatial queries in many applications—for
example, when searching for nearby pizza restaurants on Bing Maps.
Application code can certainly also perform those spatial queries;
however, it would require the database to return all pizza restaurants
along with their coordinates. By performing the spatial query in the
database, the size of the data returned to the application is
significantly reduced. SQL Server supports indexing spatial data such
that spatial queries can perform optimally.



 For a complete reference on the geometry and geography
data types, the methods they support, and spatial reference
identifiers, visit https://learn.microsoft.com/sql/t-sql/spatial-
geometry/spatial-types-geometry-transact-sql and
https://learn.microsoft.com/sql/t-sql/spatial-geography/spatial-
types-geography.

Note
For an example of the geography data type, refer to the
WideWorldImporters sample database. The
Application.StateProvinces table includes a Border column of
type geography. To visually see the geography data type at work,
run a SELECT statement on all rows in the table using SQL
Server Management Studio (SSMS). In addition to the row
results, SSMS will display a Spatial results tab on which a map
of the globe will be drawn.

The XML data type
The xml data type is designed to store XML documents or snippets.
But support for XML goes beyond just storing XML data. The XML data
type can enforce an XML schema, in which case the column is
referred to as typed. XML data can also be queried using XQuery
syntax. SQL Server further supports XML by formatting relational
data output as XML or retrieving XML data in a relational structure.

A relational database is generally used to store highly structured
data, by which we mean data that has a known schema. And even
though schemas can change, at any given time every row in a table
will have the same columns. Yet, for some scenarios, this strict
schema is not appropriate. It might be necessary to accommodate
storing data where different rows have different attributes.
Sometimes, you can meet this requirement by adding additional
nullable sparse columns.

https://learn.microsoft.com/sql/t-sql/spatial-geometry/spatial-types-geometry-transact-sql
https://learn.microsoft.com/sql/t-sql/spatial-geography/spatial-types-geography


A column set is a feature by which you can manage a group of
sparse columns as XML data. Column sets come with significant
limitations. Defining many sparse columns becomes onerous
because a substantial number of columns can introduce challenges in
working with the table. There, just storing the data as plain XML in an
xml data type can alleviate the column sprawl. Additionally, if data is
frequently used in XML format, it might be more efficient to store the
data in that format in the database.

 You can read more about sparse columns in the “Sparse
columns” section later in this chapter. For detailed guidance
on the use of column sets, see
https://learn.microsoft.com/sql/relational-
databases/tables/use-column-sets.

Although XML data could be stored in (n)varchar columns, using the
specialized data type allows SQL Server to provide functionality for
validating, querying, indexing, and modifying the XML data.

Note
SQL Server 2022 introduces XML compression, which can
dramatically reduce the amount of storage required for XML
data and XML indexes.

 Refer to the section “Large value data” earlier in this chapter
for details on how xml data is stored and access can be
optimized.

Inside OUT
How can you work with JSON in SQL Server just like
XML?

SQL Server 2016 introduced support for JSON, though it is
not a distinct data type like XML. JSON support includes

https://learn.microsoft.com/sql/relational-databases/tables/use-column-sets


parsing, querying, modifying, and transforming JSON stored
in varchar columns using functions. The brief sample that
follows illustrates how to check if a value is valid JSON, using
the ISJSON() function, and extracting a scalar value, using the
JSON_VALUE() function.

Click here to view code image

DECLARE @SomeJSON nvarchar(50) = '{ "test": "passed" 
}'; 
SELECT ISJSON(@SomeJSON) IsValid, JSON_VALUE(@SomeJSON, 
'$.test') [Status];

The output from this code has two columns. The first column
has the value 1 because the variable holds valid JSON data,
and the second contains the value passed.

For an additional example, examine the columns
CustomFields and OtherLanguages in the Application.People
table in the WideWorldImporters sample database.
OtherLanguages is a computed column, which extracts some
JSON data from the CustomFields column using the
JSON_QUERY() function.

 For complete information on handling JSON-formatted data in
SQL Server and Azure SQL Database, refer to
https://learn.microsoft.com/sql/relational-databases/json/json-
data-sql-server.

The rowversion data type
This data type generates a database-wide unique binary value upon
each modification of row data. This binary value increments with each
INSERT or UPDATE statement that affects the row, even if no other row
data is modified. A common function of this data type is as a row
change indicator for use with applications that use optimistic
concurrency or as a database-wide change indicator.

https://learn.microsoft.com/sql/relational-databases/json/json-data-sql-server


Note
The rowversion data type was previously known as timestamp.
rowversion is the recommended name to use; timestamp is
deprecated. Unfortunately, SSMS does not support the use of
rowversion in the table designer or when scripting a table; it
continues to use timestamp.

The name timestamp is the same as the SQL ISO standard
timestamp, but it does not work according to the ISO standard.
Contrary to what the timestamp name might imply, the data in a
rowversion column does not map to a moment in time.

When designing tables with rowversion, keep the following
restrictions in mind:

A table can have only a single rowversion column. Considering
the context of rowversion, this restriction is perfectly sensible,
and we’ve included it here only for completeness.

You cannot specify a value for the rowversion column in INSERT
or UPDATE statements. However, unlike with identity or computed
columns, you must specify a column list in INSERT statements for
tables with a rowversion column. Note that specifying the
column list is recommended anyway.

Although the Database Engine will not generate duplicate
rowversion values within a database, rowversion values are not
unique across databases or instances.

Duplicate rowversion values can exist in a single database if a new
table is created by using the SELECT INTO syntax. The new table’s
rowversion values will be the same as those of the source table. This
behavior might be desired when, for example, modifying a table’s
schema by creating a new table and copying all the data into it. In
other instances, this behavior might not be desired. In those cases,
you should not include the rowversion column in the SELECT INTO
statement. You should then alter the new table to add a rowversion



column. This behavior and workaround are illustrated in an extra
sample script file in the accompanying downloads for this book.

Implement optimistic concurrency
Including a rowversion column in a table is an excellent way to
implement a row change indicator to achieve optimistic concurrency.
With optimistic concurrency, a client reads data with the intent of
updating it. Unlike with pessimistic concurrency, however, a lock is
not maintained. Instead, in the same transaction as the UPDATE
statement, the client will verify that the rowversion was not changed
by another process. If it wasn’t, the update proceeds. But if the
rowversion no longer matches what the client originally read, the
update will fail. The client application can then retrieve the current
values and present the user with a notification and suitable options,
depending on the application needs. Many object-relational mappers
(ORMs), including Entity Framework, support using a rowversion
column type to implement optimistic concurrency.

Inside OUT
Can you implement optimistic concurrency without
rowversion?

There are other ways to implement optimistic concurrency. A
client application can track the value of each individual column
in the updated row, then verify that only the columns affected
by its own UPDATE statement have not been modified.
Specifically, client A reads a row of data and intends to
change only the Name column. Client B reads the same row
of data and updates the Address column. When client A
attempts to update the Name, it finds that the Name column’s
value is unchanged and will proceed with the update.

This approach is suitable in some scenarios, but it has some
drawbacks. First, each client needs to maintain additional



state information—namely, the original value of each column.
In a web application, the amount of state information to
maintain can grow very large and consume a lot of memory. In
a web farm scenario, maintaining such state information might
require shared state configuration because the web client
might not communicate with the same web server on the POST
that it did on the GET.

Perhaps more importantly, the data row can be inconsistent
after the second update. If each client updates a column in the
same row, the row’s data might not reflect a valid business
scenario. Certainly, the row’s values would not reflect what
each client believes it would be.

Alternatively, you can use read committed snapshot isolation
(RCSI) to enable optimistic concurrency at the database level,
which is discussed in more detail in Chapter 6, “Provision and
configure SQL Server databases.”

The uniqueidentifier data type
The uniqueidentifier data type stores a 16-byte value known as a
globally unique identifier (GUID). SQL Server can generate GUIDs
using one of two functions: NEWID() and NEWSEQUENTIALID().
NEWSEQUENTIALID() generates a GUID that is greater than a
previously generated GUID by this function since the last restart of
the server. You can use NEWSEQUENTIALID() only in a default
constraint for a column; it is more suitable for use as a clustered
primary key than NEWID(). Unlike NEWID(), which generates random
values, the increasing nature of the GUIDs generated by
NEWSEQUENTIALID() means that data and index pages will fill
completely.

Note



Although GUIDs generated using NEWID() were originally
generated by incorporating a system’s network interface card
(NIC) MAC address, this has not been the case for many years,
because it might have been possible to identify the system on
which it was created. All GUIDs in SQL Server use a
pseudorandom value, according to the UUID version 4
standard. The chance of collision is extremely low.
However, the NEWSEQUENTIALID() function is dependent on the
MAC address of the machine’s network interface. This means
that the starting point of the sequence generated by
NEWSEQUENTIALID() could change when the machine’s network
interface changes. A NIC change can occur with regularity on
virtualized and PaaS platforms. With NEWSEQUENTIALID(), you
will eventually experience fragmentation because the sequential
GUIDs will have a smaller value than the previous sequence
after a restart.

 The uniqueidentifier data type plays an important role in
some replication techniques. For more information, see
Chapter 11, “Implement high availability and disaster
recovery.”

The hierarchyid data type
The hierarchyid data type enables an application to store and query
hierarchical data in a tree structure. A tree structure means that a row
will have zero or one parent and zero or more children. There is a
single root element denoted by a single forward slash (/).
hierarchyid values are stored as a binary format but are commonly
represented in their string format. Each element at the same level in
the hierarchy (referred to as a sibling) has a unique numeric value
(which might include a decimal point). In the string representation of a
hierarchyid value, each level is separated by a forward slash. The
string representation always begins with a slash (to denote the root
element) and ends with a slash.



For example, as illustrated in Figure 7-2, a hierarchyid whose string
representation is /1/10/ is a descendant of the /1/ element, which
itself is a descendant of the implicit root element /. It must be noted,
however, that SQL Server does not enforce the existence of a row
with the ancestor element. This means it is possible to create an
element /3/1/ without its ancestor /3/ being a value in a row. Implicitly,
it is a child of /3/, even if no row with hierarchyid value /3/ exists.
Similarly, the row with hierarchyid element /1/ can be deleted if
another row has hierarchyid value /1/10/. If you don’t want this, the
application or database will need to include logic to enforce the
existence of an ancestor when inserting and to prevent the deletion of
an ancestor.

Figure 7-2 hierarchyid values. The value /3/ is in gray to indicate
it is implicit.

Perhaps surprisingly, SQL Server does not enforce uniqueness of the
hierarchyid values unless you define a unique index or constraint on
the hierarchyid column. It is, therefore, possible for the /3/1/ element
to be defined twice. This is likely not the desired situation, so we
recommend that you ensure uniqueness of the hierarchyid values.



Using the hierarchyid data type is appropriate if the tree is most
commonly queried to find descendants, such as children, children-of-
children, and more. This is because hierarchyid processes rows
depth-first if it is indexed. You can create a breadth-first index by
adding a computed column to the table (which uses the .GetLevel()
method on the hierarchyid column) and then creating an index on
the computed column followed by the hierarchyid column. You
cannot, however, use a computed column in a clustered index, so this
solution will still be less efficient compared to creating a clustered
index on the hierarchyid value alone.

A hierarchyid method worth mentioning is .GetAncestor(). This
method returns the hierarchyid value of the current node’s parent.
Conversely, .IsDescendantOf() determines whether a node is a
descendant, direct or otherwise, of the hierarchyid provided as the
function’s parameter.

 For a complete overview of the hierarchyid data type, refer to
https://learn.microsoft.com/sql/relational-
databases/hierarchical-data-sql-server.

The sql_variant data type
The sql_variant data type enables a single column to store data of
diverse types. You can also use this type as a parameter or a
variable. In addition to storing the actual value, each sql_variant
instance also stores metadata about the value, including its system
data type, maximum size, scale and precision, and collation. Using
sql_variant can be indicative of a poor database design, and you
should use it judiciously. Client libraries that do not know how to
handle that data might convert it to nvarchar(4000), with potential
consequences for data that doesn’t convert well to character data.

In queries, you can retrieve the base type of the stored value and the
base types’ properties using the SQL_VARIANT_PROPERTY() function.
For example, using SQL_VARIANT_PROPERTY(<columnname>,
'BaseType'), you can retrieve the sysname of the underlying type.
Other values that can be provided as the property parameter value of

https://learn.microsoft.com/sql/relational-databases/hierarchical-data-sql-server


the function are Precision, Scale, TotalBytes, Collation, and
MaxLength. If a particular property doesn’t apply to the underlying data
type, the way precision doesn’t apply to varchar, the function returns
NULL.

Data type precedence
When using a T-SQL operator that combines values that might be of
different data types, how does the Database Engine handle the
difference? The answer is that the data type with the lower
precedence is converted to the data type with the higher precedence,
assuming the conversion is possible. If it’s not, then an error is
returned.

In the following code sample, the string variable @TheirString (a
varchar) is first converted to datetime2 because datetime2 takes
precedence over varchar. Then the comparison is executed.
Click here to view code image

DECLARE @MyDate datetime2(0) = '2022-12-22T20:05:00'; 
DECLARE @TheirString varchar(10) = '2022-12-20'; 
SELECT DATEDIFF(MINUTE, @TheirString, @MyDate);

 For a complete list of data types in precedence order, visit
https://learn.microsoft.com/sql/t-sql/data-types/data-type-
precedence-transact-sql.

Constraints
Constraints define rules to which your data must adhere, and those
rules are enforced by the Database Engine. This makes constraints a
very powerful mechanism for guaranteeing data integrity. This section
provides details on primary and foreign keys, which are used to
establish relationships, and unique, check, and default constraints.

Primary keys, foreign keys, and relationships

https://learn.microsoft.com/sql/t-sql/data-types/data-type-precedence-transact-sql


Proper relational database design calls for a process called
normalization. Through normalization, logical entities are broken into
multiple related tables. Primary keys are created for entities, and
foreign keys establish relationships between entities. A detailed
discussion of normalization is beyond the scope of this book.

Without intending to wax poetic, keys are the nervous system of a
relational database. They establish the relationships between the
multiple tables created through normalization. A relational database
system uses both primary keys and foreign keys. In a single table, the
primary key values must be unique because those values can be
used as foreign key values in the related table. The foreign key
values can also be unique in the related table, in which case the
established relationship is a one-to-one relationship. This is
discussed in the “Vertical partitions” section later in the chapter.

Note
This chapter does not include coverage of indexes, even though
a primary key and a unique constraint are always associated
with an index. Frequently, foreign key columns are also indexed,
as their values are often used to query the table. For
information on indexing, see Chapter 15.

A table can have exactly one primary key. This primary key can
consist of multiple columns, in which case it’s referred to as a
compound primary key. A simple primary key only has one column. In
no case can a nullable column be (part of) the primary key. If
additional columns’ values should be unique, you can apply a unique
index or constraint. (See the next sections for coverage on additional
constraint types.)

Note
In most cases, SQL Server does not require that tables have a
primary key. Some features, such as FILESTREAM and certain
types of replication, might require tables to have a primary key.



In general, though, you should default to designing tables with
primary keys unless there is an overriding reason not to.

Foreign keys are intended to establish referential integrity. Referential
integrity allows values found in the foreign key column(s) to exist in
either the primary key, unique constraint, or unique index column(s).
By default, foreign keys in SQL Server have referential integrity
enforced. It is possible to establish a foreign key without referential
integrity enforced, or to alter the foreign key to turn referential
integrity off and on. This functionality is useful during import
operations or certain types of database maintenance.

This applies to check constraints, too, which are discussed later in
this section. The same is also true for primary keys if they are not
enabled. However, during normal operations, foreign keys should
have referential integrity enabled to protect the integrity of your data.
Otherwise, establishing the relationship is useful only for
documentary purposes, which can be helpful, but less so than
knowing the foreign key references are always correct.

Note
If a foreign key is a composite key in which one or more
columns allow NULL, a row with a NULL value in just one of the
foreign key columns will pass the integrity check, even if the
other columns contain values that do not exist in the parent
table. This is because foreign key constraints fail only on a
false result, not NULL or true.
To provide referential integrity, we recommend prohibiting NULL
values in some columns of a composite foreign key and
allowing them in others. It’s certainly acceptable to have NULL
values in all columns of the composite foreign keys; this
indicates that the relationship is optional. In that case, create a
check constraint (covered later in this section) to ensure either
all foreign key columns are NULL or none are.



One table can have multiple foreign keys.

When defining a foreign key, you can specify how to handle an
operation in the parent row that would invalidate the relationship.
Cascading specifically means that the same operation will be run on
the child row(s) as was run on the parent. Thus, if the primary key
value is updated, the foreign key values will be updated, and if the
parent row is deleted, the foreign key values will be deleted.
Alternatively, on updates or deletes in the parent table, no action can
be taken (the default, which would cause the update or delete
statement to fail if referential integrity is enforced), the foreign key
value can be set to NULL (effectively creating an orphaned row), or the
foreign key value can be set to its default constraint’s specification
(effectively mapping the child row to another parent).

Unique constraints
A unique constraint enforces unique values in one column or selected
columns. Unlike a primary key, the unique constraint allows the
column(s) to be nullable, though NULL values in a constraint are
treated as one value in SQL Server, not an unknown value. This
means it is possible to have many rows with a NULL value if you are
using a compound key. Otherwise, there will only be one NULL value.

 Refer to Chapter 15 for guidance on unique filtered indexes,
which can be used to work around this limitation.

Like primary and foreign keys, referential integrity is enabled by
default for unique constraints. It is possible to disable the unique
index, which will also disable the unique constraint.

SQL Server 2022 enables you to allow resumable add table
constraints. The following sample adds a unique constraint to the
column CountryName in the Application.Countries table in the
WideWorldImporters sample database with a resumable add table
constraint.
Click here to view code image



ALTER TABLE [Application].Countries WITH CHECK 
    ADD CONSTRAINT UC_CountryName_Resume UNIQUE (CountryName) 
    WITH (ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 60);

When creating any type of unique constraint or index, the name must
be distinct. The following could also be added to the table as well
(which would create the exact same duplicate physical structure,
which is not of any value):
Click here to view code image

ALTER TABLE [Application].Countries WITH CHECK 
    ADD CONSTRAINT UC_CountryName_Resume2 UNIQUE 
(CountryName) 
    WITH (ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 60);

Check constraints
A check constraint enforces rules that can be expressed by using a
Boolean expression. For example, in the Sales.Invoices table in the
sample WideWorldImporters database, there is a check constraint
defined that requires the ReturnedDeliveryData column to either be
NULL or contain valid JSON, as shown below.
Click here to view code image

ALTER TABLE Sales.Invoices WITH CHECK 
     ADD CONSTRAINT 
CK_Sales_Invoices_ReturnedDeliveryData_Must_Be_Valid_JSON 
     CHECK ((ISJSON(ReturnedDeliveryData)<>(0)));

Check constraints can reference more than one column. A frequently
encountered requirement is that when one column contains a specific
value, another column cannot be NULL.

Using constraints with compound conditions also provides an
opportunity to provide check constraints in the face of changing
requirements. If a new business rule requires that a nullable column
must now contain a value, but no suitable default can be provided for
the existing rows, you should consider creating a check constraint



that verifies whether an incrementing ID column or date column is
larger than the value it held when the rule took effect. For example,
consider the table Sales.Invoices in the previous sample, which has
a nullable column Comments. If effective September 1, 2022, every
new and modified invoice must have a value in the Comments column,
the table could be altered using the following script:
Click here to view code image

ALTER TABLE Sales.Invoices WITH CHECK 
   ADD CONSTRAINT CH_Comments CHECK (LastEditedWhen < '2022-
09-01' 
   OR Comments IS NOT NULL);

A problem that you cannot solve by using a constraint is when a
column must contain unique values if a value is provided. In other
words, the column should allow multiple rows with NULL, but otherwise
should be unique. The solution then is to use a filtered unique index.

 Read about filtered unique indexes in Chapter 15.

Default constraints
The fourth and final constraint type is the default constraint. A default
constraint specifies the value that will be used as the default value
when an INSERT statement does not specify a value for the column.

Default constraints are useful in a number of scenarios, most notably
when adding a new non-nullable column to a table with existing data.
This scenario is demonstrated in the following code sample, which
adds a PrimaryLanguage column to the Application.People table in
WideWorldImporters.
Click here to view code image

ALTER TABLE [Application].People 
    ADD PrimaryLanguage nvarchar(50) NOT NULL 
        CONSTRAINT DF_Application_People_PrimaryLanguage 
DEFAULT 'English';



Sequence objects
A sequence is a database object that generates numeric values in a
specified order. Unlike the new SQL Server 2022 function
GENERATE_SERIES() (which returns a table of numeric values),
sequences are used when you want to retrieve the next available
value.

How the sequence is generated depends on its start value, increment
value, and minimum and maximum values. A sequence can be
ascending, which is the case when the increment value is positive.
When the increment value is negative, the values provided by the
sequence are descending. A sequence object has some similarities
to a column with an identity specification, but there are important
distinctions:

You can define a sequence to cycle, meaning when the
numbers in the sequence are exhausted, the next use will return
a previously generated number. Which number will be returned
when the sequence cycles is determined by the increment. If it is
an ascending sequence, the minimum value is returned; if it is a
descending sequence, the maximum value is returned.

A sequence is not bound to just one table. You can use numbers
generated by the sequence in any table in the database or
outside of a table.

Sequence numbers can be generated without inserting a new
row in a table.

Values generated from a sequence can be updated or
overridden without extra work.

Sequences are used when the application wants to have a numeric
sequence generated one at a time—for example, before inserting one
or more rows. Consider the common case of a parent-child
relationship. Even though most developer tools expect to work with
identity columns, knowing the value of a new parent row’s primary
key value and using it as the foreign key value in the child rows can



have benefits for the application—for example, making the value
modifiable—because the identity column values cannot be updated.

A sequence is especially useful when a single incrementing range is
desired across multiple tables. More creative uses for a sequence
include using it with a small range—say, 5—to automatically place
new rows in one of five buckets.

To create a sequence, use the CREATE SEQUENCE command. When
creating the sequence, you specify a data type that can hold an
integer value; the start, increment, minimum, and maximum values;
and whether the numbers should cycle when the minimum or
maximum value is reached. However, all these are optional. If no data
type is specified, the type will be bigint.

Ideally, you should match the data type of the sequence to the data
type of the column that will be holding the value. If no increment is
specified, it will be 1. If no minimum or maximum value is specified,
the minimum and maximum value of the underlying data type will be
used. By default, a sequence does not cycle.

The sample script that follows creates a sequence called MySequence
of type int. The values start at 1001 and increment by 1 until 1003 is
reached, after which 1001 will be generated again. The script
demonstrates the cycling of the values using a WHILE loop.
Click here to view code image

-- Define the sequence 
CREATE SEQUENCE dbo.MySequence AS int 
    START WITH 1001 
    INCREMENT BY 1 
    MINVALUE 1001 
    MAXVALUE 1003 
    CYCLE; 
-- Declare a loop counter 
DECLARE @i int = 1; 
-- Execute 4 times 
WHILE (@i <= 4) 
BEGIN 
    -- Retrieve the next value from the sequence 



    SELECT NEXT VALUE FOR dbo.MySequence AS NextValue; 
    -- Increment the loop counter 
    SET @i = @i + 1; 
END;

The output of the script will be 1001, 1002, 1003, and 1001. The
sequence is used by calling NEXT VALUE FOR. You can use NEXT VALUE
FOR as a default constraint or as a function parameter unless it’s a
table-valued function. There are quite a few more places where NEXT
VALUE FOR cannot be used, including subqueries, views, user-defined
functions, and conditional expressions.

 For a full listing of limitations, visit
https://learn.microsoft.com/sql/t-sql/functions/next-value-for-
transact-sql#limitations-and-restrictions.

Note
Sequences are cached by default. When using caching, the
current value is saved in memory; this might cause values to be
skipped from the sequence on a server restart. You can turn off
caching by specifying the NO CACHE clause in the CREATE or
ALTER SEQUENCE statement. Doing this will allow the sequence
values to be persisted at the cost of additional calls to disk. You
can control the size of the cache by using the CACHE clause and
specifying an integer constant.

Inside OUT
Considerations with NEXT VALUE FOR

Using NEXT VALUE FOR multiple times for the same sequence
in the same statement will result in only one value per row
being used. For example, in the following T-SQL snippet, the
first and the second column of the new row will have the same
value:

https://learn.microsoft.com/sql/t-sql/functions/next-value-for-transact-sql#limitations-and-restrictions


Click here to view code image

INSERT INTO dbo.SomeTable VALUES (NEXT VALUE FOR 
dbo.MySequence, 
    NEXT VALUE FOR dbo.MySequence, 'More data...');

This might not be the desired scenario. One solution is to use
two separate sequences, although there is no guarantee they
will return different numbers, even if their start values are
different. Another solution is to define the sequence object’s
increment as 2 and, for one of the columns, add 1 to the
sequence value, as in the following snippet:

Click here to view code image

INSERT INTO dbo.SomeTable VALUES (NEXT VALUE FOR 
dbo.MySequence, 
    NEXT VALUE FOR dbo.MySequence + 1, 'More data...');

If you must guarantee that the values are different, you should
place a CHECK CONSTRAINT on the table. However, we
recommend evaluating the need for having two columns in the
same table with autogenerated numeric values.

NEXT VALUE FOR generates and returns a single value at a time. If
multiple values should be generated at once, the application can use
the sp_sequence_get_range stored procedure. This procedure
allocates as many numbers from the sequence as specified and
returns metadata about the generated numbers. The actual values
that are generated are not returned. The sample script that follows
uses the MySequence sequence to generate five numbers. The
metadata is captured in variables and later output. Note that the data
type of most output parameters is sql_variant. The underlying type
of those parameters is the data type of the sequence.
Click here to view code image

-- Declare variables to hold the metadata 
DECLARE @FirstVal sql_variant, @LastVal sql_variant, 



    @Increment sql_variant, @CycleCount int, 
    @MinVal sql_variant, @MaxVal sql_variant; 
-- Generate 5 numbers and capture all metadata 
EXEC sp_sequence_get_range dbo.MySequence 
    , @range_size = 5 
    , @range_first_value = @FirstVal OUTPUT 
    , @range_last_value = @LastVal OUTPUT 
    , @range_cycle_count = @CycleCount OUTPUT 
    , @sequence_increment = @Increment OUTPUT 
    , @sequence_min_value = @MinVal OUTPUT 
    , @sequence_max_value = @MaxVal OUTPUT; 
-- Output the values of the output parameters 
SELECT @FirstVal AS FirstVal, @LastVal AS LastVal 
    , @CycleCount AS CycleCount, @Increment AS Increment 
    , @MinVal AS MinVal, @MaxVal AS MaxVal;

The output of this sample script will vary with each run. Because of
the specific way in which the MySequence object was defined,
however, every three cycles, the output will repeat.

Note
Although the only required output parameter is
@range_first_value, if the application intends to use any value
but the first, the application should consume all the metadata
that is returned as part of the optional output parameters.
Without it, the application might infer the incorrect value. By
fetching the values, you know you have the value you expect. It
is up to the application to calculate the actual numbers
generated by using the first value, last value, increment,
minimum and maximum value, and cycle count output
parameters.

Caution
You might receive error 11732 when using sequences. This
error indicates that the limit of the sequence has been reached
and the sequence does not cycle. If this error occurs when



using the sp_sequence_get_range stored procedure, no values
are returned; that is, the sequence is not affected at all.

User-defined data types and user-defined types
SQL Server supports defining new data types. Two variations exist:

User-defined data types (UDTs). These alias existing data
types.

User-defined types. These are .NET Framework types.

An effective and common use for UDT is creating table types. As the
name implies, a table type defines a table structure as a type that can
then be used as a function or stored procedure parameter. Such a
parameter enables the easy passing of multiple values or rows to the
function or procedure.

We should warn against the liberal use of either variant of custom
data types. They can make a database schema significantly more
difficult to understand and troubleshoot. Alias types add little value
because they do not create new behavior, but on the other hand,
some architects find the “self-documenting” aspect attractive. SQL
CLR user-defined types enable SQL Server to expose new behavior,
but they might come with a significant security risk if they are used
improperly.

 More details about the security of CLR user-defined types can
be found at https://learn.microsoft.com/sql/relational-
databases/clr-integration/common-language-runtime-
integration-overview.

User-defined data types
Alias data types are merely a new name for an existing system data
type including the same length and precision as the original data

https://learn.microsoft.com/sql/relational-databases/clr-integration/common-language-runtime-integration-overview


type, optionally a default nullability specification. Specifying a default
value or a validation rule for the alias is deprecated functionality.

For example, if you want to ensure that a customer name was always
defined as an nvarchar column with a maximum length of 100
characters, you might use the CREATE TYPE statement as shown here:
Click here to view code image

CREATE TYPE CustomerNameType FROM nvarchar(100); 
GO

After creating this UDT, in any place where you would ordinarily
specify nvarchar(100), you can use CustomerNameType instead. This
can be in a table’s column definition, as the return type of a scalar
function, or as a parameter to a stored procedure.

The following abbreviated CREATE TABLE statement, which is based on
the WideWorldImporters sample Customers table, illustrates how
CustomerNameType replaces nvarchar(100):
Click here to view code image

CREATE TABLE Sales.Customers ( 
    CustomerID INT NOT NULL, 
    CustomerName CustomerNameType, -- can override 
nullability of the type here 
…

UDTs can adversely affect data quality, as there are no additional
methods of providing data protection.

CLR user-defined types
You develop user-defined types in a .NET language such as C#, and
you must compile them into a .NET assembly. This .NET assembly is
then registered in the database where the type will be used. A
database can use these types only if SQL CLR is enabled.

Use caution when enabling CLR and granting permissions to
assemblies, especially for trustworthy databases. Depending on the



permissions granted, an assembly may be able to acquire sysadmin
privileges, gain access to system resources, access user data, or any
combination of the above.

Sparse columns
Sparse columns store NULL values in an optimized manner, reducing
space requirements for storing NULL values at the expense of
overhead to retrieve non-NULL values. As discussed in the earlier
section “The XML data type,” a potential workaround for saving
storage space for tables with many columns that allow NULL and have
many NULL values is using sparse columns. Tables with sparse
columns can have up to 30,000 columns. Sparse columns exist at the
storage layer and are not counted as part of the maximum number of
columns a table can have. Microsoft suggests that a space savings of
at least 20 percent should be achieved before the overhead is worth
it.

 The Microsoft Docs at
https://learn.microsoft.com/sql/relational-
databases/tables/use-sparse-columns define the space
savings by data type when using sparse columns.

Note
Not all data types can be defined as sparse columns.
Specifically, you cannot define geography and geometry, image,
text and ntext, rowversion, and UDTs as sparse columns.

Sparse columns are defined in CREATE or ALTER TABLE statements by
using the SPARSE keyword. The sample script that follows creates a
table, OrderDetails, with two sparse columns, ReturnedDate and
ReturnedReason. Sparse columns are useful here because we might
expect most products to not be returned and for the ReturnedDate
and ReturnedReason columns to be retrieved only occasionally.
Click here to view code image

https://learn.microsoft.com/sql/relational-databases/tables/use-sparse-columns


CREATE TABLE dbo.OrderDetails ( 
    OrderId int NOT NULL, 
    OrderDetailId int NOT NULL, 
    ProductId int NOT NULL, 
    Quantity int NOT NULL, 
    ReturnedDate date SPARSE NULL, 
    ReturnedReason varchar(50) SPARSE NULL);

Note
For brevity, the CREATE TABLE script in the preceding example
does not define primary keys, foreign keys, or columns that you
might typically expect in an order details table.

Computed columns
Typically, columns store persisted data. Derived data—that is, data
that is the result of a calculation—is not ordinarily stored. Instead, the
application derives it every time it’s needed. In some circumstances,
storing derived data in the database can be beneficial. SQL Server
supports storing derived data using computed columns and indexed
views.

Computed columns are defined in a table as the result of an
expression of other columns in the table, function calls, and perhaps
constants. Computed column values can either be calculated when
accessed (the default) or persisted, depending on the need.

Using computed columns is always a trade-off. You use a computed
column when you determine that there is some benefit to the
Database Engine being aware of the derived data. You might find this
beneficial because the database could be the central source of the
computation instead of having to spread it out across multiple
systems. Another trade-off is found when you persist computed
columns; you trade storage space for compute efficiency.

If the expression that calculates the computed column’s value is
deterministic, that column can be persisted and indexed. An



expression is deterministic if the expression will always return the
same result for the same inputs. An example of a deterministic
expression is OrderQuantity + 1. Given the same value for
OrderQuantity, the result will always be the same. An example of a
nondeterministic expression is one that uses the SYSDATETIME()
function; the expression returns a different result each time it is
executed.

 For a complete discussion of indexing computed columns, visit
https://learn.microsoft.com/sql/relational-
databases/indexes/indexes-on-computed-columns.

The WideWorldImporters sample database contains two computed
columns in the Sales.Invoices table. One of these is
ConfirmedDeliveryTime. It is derived by examining the contents of the
JSON value stored in the ReturnedDeliveryData column and
converting it to a datetime2 value. The datetime2 value is not
persisted in this case. This means each time ConfirmedDeliveryTime
is queried, the expression is evaluated. If the column was persisted,
the expression would be evaluated only when the row is created or
updated.

When defining a computed column, instead of specifying a data type,
you specify the AS clause followed by an expression. Using the
Sales.OrderLines table in the same sample database, you can
create a computed column to calculate the order line’s extended
price. The following sample SQL statement illustrates how:
Click here to view code image

ALTER TABLE Sales.OrderLines 
    ADD ExtendedPrice AS (Quantity * UnitPrice) PERSISTED;

This statement creates a new column in the table called
ExtendedPrice. Its value is computed using the expression Quantity
* UnitPrice. The column is persisted because we expect to be
querying this value frequently. The type of the computed column is
determined by SQL Server based on the result of the expression. In
this case, the data type is set to decimal(29,2). If the determined

https://learn.microsoft.com/sql/relational-databases/indexes/indexes-on-computed-columns


data type is not suitable for your needs, you can apply a cast in the
expression to a more appropriate data type.

Special table types
As data storage needs have become more specialized, SQL Server
has gained extended functionality to support these scenarios in the
form of special table types. These table types support scenarios that
would otherwise require significant effort by the database developer
to implement. This section discusses temporal tables, memory-
optimized tables, external tables, and graph tables. We discuss
another special table type, FileTable, in the next section.

 External tables and PolyBase are discussed later in this
chapter, in the section “Benefits of PolyBase for external data
sources and external tables.”

System-versioned temporal tables
System-versioned temporal tables, or temporal tables for short, are
designed to keep not only current values of rows, but also historic
values. In addition to the current table, there is a companion history
table with the same schema structure. The history table stores the
historic rows. SQL Server can create the history table at the time the
current table is created, and you can opt to specify the history table’s
name or let SQL Server create an anonymous history table.
Alternatively, you might use an existing table as the history table, in
which case the Database Engine will validate that the schema
matches that of the current table. Creating a history table by hand
can be complex, but specifying a history table that was previously
used and was disconnected for some reason is a valuable option.

When a table is designed to be a temporal table, it must have two
explicitly defined columns of type datetime2, which are used to
indicate the validity period of the row. The datetime2 columns can
have any precision between 0 and 7. You define the name of these
columns and add the GENERATED ALWAYS AS ROW START|END clause. In



addition to that clause, two more clauses are required in the table
declaration: PERIOD FOR SYSTEM_TIME (start_time_col,
end_time_col) and WITH (SYSTEM_VERSIONING = ON).

Note
Temporal tables should be used when users need to query the
data and see changes over time. Later sections in this chapter
cover change tracking and change data capture and compare
these features to temporal tables and how they can be used for
ETL type processes.

Create a system-versioned temporal table
The simple CREATE TABLE statement that follows illustrates the use of
these clauses to create a system-versioned temporal table with an
anonymous history table:
Click here to view code image

CREATE TABLE dbo.Products ( 
    -- Clustered primary key is required 
    ProductId int NOT NULL PRIMARY KEY CLUSTERED 
  , ProductName varchar(50) NOT NULL 
  , CategoryId int NOT NULL 
  , SalesPrice money NOT NULL 
  , SysStartTime datetime2 GENERATED ALWAYS AS ROW START NOT 
NULL 
  , SysEndTime datetime2 GENERATED ALWAYS AS ROW END NOT NULL 
  -- PERIOD FOR SYSTEM_TIME to indicate columns storing 
validity start and end 
  , PERIOD FOR SYSTEM_TIME (SysStartTime, SysEndTime)) 
-- SYSTEM_VERSIONING clause without HISTORY_TABLE option 
creates 
-- an anonymous history table, meaning the name will be auto-
generated 
WITH (SYSTEM_VERSIONING = ON);

Note



The row’s start and end validity column values are managed by
SQL Server. The values in those columns are in the UTC time
zone. Neither validity period column will ever be NULL and the
end time will always be 9999-12-31 in the base table.

An existing table can also be altered to become a temporal table.
This is a two-stage process, in which you first alter the table to
include the two required datetime2 columns and then alter the table
to turn on system versioning while optionally specifying a history table
name. The history of all columns in the table will be captured, so if the
table is very volatile, and if it includes columns that you don’t care to
track, this feature may not be useful.

When creating a new table or altering an existing one, you can apply
the optional HIDDEN property to the columns for the validity period to
exclude the columns from a standard SELECT statement. This might
be useful to ensure backward compatibility with existing applications
that query the table.

Understand data movement in temporal tables
The Database Engine manages the movement of data from the
current table to the history table. The following list details the data
movements that take place with each Data Manipulation Language
(DML) operation:

INSERT and BULK INSERT. A new row is added to the current
table. The row’s validity start time is set to the transaction’s start
time. The validity end time is set to the datetime2 type’s
maximum value—December 31, 9999—at a fractional second, or
a whole second when using datetime2(0). There is no change
in the history table.

UPDATE. A new row is added to the history table with the old
values. The validity end time of the history row is set to the
transaction’s start time. In the current table, the row is updated
with the new values and the validity start time is updated to the
transaction’s start time. If the same row is updated multiple



times in the same transaction, multiple history rows with the
same validity start and end time will be inserted. Those rows will
not be retrieved using typical queries; only the current version of
non-deleted rows will be returned. For instance, if only one
column is changed, the entire row will be duplicated in the
history structure.

DELETE. A new row is added to the history table containing the
values from the current table. The validity end period of the
history row is set to the transaction’s start time. The row is
removed from the current table.

MERGE statements need no special consideration. A MERGE operation
behaves as if separate INSERT, UPDATE, and DELETE statements are
executed, as determined necessary by the MATCH clauses. Those
statements add rows to the history table, as just described.

Query temporal tables
Querying a temporal table is no different from querying another table
if your query only needs to return current data. This makes it possible
to modify an existing database and alter tables into temporal tables
without requiring application modifications.

Note
Recall that when using the HIDDEN property on the period
columns, existing applications won’t be exposed to those
columns. You must explicitly include hidden columns if you want
to query them.

When designing queries that need to return historical data or even a
mix of current and historical data, you use the FOR SYSTEM_TIME
clause in the FROM clause of the SELECT statement. There are five
subclauses used with FOR SYSTEM_TIME that help you define the time
frame for which you want to retrieve rows. The following list describes
these subclauses. It also provides a sample T-SQL statement for



each one that you can run on the WideWorldImporters sample
database to see its effects.

Note
The IsCurrent column in the output indicates whether the
retrieved row is the current row or a history row. This is
accomplished by checking whether the ValidTo column
contains the maximum datetime2 value. Due to the nature of
the WideWorldImporters sample data, you might need to scroll
through several hundred rows before encountering a value of 0
for IsCurrent, which indicates that it is a history row.

ALL. The result set is essentially the union between the current
and the history tables. Multiple rows can be returned for the
same primary key in the current table. This will be the case for
any row that has one or more history entries, as shown here:

Click here to view code image
SELECT PersonID, FullName, 
      CASE WHEN ValidTo = '9999-12-31 23:59:59.9999999' 
THEN 1 
         ELSE 0 END AS IsCurrent 
FROM Application.People FOR SYSTEM_TIME ALL 
WHERE PeriodId = 11 
ORDER BY ValidFrom;

AS OF. This returns rows that were valid at the single point in
time in the UTC time zone. Rows that have been deleted from
the current table or that didn’t exist yet will not be included:

Click here to view code image
/* AS OF sub-clause returns all rows that were valid at 
one point in time. 
 * Recall the SYSTEM_TIME is UTC. 
 * Showing an example here of how to convert a local time 
to UTC: 
 * Local time is March 13, 2022 12:00 AM (midnight) US 



Pacific Time 
 * (the start of the day). 
 * March 13 is not in daylight saving time, so the offset 
is -8 hours. 
 * Thus, records we're looking for were active on March 
13, 2022 8 AM UTC. 
 * Calling the AT TIME ZONE function twice gives the 
desired time in UTC. 
 */ 
DECLARE @AsOfTime datetime2(7) = CONVERT(datetime2(7), 
'2022-03-13T00:00:00', 126) 
    AT TIME ZONE 'Pacific Standard Time' AT TIME ZONE 
'UTC'; 
SELECT PersonID, FullName 
    , CASE WHEN ValidTo = '9999-12-31 23:59:59.9999999' 
THEN 1 
           ELSE 0 END 'IsCurrent' 
FROM [Application].People FOR SYSTEM_TIME AS OF @AsOfTime 
ORDER BY ValidFrom;

FROM … TO. This returns all rows that were active between the
specified lower bound and upper bound. In other words, if the
row’s validity start time is before the upper bound or its validity
end time is after the lower bound, the row will be included in the
result set. Rows that became active exactly on the upper bound
or that closed exactly on the lower bound are not included. This
clause might return multiple rows for the same primary key
value:

Click here to view code image
SELECT PersonID, FullName, 
     CASE WHEN ValidTo = '9999-12-31 23:59:59.9999999' 
THEN 1 
         ELSE 0 END AS IsCurrent 
-- SYSTEM_TIME uses UTC so provide date range in UTC as 
well 
FROM Application.People FOR SYSTEM_TIME FROM '2022-03-13' 
TO '2022-04-23' 
ORDER BY ValidFrom;



BETWEEN … AND. This is like FROM … TO, but rows that
opened exactly on the upper bound are included:

Click here to view code image
SELECT PersonID, FullName, 
     CASE WHEN ValidTo = '9999-12-31 23:59:59.9999999' 
THEN 1 
         ELSE 0 END AS IsCurrent 
FROM Application.People FOR SYSTEM_TIME BETWEEN '2022-03-
13' AND '2022-04-23' 
ORDER BY ValidFrom;

CONTAINED IN (,). This returns rows that were active
exclusively between the lower and the upper bound. If a row
was valid earlier than the lower bound or valid past the upper
bound, it is not included. A row that was opened exactly on the
lower bound or closed exactly on the upper bound will be
included. If the upper bound is earlier than the maximum value
for datetime2, only history rows will be included:

Click here to view code image
DECLARE @now datetime2(7) = SYSUTCDATETIME(); 
SELECT PersonID, FullName, 
     CASE WHEN ValidTo = '9999-12-31 23:59:59.9999999' 
THEN 1 
         ELSE 0 END AS IsCurrent 
FROM Application.People FOR SYSTEM_TIME CONTAINED IN 
('2022-03-13', @now) 
ORDER BY ValidFrom;

Note
In the sample statement for the CONTAINED IN subclause, the
variable @now is declared and initialized with the current UTC
time. This is necessary because the FOR SYSTEM_TIME clause
does not support functions as arguments.



Manage temporal tables
Altering a temporal table will generally cause its associated history
table to be altered in the same way. This applies when adding,
altering, or removing columns. However, there are a few operations
that require you to disable system versioning. These include adding
an identity, rowguidcol, or computed column; adding a sparse column
in most cases; and adding a column set.

Caution
If you add a new column that does not allow NULL to a temporal
table, the default value you’re required to specify will be used to
fill the new column in both the current table and the history
table. While it’s hard to imagine another solution that Microsoft
could have implemented, one might argue that the history table
doesn’t reflect the truth at the time its records were active.

To drop a temporal table, you must disable system versioning and
then drop both the current table and the history table using two
separate DROP TABLE statements.

Inside OUT
How do you design temporal tables to use the least
amount of space?

Introduced in SQL Server 2017, you can use
HISTORY_RETENTION_PERIOD with SYSTEM_VERSIONING when
defining or altering system-versioned temporal tables. By
default, HISTORY_RETENTION_PERIOD is set to INFINITE,
meaning SQL Server will not automatically purge history data.
By defining a finite period, such as 6 MONTHS, SQL Server will
automatically purge history records with a valid end time older
than the finite period. Two conditions must hold true, however.
First, the temporal history retention flag must be enabled for



the database (which it is by default). And second, the history
table must have a clustered or columnstore index. For a
rowstore clustered index, the first column in the index must be
the column corresponding to the end of the validity period. If
these conditions hold true, a background task is created to
clean up the aged data.

In addition to using automatic retention, which controls the
growth of the history table, you can also consider vertically
partitioning the temporal table. Vertical partitioning is
discussed in more detail in the “Vertical partitions” section
later in this chapter. Splitting the table vertically into two
tables, and only making one table system versioned, results in
significant space savings, because the history is kept only for
the columns in the system-versioned table. This does come at
the expense of potentially frequent JOINs between both
tables. This approach is also not suitable if you are system-
versioning tables for compliance requirements for which all
row data must be available in exactly the form it was at any
given point.

Besides reducing the history kept by setting a retention period
and using vertical partitioning to avoid keeping history for
columns that do not require it, you might also consider
horizontal partitioning or a custom cleanup script to manage
the history data. These options are described in detail at
https://learn.microsoft.com/sql/relational-
databases/tables/manage-retention-of-historical-data-in-
system-versioned-temporal-tables.

Memory-optimized tables
A traditional disk-based table’s data is loaded in memory as needed.
The Database Engine handles loading data from durable storage to
memory and removing the data from memory again. Many factors
play a role in when data is loaded or released from memory. Data in
memory-optimized tables is kept in memory at all times. This data is

https://learn.microsoft.com/sql/relational-databases/tables/manage-retention-of-historical-data-in-system-versioned-temporal-tables


durable by default because it is persisted to disk (though the format of
the data is different from that of disk-based tables). A schema-only,
non-durable option is available, which does not retain data between
service restarts and certain other operations.

The benefits of keeping all data from specific tables in memory is
blazing-fast performance, which often can be improved by another
order of magnitude by applying a columnstore index to the memory-
optimized table. (Columnstore indexes are covered in Chapter 15.)
This of course requires the server to have sufficient memory to hold
the memory-optimized tables’ data in memory while still leaving
enough room for other operations. If the system runs out of memory
(OOM), errors will occur, and you’ll need to take specific steps to
recover.

 To avoid OOM issues, monitor memory usage. The Microsoft
Docs at https://learn.microsoft.com/sql/relational-
databases/in-memory-oltp/monitor-and-troubleshoot-memory-
usage#bkmk_Monitoring describe how to monitor and
troubleshoot memory usage for memory-optimized tables.

 Guidance for resolving various OOM issues is available at
https://learn.microsoft.com/sql/relational-databases/in-
memory-oltp/resolve-out-of-memory-issues.

Memory-optimized tables are available in all editions of SQL Server
and in Azure SQL Database’s Premium and Business Critical tiers.
However, memory limitations present in the Express and Standard
editions of SQL Server do apply to memory-optimized tables.

Note
Over time, many limitations of memory-optimized tables that
were present in earlier versions of SQL Server have been
eliminated.

 This chapter discusses only the setup and configuration of
memory-optimized tables, along with caveats. You can find a

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/monitor-and-troubleshoot-memory-usage#bkmk_Monitoring
https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/resolve-out-of-memory-issues


complete discussion of the purpose and use of memory-
optimized tables in Chapter 15.

Database preparation for memory-optimized
tables
Before creating memory-optimized tables, you must prepare the
database. The database compatibility level must be at least 130. For
SQL Server, you need to create a memory-optimized filegroup. There
is no such requirement for Azure SQL Database—or, more
accurately, the filegroup is intrinsically present.

Caution
You cannot remove a memory-optimized filegroup without
dropping the database.

Microsoft provides a T-SQL script to ensure that these settings are
correct and that a memory-optimized filegroup is created. You can
even run the script in Azure SQL Database to ensure that the
database supports memory-optimized tables.

 Rather than reprinting this script here, we refer you to the SQL
Server samples GitHub page at
https://raw.githubusercontent.com/microsoft/sql-server-
samples/main/samples/features/in-memory-database/in-
memory-oltp/t-sql-scripts/enable-in-memory-oltp.sql.

The script first checks to ensure that the instance or database
supports memory-optimized tables, using the
SERVERPROPERTY(N'IsXTPSupported') function call. On SQL Server,
the script will create a memory-optimized filegroup and container if
none already exist. The script also checks and sets the database-
compatibility level.

After these actions are complete, you are ready to create one or more
memory-optimized tables. The WITH (MEMORY_OPTIMIZED = ON) is the

https://raw.githubusercontent.com/microsoft/sql-server-samples/main/samples/features/in-memory-database/in-memory-oltp/t-sql-scripts/enable-in-memory-oltp.sql


key clause of the CREATE TABLE statement that makes your table a
memory-optimized table. Memory-optimized tables support indexing,
but you must create and delete them using an ALTER TABLE …
ADD/DROP INDEX statement instead of a CREATE/DROP INDEX statement.

Natively compiled stored procedures and user-
defined functions
You can access memory-optimized tables via interpreted T-SQL
statements and stored procedures. However, you can achieve
significant additional performance gains if you use natively compiled
stored procedures. These stored procedures are compiled to
machine code the first time they are run rather than evaluated every
time they run.

Note
Natively compiled stored procedures can access only memory-
optimized tables. Traditional interpreted stored procedures and
ad hoc queries can reference both disk-based tables and
memory-optimized tables in the same statement—for example,
to join a memory-optimized table with a disk-based table.

To create a natively compiled stored procedure, use the WITH
NATIVE_COMPILATION clause of the CREATE PROCEDURE statement.
Natively compiled stored procedure objects require the use of the
SCHEMABINDING option. The BEGIN ATOMIC statement is also required; it
replaces BEGIN TRANSACTION for natively compiled procedures and
functions. This statement either begins a new transaction or creates a
save point in an existing transaction on the session. When creating a
save point in an existing transaction, only the changes made by the
stored procedure would be rolled back if the stored procedure were to
fail.

The BEGIN ATOMIC statement has two required options:



TRANSACTION_ISOLATION. You must set this value to one of
the three supported isolation levels: snapshot, repeatable read,
or serializable.

LANGUAGE. This is a name value from the sys.syslanguages
system compatibility view. For example, for United States
English, it is us_english, and for Dutch it is Nederlands.

The BEGIN ATOMIC statement is also where delayed durability can be
specified (DELAYED_DURABILITY = ON). With delayed durability, the
Database Engine reports to the client that the transaction committed
before the log record has been committed to a drive. This creates a
risk of data loss should the service or server shut down before the
asynchronous log write is completed. You should take the same care
to use delayed durability with BEGIN ATOMIC as with BEGIN
TRANSACTION. To use delayed durability, it must not be disabled at the
database level. Schema-only memory-optimized tables do not use
transaction logging, so when modifying data in those tables, there is
no benefit in specifying delayed durability.

 For more information on delayed durability, see Chapter 14.

The following short sample script creates a memory-optimized table
and natively compiled stored procedure in a database that has been
prepared previously.
Click here to view code image

CREATE TABLE dbo.UserDetails ( 
    UserId    int NOT NULL, 
    DetailId  int NOT NULL, 
    Detail    nvarchar(50) NOT NULL, 
    CONSTRAINT PK_UserDetails PRIMARY KEY NONCLUSTERED 
(UserId, DetailId) 
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 
GO 
CREATE PROCEDURE dbo.GetUserName 
    @userId int 
WITH NATIVE_COMPILATION, SCHEMABINDING 
AS 
BEGIN ATOMIC 



    WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
          LANGUAGE = N'us_english') 
    SELECT Detail 
    FROM dbo.UserDetails 
    WHERE UserId = @userId 
        -- Assume this refers to the name 
        AND DetailId = 1; 
END; 
GO

Note
Several T-SQL statements and constructs are not supported
with memory-optimized tables and natively compiled stored
procedures. A full list of these unsupported constructs is
available in Microsoft Docs at
https://learn.microsoft.com/sql/relational-databases/in-memory-
oltp/transact-sql-constructs-not-supported-by-in-memory-oltp.

Caveats to memory-optimized tables
To put it plainly, you should probably not convert all of your tables to
memory-optimized tables. There are several caveats you must
consider before adopting memory-optimized tables and when
deciding which tables to turn into memory-optimized tables. This
section discusses these caveats.

Memory-optimized tables support only three transaction isolation
levels: snapshot, repeatable read, and serializable. If your application
needs other isolation levels, you will not be able to implement
memory-optimized tables. Refer to Chapter 14 for complete details
about transaction isolation levels.

Caution
Changing the database’s read-commit snapshot property will
cause schema-only memory-optimized tables to be truncated.

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/transact-sql-constructs-not-supported-by-in-memory-oltp


Although database designers are aware that schema-only
memory-optimized tables are not persisted and might load initial
data into such tables when the SQL Server service starts, they
might not know to reload data after a database property
change.

Because all memory-optimized table data is kept in memory, you
would correctly expect additional memory requirements. When
planning for memory size, however, you should consider that the
memory requirement of a memory-optimized table can be more than
twice the size of the data in the table. This is due to processing
overhead requirements, including the row versions that are kept.

 To review specific guidance on planning for memory size, refer
to https://learn.microsoft.com/sql/relational-databases/in-
memory-oltp/estimate-memory-requirements-for-memory-
optimized-tables.

When persisted memory-optimized tables are used, upon service
start, the Database Engine will load all data from the drive to memory.
Indexes of memory-optimized tables are not persisted, and they are
rebuilt entirely upon service start as the index operations are not
logged. The service is not available while these operations take
place. With large tables, this can lead to significantly longer service
start times. Even though you might carefully plan your service or
server restarts for a maintenance window, an unplanned failover on a
failover cluster instance (FCI) will also take that amount of time. This
might be detrimental to meeting your Service-Level Agreement (SLA),
which might have been the entire reason to configure an FCI in the
first place. If the performance of memory-optimized tables is needed
in combination with a high-availability configuration, you might
consider availability groups instead. Because the Database Engine
service is running on the secondary, there is no delay caused by
having to read the data from a drive and rebuilding indexes.

 Read about FCI and availability groups in Chapter 11.

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/estimate-memory-requirements-for-memory-optimized-tables


One way to reduce database startup time due to memory-optimized
tables is to ensure that checkpoints are taken frequently. This is
because checkpoints cause the updated rows in the memory-
optimized table to be committed to the data file. Any data that is not
committed to the drive must be read from the transaction log. For
large tables, this benefit is likely small.

Another contributor to delays, though after service start, is when
natively compiled stored procedures are run for the first time. This
can take about as long as running a traditional stored procedure
because the compiled version of the stored procedure is not saved.
Any time a natively compiled stored procedure is run subsequently,
the compiled version will be faster.

Memory-optimized tables use an optimistic concurrency model. While
memory-optimized tables don’t use locks, latches, or spinlocks, they
are subject to isolation level errors and update conflicts. This means
a client application might experience unexpected conflicts (which are
shown as errors that are truly just messages to the client that their
data is being used in an incompatible manner). You should design the
application to handle those. Ironically, one of the greatest benefits of
memory-optimized tables is optimistic concurrency, but it also causes
one of the largest drawbacks, in that applications must be designed
to correctly handle the errors generated.

Not unlike when faster drive storage is used for SQL Server, when
adopting memory-optimized tables, you might find that the CPU
usage is much higher. This is because much less time is spent
waiting for I/O operations to complete. This is exactly why you
implemented memory-optimized tables: CPU utilization is higher
because data is being processed faster! However, you might
inadvertently reduce the number of concurrent requests that can be
served, especially if one instance runs multiple databases. If this is a
concern, consider using Resource Governor to manage the relative
CPU usage for specific workloads.

Graph tables



Introduced in SQL Server 2017 and extended in SQL Server 2019,
graph functionality provides schema extensions to store directed
graph data—that is, nodes and edges—in the relational database.
Fitting graph data in a relational database is challenging, and this
feature attempts to resolve these challenges. The graph features in
SQL Server are useful in some common scenarios, particularly when
trying to integrate graph structures with relational ones, but are
currently not a complete replacement for dedicated graph databases
that support advanced scenarios.

Graph data is often associated with networks, such as social
networks, and hierarchies. More generally, graphs are data structures
that consist of nodes and edges. The nodes represent entities and
the edges represent the connections between those entities. Nodes
are also referred to as vertices, and edges as relationships.

Some use cases lend themselves particularly well to being stored in a
graph model. For example:

Highly interconnected data. A commonly used example of
highly interconnected data is that of social networks. Social
network data expresses relationships among people,
organizations, posts, pictures, events, and more. In such a data
model, each entity can be connected to any other entity, creating
lots of many-to-many relationships. In a relational database, this
requires the creation of a table for each many-to-many
relationship. Querying such relationships requires two or more
JOIN clauses, which can quickly create lengthy SELECT
statements. Such statements can be difficult to digest and are
potentially error prone. Graph databases offer support for
flexible definitions of relationships and query syntax that is less
verbose.

Hierarchical data. A single node in a graph can have many
parents in addition to many children. You may also find it
conceptually easier to build even a simple tree, where a node
has only one parent, using nodes and edges.



Many-to-many relationships that can be extended at any
time during the data life cycle. Relational databases have
strict requirements for the definition of tables and relationships.
For a data model that is required to evolve quickly to support
new relationships, adding new relationships is easy enough in a
relational database, but a graph lets you use the same
table/edge for multiple relationships. This strict schema
requirement can get in the way of meeting evolving
requirements in a timely fashion.

You can effectively implement these use cases by employing a graph
database. While these features are evolving and regularly being
improved, SQL Server’s graph features do not (yet) provide a solution
that is on par with dedicated graph databases. The “Graph table
shortcomings” section later in the chapter discusses some of the
limitations of the current implementation.

Define graph tables
In SQL Server, you store graph data in two table types: node and
edge tables. These table types are still stored internally as relational
structures, but the Database Engine has additional capabilities to
manage and query the data that is stored within them.

The T-SQL CREATE TABLE syntax has two clauses: AS NODE and AS
EDGE. The following T-SQL script creates a People node table and a
Relationships edge table. You can run this script in any existing or
new database; there are no specific requirements of the database:
Click here to view code image

CREATE TABLE dbo.People ( 
     PersonId int NOT NULL PRIMARY KEY CLUSTERED, 
     FirstName nvarchar(50) NOT NULL, 
     LastName nvarchar(50) NOT NULL 
) AS NODE; 
CREATE TABLE dbo.Relationships ( 
    RelationshipType nvarchar(50) NOT NULL, 
    -- Two people can only be related once 
    CONSTRAINT UX_Relationship UNIQUE ($from_id, $to_id), 



    CONSTRAINT EC_People_ConnectsTo_People CONNECTION 
(dbo.People TO dbo.People) 
) AS EDGE;

In the sample script, both the node and the edge table contain user-
defined columns. Edge tables are not required to have user-defined
columns, but node tables must have at least one. In the case of edge
tables, which model relationships, simply modeling the relationship
without additional attributes can be all you need. In the case of node
tables, which model entities, there is no value in a node without
properties, as the nodes exist to compare properties to one another.
Designing a node table is comparable to designing a relational table;
you would still consider normalization and other concepts.

The sample script also defines an edge constraint, a feature
introduced in SQL Server 2019. Edge constraints restrict which node
types can be associated using a particular edge. In this case, a
Relationships edge is defined between two nodes of type People.

The edge constraint may be repeated multiple times in a single-edge
table definition, but the entries in the table must comply with all
constraints. Alternatively, multiple edge constraint clauses may be
defined within the same edge constraint, in which case any of the
constraint clauses must be satisfied.

Note
Edge constraints and edge constraint clauses are not the same
thing. An edge constraint is used to enforce integrity on an edge
table. An edge constraint can have one or more edge constraint
clauses, and an edge constraint clause is used to define
relationships between nodes.

The next script defines a second node table, Animals; removes the
existing edge constraint; and finally creates a new edge constraint
with two clauses, allowing a relationship to exist between two People
rows or between a People row and an Animals row.



Click here to view code image

CREATE TABLE dbo.Animals ( 
   AnimalId int NOT NULL PRIMARY KEY CLUSTERED, 
   AnimalName nvarchar(50) NOT NULL 
) AS NODE; 
-- Drop and re-create the constraint, because an edge 
constraint cannot be altered 
ALTER TABLE Relationships 
    DROP CONSTRAINT EC_Relationship; 
ALTER TABLE Relationships 
    ADD CONSTRAINT EC_Relationship CONNECTION (dbo.People TO 
dbo.People, 
        dbo.People TO dbo.Animals);

Note
Edge constraints not only enforce the type(s) of node that can
be connected using the edge, they also enforce referential
integrity between the nodes and the edge. SQL Server supports
cascading deletes of edges when a node is deleted. Specify ON
DELETE CASCADE in the CONSTRAINT clause to enable cascading
of the delete operation, or ON DELETE NO ACTION (the default) if
deleting the node should fail.

In addition to user-defined columns, both table types also have one or
more columns that are added to the table implicitly to support graph
operations. Node tables have two system-generated implicit (also
called pseudo) columns, $graph_id and $node_id:

graph_id_<hex_string_1>. This is a bigint column, which
stores the internally generated graph ID for the row. This column
is internal and cannot be explicitly queried. However, information
about this column will be accessible in sys.columns.

$node_id_<hex_string_2>. This returns a computed nvarchar
value that includes the internally generated bigint value and
schema information. This column can be queried but you should



avoid explicitly querying this column. Instead, you should use
the NODE_ID_FROM_PARTS() query to access the JSON.

In addition to optional user-defined columns, edge tables have three
implicit columns:

$edge_id_<hex_string_3>. This is a system-managed value,
comparable to the $node_id column in a node table.

$from_id_<hex_string_4>. This references a node ID from any
node table in the graph that meets the edge constraints. This is
the source node in the directed graph.

$to_id_<hex_string_5>. This references a node ID from any
node table in the graph that meets the edge constraints. This is
the target node in the directed graph.

Inside OUT
When should you choose graph tables over relational
tables?

There is nothing inherent to a graph database that makes it
possible for you to solve a problem that you cannot also solve
using a relational database. The relational database concept
has been around for nearly five decades, and relational
database management systems are as popular as ever.

However, the use cases described earlier, and queries
described momentarily, are examples of data models and
operations that might be better addressed by a graph
structure. This is because the Database Engine has specific
optimizations to address some of the types of queries that are
often run against such models.

In addition, a graph table can still contain foreign keys
referring to relational tables, and a relational table can contain
a foreign key referring to a graph table.



Work with graph data
DML statements generally work the same in graph tables as they do
in relational tables. Some operations are not supported. An edge
table does not support updating either the $frHi, om_id, or $to_id
column value. Thus, to update a relationship, the existing edge row
must be deleted and a new one inserted. User-defined columns of
edge tables do support update operations.

When querying graph data, you can write your own table joins to join
nodes to edges to nodes, though this approach offers none of the
benefits of graph tables. Instead, we recommend using the MATCH
comparison operator in the WHERE clause. The MATCH operator uses a
style of expression referred to as ASCII art to indicate how nodes and
edges should be traversed. You might be surprised to find that the
node and edge tables are specified using old-style join syntax first.
The MATCH subclause then performs the actual equi-joins necessary to
traverse the graph.

The brief examples that follow are intended to provide an introduction
only. They build on the creation of the People and Relationship tables
shown in the previous example. First, a few rows of sample data are
inserted. Then, the sample data is queried using the MATCH subclause:
Click here to view code image

-- Insert a few sample people 
-- $node_id is implicit and skipped 
INSERT INTO dbo.People VALUES 
    (1, 'Karina', 'Jakobsen'), 
    (2, 'David', 'Hamilton'), 
    (3, 'James', 'Hamilton'), 
    (4, 'Stella', 'Rosenhain'); 
-- Insert a few sample relationships 
-- The first sub-select retrieves the $node_id of the 
from_node 
-- The second sub-select retrieves the $node_id of the 
to_node 



INSERT INTO dbo.Relationships VALUES 
    ((SELECT $node_id FROM People WHERE PersonId = 1), 
     (SELECT $node_id FROM People WHERE PersonId = 2), 
     'spouse'), 
     ((SELECT $node_id FROM People WHERE PersonId = 2), 
     (SELECT $node_id FROM People WHERE PersonId = 3), 
     'father'), 
     ((SELECT $node_id FROM People WHERE PersonId = 4), 
     (SELECT $node_id FROM People WHERE PersonId = 2), 
     'mother'); 
-- Simple graph query 
SELECT P1.FirstName + ' is the ' + R.RelationshipType + 
    ' of ' + P2.FirstName + '.' 
FROM dbo.People P1, dbo.People P2, dbo.Relationships R 
WHERE MATCH(P1-I->P2);

The arrow used in the MATCH subclause means that a node in the
People table should be related to another node in the People table
using the Relations edge. As with self-referencing many-to-many
relationships, the People table needs to be present in the FROM clause
twice to allow the second People node to be different from the first.
Otherwise, the query would retrieve only edges in which people are
related to themselves. (There are no such relationships in our
sample.)

The true power of the MATCH subclause is evident when traversing the
graph between three or more nodes. One such example would be
finding restaurants your friends have liked in the city where your
friends live and where you intend to travel.

 For a more comprehensive sample graph database, refer to
https://learn.microsoft.com/sql/relational-
databases/graphs/sql-graph-sample.

SQL Server 2019 introduced support for the shortest path algorithm.
With this support, it is now possible for the MATCH clause to traverse
an arbitrary number of nodes to find a related node. Several T-SQL
syntax elements are required, including a SHORTEST_PATH function as
well as FOR PATH and WITHIN GROUP (GRAPH PATH) clauses. The

https://learn.microsoft.com/sql/relational-databases/graphs/sql-graph-sample


following sample retrieves all the direct descendants of one of the
people in the same table:
Click here to view code image

-- Construct Stella Rosenhain's direct descendants' family 
tree 
-- In our example data, two rows will be returned 
SELECT P1.FirstName 
        , STRING_AGG(P2.FirstName, '->') WITHIN GROUP (GRAPH 
PATH) AS Descendants 
FROM dbo.People P1 
    , dbo.People FOR PATH P2 
    , dbo.Relationships FOR PATH related_to1 
WHERE (MATCH(SHORTEST_PATH(P1(-(related_to1)->P2)+)) 
    -- Stella Rosenhain 
    AND P1.PersonId = 4);

Running the preceding query shows that David is the direct
descendant of Stella. The query also returns a record showing that
James is David’s descendant. However, Karina is not returned in the
query because she is not a descendant of Stella. A more complex
example is included in the accompanying files for this book.

Graph table shortcomings
Since the first graph features were released with SQL Server 2017,
additional investments have been made to overcome the limitations
found in that release. Most notably, the SHORTEST_PATH function
enables both the shortest path graph analytic function and transitive
closures (the ability to recursively traverse edges). Still, many
limitations compared to native graph databases remain.

The following list contains two notable syntax limitations starting in
SQL Server 2019 and a brief description of their significance for
implementing a graph. Hopefully, this will provide the information you
need to make an informed decision about using SQL Server for graph
data.



Need to explicitly define edges as tables. Graphs model
pairwise relations between entities (the nodes). Flexibility can be
key in maximizing the benefits of graph models. Even though
the nodes and their properties are often well understood, new
relationships can be modeled as new needs arise or additional
possibilities emerge. The need to make schema modifications to
support new types of edges reduces flexibility. Some of this can
be addressed by defining one or a few edge tables and storing
the edge properties as XML or JSON. This approach, too, has
drawbacks in terms of performance and ease of writing queries
against the data.

Limited polymorphism. Polymorphism is the ability to find a
node of any type connected to a specified starting node. In SQL
Server, a workaround for graph models with few node and edge
types is to query all known node and edge types and combine
the result sets by using a UNION clause. For large graph models,
this solution becomes impractical.

Store large binary objects
Large objects (LOBs), including XML and binary large objects
(BLOBs), can be used to store files. However, storing LOBs—and
more specifically BLOBs—in a relational database has been known to
cause debate. Before SQL Server offered the FILESTREAM feature
as a specialized way for the Database Engine to manage BLOBs,
database designers had two options, neither of which would likely
meet all your requirements:

Store the BLOB, such as an image, video, or document file, in a
varbinary column. Downsides of this approach include rapid
growth of the data file, frequent page splits, and pollution of the
buffer pool. Benefits include transactional integrity and
integrated backup and recovery of the BLOB data.

Have the application store the BLOB in the file system and use
an nvarchar column to store a local server or UNC path to the



file. Downsides of this approach include requiring the application
to manage data integrity (avoiding missing files or files without
associated database records) and lack of integrated security
(the mechanism to secure the BLOBs is an entirely different
model than that for protecting the database). There are some
benefits, though, primarily around performance and ease of
programming for the client to work with the BLOBs (using
traditional file I/O APIs provided by the OS).

The FILESTREAM feature is designed to provide the best of both
worlds. FILESTREAM is not a data type, but an extension to
varbinary(max), which changes how data is stored as well as
providing additional capabilities.

This section discusses FILESTREAM and an extension of
FILESTREAM called FileTable. FileTable lets you access varbinary
data via the built-in OS file manager.

Understand FILESTREAM
There are three requirements to take advantage of FILESTREAM:

The instance must be configured to allow at least one of several
levels of FILESTREAM.

Your database needs at least one FILESTREAM filegroup.

Any table containing a FILESTREAM column requires a unique,
non-NULL rowguid.

A FILESTREAM filegroup refers to a location on an NT File System
(NTFS) or Resilient File System (ReFS) volume under the control of
the Database Engine. The Database Engine uses this location to
store binary data and log files for the binary data.

When a FILESTREAM filegroup is available in the database,
FILESTREAM can be used as a modifier on varbinary(max) column
declarations. When creating a table with a FILESTREAM column, you
can specify on which filegroup the FILESTREAM data will be stored.



When multiple FILESTREAM database files are added to a single
filegroup, they will be used in round-robin fashion, as long as they
don’t exceed their maximum size.

In general, FILESTREAM’s performance benefits kick in when the
average BLOB size is 1 MB or larger. For smaller BLOB sizes, storing
the BLOBs in the database file using a varbinary(max) column is
better for performance. You might determine, however, that the ease
of programming against file I/O APIs in the client application is an
overriding factor and decide to use FILESTREAM even with smaller
BLOBs.

If any of your BLOBs exceed 2 GB in size, you will need to use
FILESTREAM. The varbinary(max) data type supports a maximum
BLOB size of 2 GB. Another reason for choosing FILESTREAM is the
ability to integrate BLOBs with SQL Server Semantic Search. To be
clear, varbinary(max) columns can also be integrated with Semantic
Search, but BLOBs stored in traditional file systems cannot. Semantic
Search in SQL Server supports extracting and indexing statistically
relevant keywords or phrases, which in turn enables the identification
of similar or related documents. Among other things, Semantic
Search can be used to suggest tags for an article or identify résumés
based on a job description.

 More information about Semantic Search is available at
https://learn.microsoft.com/sql/relational-
databases/search/semantic-search-sql-server.

Inside OUT
How do you move data from a varbinary(max) column to
FILESTREAM?

Unfortunately, moving from varbinary(max) columns to
FILESTREAM is not as easy as modifying the column to add
the FILESTREAM modifier. Attempting to modify the column in
that way will result in an error. Instead, you can use the

https://learn.microsoft.com/sql/relational-databases/search/semantic-search-sql-server


following three-step process after creating a FILESTREAM
filegroup:

1. Create a new varbinary(max) FILESTREAM column in the
table, or in another table if you want to use vertical
partitioning.

2. Copy the data from the existing varbinary(max) column to
the new FILESTREAM column. This operation can cause a
significant amount of database activity, depending on the
number of rows and the size of the BLOBs.

3. Drop the varbinary(max) column. Optionally, you can then
rename the FILESTREAM column to the name of the dropped
column. Until you have (optionally) deployed a modified
application that uses the I/O APIs with FILESTREAM to
achieve better performance, the existing application’s T-
SQL statements will continue to work on the FILESTREAM
column.

In addition to being aware that this operation can potentially
cause significant database activity, you also need to ensure
that sufficient storage space is available to hold both copies of
the data. (If you are moving the BLOBs to different storage
hardware, this might be less of a concern.) After completing
the process, you should consider whether shrinking the data
file is appropriate.

Finally, while these operations take place, consider placing a
lock on the table. Otherwise, transactions may modify the data
in the varbinary(max) or add new rows. In step 3, that data
could be lost.

Even though FILESTREAM BLOBs are stored in the file system, they
are managed by the Database Engine. This includes transactional
consistency and point-in-time restores. Thus, when a BLOB is
deleted, the file on the drive backing that BLOB is not immediately



deleted. Similarly, when a BLOB is updated, an entirely new file is
written, and the previous version is kept on the drive. When the
deleted file or previous file version is no longer needed, the Database
Engine will eventually delete the file using a garbage-collection
process. You are already aware of the importance of generating
transaction log backups with databases in the full recovery model.
This way, the transaction log can be truncated and stop growing.
When using FILESTREAM, this mantra applies doubly: The number
of files will keep growing until they are deleted by the garbage
collector.

Caution
You should never modify the contents of a FILESTREAM folder
(a data container) manually. Doing so can lead to FILESTREAM
data corruption.

FileTable
FileTable makes it possible to access BLOBs managed by the
Database Engine using traditional file share semantics. Applications
that can read and write from a file share can access BLOBs managed
by the SQL Server Database Engine as if they were on a regular
Server Message Block (SMB) file share.

Although clients can use file I/O APIs to work with FILESTREAM,
obtaining a handle to the BLOB requires the use of specific client
libraries and application modifications. There might be applications
that cannot be modified to work with FILESTREAM but for which
having BLOBs managed by the relational engine would have
significant advantages. It was for this purpose that FileTable, which is
a special table type, was developed.

Note
FileTable is not currently available on SQL Server on Linux due
to its reliance on Windows APIs.



A FileTable has a fixed schema, so you can neither add user-defined
columns nor remove columns. The only control provided is the ability
to define indexes, even unique ones, on some FileTable columns.

The fixed schema has a FILESTREAM column that stores the actual file
data in addition to many metadata columns, and the non-NULL unique
rowguid column required of any table containing FILESTREAM data.
FileTable can organize data hierarchically, meaning folders and
subfolders are supported concepts.

 For a detailed discussion of the FileTable schema, visit
https://learn.microsoft.com/sql/relational-
databases/blob/filetable-schema.

Table partitions
Table partitioning occurs when you design a table that stores data
from a single logical entity in physically separate structures. In other
words, rather than storing all the entity’s data in a single physical data
structure, the data is split into multiple physical data structures, but
the user continues to treat it as a single unit, as normal.

Table partitioning has multiple purposes, some of which relate to
performance, either when querying or when loading data. (We
discuss this later in detail.) As shown in Figure 7-3, there are two
types of partitioning: horizontal partitioning and vertical partitioning.
This section discusses each of these separately, including common
use cases and recommendations.

https://learn.microsoft.com/sql/relational-databases/blob/filetable-schema


Figure 7-3 (a) Horizontal partitioning splits a table’s data rows. (b)
Vertical partitioning splits a table’s columns.

As illustrated in Figure 7-3, horizontal and vertical partitioning are
distinctly different. Horizontal partitioning splits the data rows, and
each partition has the same schema. Vertical partitioning splits the
entity’s columns across multiple tables.

Figure 7-3 shows a table partitioned in only two partitions, but you
can partition tables into many partitions. You can also mix horizontal
and vertical partitioning.

Note
In SQL Server, partitioning usually refers to horizontal
partitioning, only because it is the name of a feature. This book
discusses both horizontal and vertical partitioning; as such, we
always explicitly declare which partitioning type is being
discussed.

Horizontally partitioned tables and indexes



In a large-scale database, in which a single table can grow to
hundreds of gigabytes or more, some operations become more
difficult. For example, adding new rows can take an excessive
amount of time and might also cause SELECT queries on the table to
fail due to lock escalation. Similar concerns exist with respect to
removing data and index maintenance.

Horizontal partitioning can address these concerns. However, it is not
a silver bullet that will make all performance problems in large tables
disappear. On the contrary, when applied incorrectly, horizontal
partitioning can have a negative effect on your database workload.
This section builds on the brief discussion of partitioning found in
Chapter 3, “Design and implement an on-premises database
infrastructure.”

Note
Support for horizontal partitioning in SQL Server was limited to
SQL Server Enterprise edition until the release of SQL Server
2016 with Service Pack 1. Since then, all editions support
horizontal table and index partitioning.

About horizontal partitions
SQL Server’s partitioning feature supports horizontal partitioning with
a partition function, which determines in which partition of the table a
given row will be stored. Each partition can be stored in its own
filegroup in the same database.

When partitioning a table, the rows of the table are not all stored in
the same physical place. So, when designing partitions, you must
decide on a partition key, which is the column that will be used to
assign a row to exactly one partition. From a logical viewpoint,
however, all rows belong to the same table.

A query without a WHERE clause returns all rows, regardless of which
partition they are stored in. This means the Database Engine must do



more work to retrieve rows from different partitions. Your goal when
partitioning for query performance should be to write queries that
eliminate partitions. You can accomplish this by including the partition
key in the WHERE clause.

Additional benefits of horizontal partitioning include the ability to set
specific filegroups to read-only. By mapping partitions containing
older data to read-only filegroups, you can be assured that this data
is unchangeable without affecting your ability to insert new rows. In
addition, you can exclude read-only filegroups from regular backups.
Finally, during a restore, filegroups containing the most recent data
could be restored first, allowing new transactions to be recorded
faster than if the entire database needed to be restored.

Note
Restoring selected files or filegroups while keeping the
database available is called an online restore, which is still
supported only in the Enterprise edition.

Index partitioning
In addition to horizontal table partitioning, SQL Server also supports
index partitioning. A partitioned index is said to be aligned with the
table if the table and the index are partitioned in the same number of
partitions using the same column and boundary values.

When a partitioned index is aligned, you can direct index
maintenance operations to a specific partition. This can significantly
speed up the maintenance operation because you can rebuild or
reorganize a partition rather than the entire index. On the other hand,
if the entire index needs to be rebuilt, SQL Server will attempt to do
so in a parallel fashion. Rebuilding multiple indexes simultaneously
creates memory pressure. Because of this, we recommend that you
not use partitioning on a system with less than 16 GB of RAM.



Note
Achieving an aligned index is typically done by using the same
partition function and scheme as the table. However, it is not
strictly necessary to create an aligned partitioned index. If you
choose to use a different function or scheme, you must
remember to modify the function for the index simultaneously
with the table’s partition function. Therefore, we recommend
that you use one partition function for both the partition schema
and the aligned partitioned index.

You might benefit from creating a partitioned index without partitioning
the table. You can still use this nonaligned index to improve query
efficiency if only one or a few of the index partitions need to be used.
In this case, you must also use the index’s partition key in the WHERE
clause to gain the performance benefit of eliminating partitions.

Define partitions and partition a table
We now demonstrate how to create a horizontally partitioned table
using the SQL Server feature. Three database objects are involved in
defining partitions and partitioning a table:

A partition function, which defines the number of partitions and
the boundary values

A partition scheme, which defines on which filegroup each
partition is placed

The table to be partitioned

Note
For brevity, the following script does not show the creation of
the database with the filegroups and files necessary to support
the partition scheme. The sample script included with the book
downloads does include the CREATE DATABASE statement, as



well as a CREATE TABLE statement followed by an INSERT
statement and SELECT statements from DMVs to review the
table’s partition statistics.

Click here to view code image

-- Create a partition function for February 1, 2019, through 
January 1, 2020 
CREATE PARTITION FUNCTION MonthPartitioningFx (datetime2) 
    -- Store the boundary values in the right partition 
    AS RANGE RIGHT 
   -- Each month is defined by its first day (the boundary 
value) 
    FOR VALUES ('20190201', '20190301', '20190401', 
      '20190501', '20190601', '20190701', '20190801', 
      '20190901', '20191001', '20191101', '20191201', 
'20200101'); 
-- Create a partition scheme using the partition function 
-- Place each trimester on its own partition 
-- The most recent of the 13 months goes in the latest 
partition 
CREATE PARTITION SCHEME MonthPartitioningScheme 
    AS PARTITION MonthPartitioningFx 
    TO (FILEGROUP2, FILEGROUP2, FILEGROUP2, FILEGROUP2, 
        FILEGROUP3, FILEGROUP3, FILEGROUP3, FILEGROUP3, 
        FILEGROUP4, FILEGROUP4, FILEGROUP4, FILEGROUP4, 
FILEGROUP4);

If you visualize the table data as being sorted by the partition key in
ascending order, the left partition is the partition on top. When
defining a partition function, you indicate whether the boundary value
—in this example, the first day of each month—will be stored in the
partition on the left (the default) or the partition on the right (as
specified in the sample).

Figure 7-4 shows the relationship between the partition function and
the partition scheme. In the sample, the partition function created 13
partitions using 12 boundary values. The partition scheme then
directed these 13 partitions to three filegroups by specifying each



filegroup four times and the last filegroup five times (because it will
hold the last partition).

Figure 7-4 The relationship between the partition function, the
partition scheme, and the filegroups on which the
partitions will be stored.

Horizontal partition design guidelines



When designing horizontal partitions, keep these guidelines in mind,
with the understanding that your mileage may vary:

The number of parallel operations that can be run per query
depends on the number of processor cores in the system. Using
more partitions than processor cores limits the number of
partitions that will be processed in parallel. So, even though
SQL Server now supports up to 15,000 partitions, on a system
with 12 processor cores, at most 12 partitions will be processed
in parallel. You may choose to use fewer partitions than the
number of available processor cores to set aside capacity for
other queries. There is also the option to disable parallel
partition processing or to change the number of processors that
a single query can use. Be advised that changing the number of
processors per query is a server configuration.

Choose the partition key to accommodate growing column
values. This could be a date value or an incrementing identity
column. Usually, you will want to have new rows added to the
rightmost partition.

The selected partition key should be immutable, meaning there
should be no business reason for this key value to change. If the
value of a partition key changes, SQL Server will execute the
UPDATE statement as a DELETE and INSERT statement; there is no
provision to “move” a row to another filegroup. This approach is
similar to when the value of a clustered index changes.

For the partition key, a narrow data type is preferable over a
wide data type.

To achieve most benefits of partitioning, specifically those
related to performance, you will need to put each partition into
its own filegroup. This is not a requirement, and some or all
partitions can share a single filegroup. For example, the next
section discusses a sliding window partition strategy, in which
partitioning is beneficial even if all are in the same filegroup.



Consider the storage backing the filegroups. For example, your
storage system might not provide higher performance if all
filegroups have been placed on the same physical drives. Be
aware that even if the drive letters are different, they may still all
be on the same physical drive.

Tables that are good candidates for partitioning are tables with
many—as in millions or billions—rows for which data is mostly
added as opposed to updated, and on which queries are
frequently run that would return data from one or a few
partitions.

Implement a sliding window partition strategy
Horizontal partitioning is often applied to relational data warehouses.
A common data warehouse operation is loading a significant amount
of data to a fact table while simultaneously purging old data. The
sliding window partition strategy is particularly well-suited for tables
for which data is regularly added and removed. For example, data in
a fact table can be purged after 13 months. Perhaps each time data
is loaded into the data warehouse, rows older than 13 months are
removed while new rows are added. This is a sliding window in that
the fact table always contains the most recent 13 months of data.

To set up a sliding window, you need a partition function and scheme
as well as the fact table. You should also set up a stored procedure
that modifies the partition function to accommodate the new boundary
values. Finally, you will need a staging table with the same columns
and clustered index as the partitioned table.

Note
The next example assumes that data is loaded in the data
warehouse only once every month. This is not particularly
realistic, but the example still works when data is loaded more
frequently, even in real time. Only the first load operation for a
new month will need to modify the partition function.



Figure 7-5 illustrates what happens on March 1, 2020, when data is
loaded for the month of February 2020. The fact table is partitioned
into 13 partitions, one for each month. An automated process, which
is not depicted here, modifies the partition function to accommodate
the new date range by splitting the rightmost partition, holding the
most recent data, in two. Then, the partition holding the oldest
month’s data is switched out to a staging table and the new data is
switched in from a staging table. Finally, the leftmost partition, which
held the oldest data but is now empty, is merged with the second
leftmost partition.

Figure 7-5 An overview of the sliding window partition strategy.

Note
Implementing a sliding window partition strategy is not without
pitfalls. To fully automate it, job auditing is required to ensure



that the process that modifies the partition function operates
successfully. Additional complexity is introduced if the switched-
out, old data is to be archived rather than purged. Archiving a
partition usually involves moving the specific partition to a new
table.

You can optimize the process of switching the old partition out and
the new partition in by using a memory-optimized table as the staging
table.

Note
In addition, you can use the SQL Server partition feature for the
history table, as described here:
https://learn.microsoft.com/sql/relational-
databases/tables/manage-retention-of-historical-data-in-system-
versioned-temporal-tables#using-table-partitioning-approach.

Vertical partitions
Vertical partitioning makes sense when a single table would ordinarily
contain many columns, some of which might contain large values that
are infrequently queried. In some cases, indexes with included
columns will not do enough to alleviate the issues. You may be able
to improve performance by storing the infrequently accessed columns
in another table. Another problem that you can solve by vertical
partitioning is when you run into a maximum row size limit or
maximum column count limit.

Note
We encourage you to first review your database design to
ensure that one logical entity really needs such wide columns or
that many attributes. Perhaps the table could be normalized into
multiple related tables. If all those columns are needed, splitting

https://learn.microsoft.com/sql/relational-databases/tables/manage-retention-of-historical-data-in-system-versioned-temporal-tables#using-table-partitioning-approach


the entity vertically into two or more tables can be a reasonable
tactic.

An entity that is vertically partitioned into multiple tables can usually
be identified by the fact that the tables have a common name prefix
or suffix and share the same primary key values. A conceptual one-
to-one relationship exists between the tables, which you can enforce
by using a foreign key constraint.

Unlike with horizontal partitioning, SQL Server does not have a
feature that directly supports vertical partitioning. As the database
designer, you will need to create the necessary schema to vertically
partition tables yourself.

Be careful not to abuse vertical partitioning as a strategy. Every time
data from two tables is needed in a single result set, a join operation
will be required. These joins could be expensive operations—or are
at least more expensive than reading data from a single page—and
might nullify other performance benefits if you run them frequently.

There are a few special cases for using vertical partitioning. One
relates to the FileTable feature. FileTables, as noted earlier in this
chapter, have a fixed schema. You might, however, need to store
additional metadata about the files. Because you are unable to
extend the schema, you will need to create a new table that uses the
same primary key as the FileTable. Using INSERT and DELETE triggers,
you can guarantee data integrity by ensuring that for every row in the
FileTable, there is a matching row in your extended metadata table.

A second special case is related to temporal tables, also discussed
earlier in this chapter. If there is no requirement to capture the history
of all columns in the temporal table, splitting the logical entity into two
vertical partitions (or perhaps more if additional considerations apply)
can reduce the amount of space consumed by unneeded historical
data.

Capture modifications to data



SQL Server supports several methods for capturing row data that has
been modified, including temporal tables (discussed earlier in this
chapter). This section discusses change tracking and change data
capture, and provides recommendations on their use. Although these
features allow applications to detect when data has changed,
temporal tables operate very differently and serve different purposes.

Note
The SQL Server auditing feature is not covered in this section.
Auditing may also meet your needs, especially if you need to
track the execution of SELECT and DDL statements or include
the principal that executed the statements.

 Auditing is a security feature, and is discussed in Chapter 13,
“Protect data through classification, encryption, and auditing.”

Use change tracking
Change tracking only tracks whether a row has changed. If you need
to also track the data that has changed, see the next section, “Use
change data capture.” Change tracking is mostly useful for
synchronizing copies of data with occasionally offline clients or for
extract, transform, load (ETL) operations. For example, an application
that facilitates offline editing of data will need to perform a two-way
synchronization when reconnected. One approach to implementing
this requirement is to copy the data to the client. If there is concern
about loading all the data on the client, however, you can also load a
subset of the data. When the client goes offline, the application reads
and updates data using the offline copy. When the client re-
establishes connectivity to the server, changes can be merged
efficiently. The application is responsible for detecting and managing
conflicting changes where the client has changed rows that it needs
to integrate into the live data.

Configuring change tracking is a two-step process: First, you enable
change tracking for the database. Then, you enable change tracking



for the table(s) you want to track.

Note
Change tracking and memory-optimized tables are mutually
exclusive. A database cannot have both at the same time.

Before performing these steps, you can set up snapshot isolation for
the database. Snapshot isolation is not required for proper operation
of change tracking, but it is very helpful for accurately querying the
changes. Another very useful strategy is to copy the changes either
using a database snapshot or in a snapshot isolation level
transaction. This technique ensures that the data your copy process
sees is not changing. Because data can change as you are querying
it, using the snapshot isolation level inside an explicit transaction
enables you to see consistent results until you commit the
transaction.

 For an end-to-end example of how an application can use
change tracking to accomplish two-way data synchronization
with an occasionally offline data store, see
https://learn.microsoft.com/sql/relational-databases/track-
changes/work-with-change-tracking-sql-server.

The following sample script enables snapshot isolation on the
WideWorldImporters sample database. Then, it enables change
tracking on the WideWorldImporters sample database and on two
tables: Sales.Orders and Sales.OrderLines. Only on the
Sales.Orders table is column tracking activated, so change tracking
will include which columns were included in UPDATE statements
(whether or not the values were actually changed). Next, change
tracking is disabled for Sales.OrderLines. Finally, the
sys.change_tracking_tables catalog view is queried to retrieve a list
of tables with change tracking enabled.
Click here to view code image

https://learn.microsoft.com/sql/relational-databases/track-changes/work-with-change-tracking-sql-server


USE master; 
GO 
-- Enable snapshot isolation for the database, if desired 
ALTER DATABASE WideWorldImporters 
    SET ALLOW_SNAPSHOT_ISOLATION ON; 
-- Enable change tracking for the database 
ALTER DATABASE WideWorldImporters 
    SET CHANGE_TRACKING = ON 
    (CHANGE_RETENTION = 5 DAYS, AUTO_CLEANUP = ON); 
USE WideWorldImporters; 
GO 
-- Enable change tracking for Orders 
ALTER TABLE Sales.Orders 
    ENABLE CHANGE_TRACKING 
    -- and track which columns were included in the 
statements 
WITH (TRACK_COLUMNS_UPDATED = ON); 
-- Enable change tracking for OrderLines 
ALTER TABLE Sales.OrderLines 
    ENABLE CHANGE_TRACKING; 
-- Disable change tracking for OrderLines 
ALTER TABLE Sales.OrderLines 
    DISABLE CHANGE_TRACKING; 
-- Query the current state of change tracking in the database 
SELECT * 
FROM sys.change_tracking_tables;

A major benefit compared to implementing a custom solution is that
change tracking does not make any schema changes to the user
tables such as triggers, or require additional user tables to store the
captured changes. In addition, change tracking is available in all
editions of SQL Server and in Azure SQL Database. Autocleanup
ensures that the database does not grow unchecked.

Note
We recommend enabling autocleanup and setting a retention
period of sufficiently long duration to ensure that data
synchronization has taken place. Applications can check
whether they have waited too long to synchronize; that is,



applications can find out whether cleanup has already removed
tracking information since the application last synchronized.

Although change tracking can track which rows have changed and
optionally which columns were included in an UPDATE statement’s SET
clause, it cannot indicate what the old values were or how often the
row has been changed. If your use case does not require this,
change tracking provides a lightweight option for tracking. If your use
case does require one or both, consider using change data capture
instead, discussed next.

Use change data capture
Change data capture varies in some important ways from change
tracking. First and foremost, change data capture captures the
historical values of the data. This requires a significantly higher
amount of storage than change tracking. Unlike change tracking,
change data capture uses an asynchronous process to write the
change data. This means the client need not wait for the change data
to be committed before the database returns the result of the DML
operation, as it uses the log to do this asynchronously.

Note
Because change data capture relies on the SQL Server Agent,
it is not available in Azure SQL Database, although it is
available in Azure SQL Managed Instance. Starting with SQL
Server 2016 with Service Pack 1, change data capture is
available in Standard edition.

Note
Since SQL Server 2017 CU 15, change data capture and
memory-optimized tables can be used in the same database.
Previously, a database could not have both at the same time.



The following script enables change data capture on a database
using the sys.sp_cdc_enable_db stored procedure. Then, the script
enables change data capture for the Sales.Invoices table. The script
assumes that a user-defined database role cdc_reader has been
created. Members of this role will be able to query the captured data
changes.
Click here to view code image

USE WideWorldImporters; 
GO 
EXEC sys.sp_cdc_enable_db; 
EXEC sys.sp_cdc_enable_table 
    @source_schema = 'Sales', 
    @source_name = 'Invoices', 
    @role_name = 'cdc_reader';

Note
If you run the preceding script while SQL Server Agent is
stopped, the cdc_reader database role will be created as well
as the SQL Server Agent jobs. If you try to run it again, you will
get an error that the specific capture instance already exists.

After executing these statements, data changes to the
Sales.Invoices table will be tracked, complete with before and after
data.

 Additional optional settings for change data capture include
which columns to track and on which filegroup to store the
change table. For more information, visit
https://learn.microsoft.com/sql/relational-databases/track-
changes/enable-and-disable-change-data-capture-sql-server.

Inside OUT

https://learn.microsoft.com/sql/relational-databases/track-changes/enable-and-disable-change-data-capture-sql-server


How can application developers best use change tracking
and change data capture?

There are two important considerations to effectively use
these SQL Server features in client applications:

An application should identify itself by using a source ID
when synchronizing data. By providing a source ID, the
client can avoid obtaining the same data again. A client
specifies its own source ID by using the WITH
CHANGE_TRACKING_CONTEXT clause at the start of
statements.

An application should perform the request for changed
data in a snapshot isolation-level transaction. This will
prevent another application from updating data between
the check for updated data and when data updates are
sent. The snapshot isolation level must be enabled at the
database level, as described in the previous section.

Query change tracking and change data capture
When change tracking or change data capture is enabled, SQL
Server offers functions for querying the tracking and capture
information. These functions are demonstrated here using the
WideWorldImporters sample as modified in the preceding two
sections.

Query change tracking
The following code sample updates a row in the Sales.Orders table,
which has change tracking enabled. The next statement in the
sample then demonstrates how to query the information gathered by
change tracking.
Click here to view code image



-- Modify a row in the Orders table, 
-- which has change tracking enabled 
UPDATE Sales.Orders 
    SET Comments = 'I am a new comment!' 
    WHERE OrderID = 1; 
DECLARE @OrderCommentsColumnId int = 
    COLUMNPROPERTY(OBJECT_ID('Sales.Orders'), N'Comments', 
'ColumnId'), 
    @DeliveryInstructionsColumnId int = 
    COLUMNPROPERTY(OBJECT_ID('Sales.Orders'), 
N'DeliveryInstructions', 'ColumnId'); 
-- Query all changes to Sales.Orders 
SELECT * 
    -- Determine if the Comments column was included in the 
UPDATE 
    , 
CHANGE_TRACKING_IS_COLUMN_IN_MASK(@OrderCommentsColumnId, 
        CT.SYS_CHANGE_COLUMNS) CommentsChanged 
    -- Determine if the DeliveryInstructions column was 
included 
    , 
CHANGE_TRACKING_IS_COLUMN_IN_MASK(@DeliveryInstructionsColumn
Id, 
        CT.SYS_CHANGE_COLUMNS) DeliveryInstructionsChanged 
FROM CHANGETABLE(CHANGES Sales.Orders, 0) as CT 
ORDER BY SYS_CHANGE_VERSION;

The output includes the values of the primary key—in this case the
values of the single column OrderID—and a SYS_CHANGE_OPERATION
column indicating that an UPDATE statement was executed using the
value U. Because you enabled column tracking for the Orders table,
there is a non-NULL value for the SYS_CHANGE_COLUMNS column in the
output.

For each column for which you’d like to determine whether it was
included in the UPDATE statement, use the
CHANGE_TRACKING_IS_COLUMN_IN_MASK function. It uses the column as
the position in the SYS_CHANGE_COLUMNS bitmask to indicate if the value
is changed. In the sample, two output columns are added that
determine if the Comments and DeliveryInstructions columns were



included in the UPDATE statement. A value of 1 indicates yes, and 0
indicates no.

Query change data capture
The following code sample updates a row in the Sales.Invoices table
that has change data capture enabled. Then the change data capture
table is queried with the option all update old, which causes the
single UPDATE statement to have two rows in the output, one
containing the old image and the other row containing the updated
data.
Click here to view code image

-- Modify a row in the Invoices table, 
-- which has change data capture enabled 
UPDATE Sales.Invoices 
    SET Comments = 'I am a new invoice comment again' 
    WHERE InvoiceID = 1; 
DECLARE @from_lsn binary(10) = 
sys.fn_cdc_get_min_lsn('Sales_Invoices'), 
    @to_lsn binary(10) = sys.fn_cdc_get_max_lsn(); 
-- Each capture instance will have unique function names 
-- By default, the capture instance name is schema_table 
-- Note: there may be a slight delay before output is 
returned 
SELECT * 
FROM cdc.fn_cdc_get_all_changes_Sales_Invoices(@from_lsn, 
@to_lsn, 
    N'all update old');

Note
There are many more change data capture functions and stored
procedures available. These are covered at
https://learn.microsoft.com/sql/relational-databases/system-
functions/change-data-capture-functions-transact-sql and
https://learn.microsoft.com/sql/relational-databases/system-
stored-procedures/change-data-capture-stored-procedures-
transact-sql.

https://learn.microsoft.com/sql/relational-databases/system-functions/change-data-capture-functions-transact-sql
https://learn.microsoft.com/sql/relational-databases/system-stored-procedures/change-data-capture-stored-procedures-transact-sql


Compare change tracking, change data capture,
and temporal tables
This section compares three features that have common use cases.
Table 7-1 should prove helpful when you’re deciding which change
tracking feature is appropriate for your needs.

Table 7-1 A comparison of features and uses of change tracking,
change data capture, and temporal tables.

 
Change
tracking

Change data
capture

Temporal
tables

Requires user schema
modification

No No Yes

Available in Azure SQL
Database

Yes No Yes

Edition support Any Enterprise and
Standard

Any

Provides historical data No Yes Yes
Tracks DML type Yes Yes No
Has autocleanup Yes Yes Yes
Time of change
indicator

LSN LSN datetime2

Benefits of PolyBase for external data
sources and external tables
PolyBase is a feature that allows SQL Server to query and interact
with data sources outside of SQL Server. This concept is called data
virtualization. In data virtualization, data that is external to the SQL



Server is made to behave like internal SQL Server data. When
working with data virtualization, you’ll become intimately familiar with
the CREATE DATABASE SCOPED CREDENTIAL and CREATE EXTERNAL DATA
SOURCE T-SQL syntax.

While PolyBase is the SQL Server feature for data virtualization, the
feature name isn’t necessarily uniform across SQL platforms. For
example, Azure Synapse Analytics and Azure SQL Manage Instance
have data virtualization (the latter introduced in September 2022), but
do not use the PolyBase feature name. There are four key scenarios
that best use PolyBase in SQL Server:

Parallelized import of data into SQL Server

Joining multiple data sources in a single query

Eliminating data latency and reducing the need for multiple
copies of data

Archiving data to alternate storage

Unified data platform features
PolyBase enables database administrators to create a unified data
platform for data analytics and applications. Through the use of
PolyBase, SQL Server can interact with different file types and
databases using T-SQL. Supported external data sources include
Oracle, MongoDB, Teradata, Generic ODBC, Azure Storage, and
SQL Server.

Some recent version-specific changes to PolyBase include:

Starting with SQL Server 2019, PolyBase is available on Linux
as well as Windows.

Starting in SQL Server 2022, PolyBase offers functionality to
allow connections to S3-compatible object storage, including the
ability to interact with Apache Parquet file and Delta table



formats. Hadoop external data sources are retired in SQL
Server 2022.

Comma-separated values (CSV) files are also supported in
Azure Storage in SQL Server 2022.

PolyBase scale-out groups are deprecated in SQL Server 2019
and retired in SQL Server 2022.

While it isn’t called PolyBase, Azure SQL Managed Instance
supports some data virtualization features. Azure SQL Managed
Instance even has some features that PolyBase doesn’t, like the
ability to authenticate to Azure Blob Storage with a managed
identity.

Note
The external provider capabilities of PolyBase are tricky. The
details of CREATE EXTERNAL DATA SOURCE change with every
major version of SQL Server. Azure SQL platforms have
different capabilities as well. For example, Cloudera CDH and
Hortonworks HDP support in SQL Server 2019 was removed
from SQL Server 2022. In Microsoft Learn Docs, pay special
attention to the version selector (top-left) for the CREATE
EXTERNAL DATA SOURCE reference article at
https://learn.microsoft.com/sql/t-sql/statements/create-external-
data-source-transact-sql. Each version of SQL Server contains
different LOCATION argument options, for example.

Microsoft provides how-to guides for each of the many different types
of external data sources—for example, how to configure PolyBase to
access external data in Oracle.

Pushdown computation
Pushdown computation is supported for numerous data sources,
including generic ODBC, Oracle, SQL Server, Teradata, MongoDB,
and Azure Blob Storage.

https://learn.microsoft.com/sql/t-sql/statements/create-external-data-source-transact-sql


The purpose of pushdown computation is to allow specific
computations to be performed on the external data source. This
distributes some of the workload of the query to the remote data
source, reducing the amount of data that needs to be transmitted and
therefore improving query performance. The computations include
joins, aggregations, expressions, and operators.

 For more information about what computations work with
pushdown, visit https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-pushdown-
computation#enable-pushdown-computation.

INSIDE OUT
How can you tell if pushdown computation occurred in a
PolyBase query?

There is only certain T-SQL syntax supported for translation to
the external data source’s ODBC commands, and there are
some limitations that would prevent pushdown from otherwise
occurring.

The methods for determining whether pushdown has occurred
may vary by SQL Server version. Before SQL Server 2019,
Trace Flag 6408 was required to surface certain key
indicators of pushdown. Starting with SQL Server 2019, the
read_command column of sys.dm_exec_external_work will
contain the remote query, with the limitation that it only
contains the first 4,000 characters of the remote query.

Microsoft provides a detailed walk-through for detecting
PolyBase pushdown for joins, aggregations, and filters here:
https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-how-to-tell-pushdown-
computation.

https://learn.microsoft.com/sql/relational-databases/polybase/polybase-pushdown-computation#enable-pushdown-computation
https://learn.microsoft.com/sql/relational-databases/polybase/polybase-how-to-tell-pushdown-computation


Install and configure PolyBase
This section looks at the installation of PolyBase and the application
of PolyBase concepts.

Installation
When installing PolyBase on a Windows machine, keep these points
top of mind:

PolyBase can be installed on only one instance per server.

To use PolyBase, you need to be assigned the sysadmin role or
Control Server permission.

In SQL Server 2019 and after, you must enable PolyBase using
sp_configure after installation. This is an important step to
remember in both Windows and Linux.

If the Windows firewall service is running during installation, the
necessary firewall rules will be set up automatically. Other
firewalls external to your SQL Server instance may still require
changes.

For step-by-step instructions on how to install PolyBase, see the
Microsoft documentation for your specific version of SQL Server:

On Windows, see https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-installation.

On Linux (Red Hat, Ubuntu, or SUSE), see
https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-linux-setup.

Note
Decide on the service account for PolyBase in advance. The
only way to change the service account for the PolyBase

https://learn.microsoft.com/sql/relational-databases/polybase/polybase-installation
https://learn.microsoft.com/sql/relational-databases/polybase/polybase-linux-setup


Engine Service and Data Movement Service is to uninstall and
reinstall PolyBase.

With the installation complete, you accomplish the next steps via T-
SQL syntax:

1. Create the database master key, if it doesn’t already exist, with
CREATE MASTER KEY.

2. Create a database scoped credential for the data source with
CREATE DATABASE SCOPED CREDENTIAL.

3. Configure the external data source with CREATE EXTERNAL DATA
SOURCE.

4. Create external tables, with CREATE EXTERNAL TABLE.

For additional details, follow the steps at
https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-configure-sql-server. These steps are
also covered in this chapter.

Configure and enable
A master key is a symmetric key used to protect other keys and
certificates in the database. It is encrypted with both an algorithm and
password. A master key is necessary to protect the credentials of the
external tables. Details on how to create and update a master key,
and the instructions to set it up, can be found in this chapter in the
section “External tables.”

Inside OUT
How many master keys can a database have?

Each database can only have one master key. Before creating
a new master key, query the sys.symmetric_keys table in the

https://learn.microsoft.com/sql/relational-databases/polybase/polybase-configure-sql-server


desired database to confirm there is not a master key already
present.

If you try to create a master key on a database that already
has a master key, you will receive the following error:

Click here to view code image

There is already a master key in the database. Please 
drop it before 
performing this statement.

However, you can have multiple passwords for the same
master key. If you already have a master key created, and you
want a specific password for use with PolyBase, you can
issue the following command:

Click here to view code image

ALTER MASTER KEY ADD ENCRYPTION BY PASSWORD  = '<strong 
password here>';

Starting in SQL Server 2019, you need to enable PolyBase globally
using sp_configure. Once complete, you must run RECONFIGURE, and
then restart the SQL Server service. Both PolyBase services will have
to be started manually as they are turned off during this process and
do not restart automatically.

This can be done with these commands:
Click here to view code image

exec sp_configure @configname = 'polybase enabled', 
@configvalue = 1; 
RECONFIGURE [ WITH OVERRIDE ] ;

 For more details on this command, visit
https://learn.microsoft.com/sql/database-engine/configure-
windows/polybase-connectivity-configuration-transact-sql.

https://learn.microsoft.com/sql/database-engine/configure-windows/polybase-connectivity-configuration-transact-sql


Note
If you are unsure if PolyBase is installed, you can check its
SERVERPROPERTY with this command:
Click here to view code image

SELECT SERVERPROPERTY ('IsPolyBaseInstalled') AS 
IsPolyBaseInstalled;

It returns 1 if it is installed and 0 if it is not.

Shared access signatures
As the name suggests, a shared access signature (SAS) is a way to
share an object in your storage account with others without exposing
your account key. This gives you granular control over the access you
grant, at the account, service, or user level.

You can set a start time and expiry time.

Azure Blob Storage containers, file shares, queues, and tables
are all resources that accept SAS policies.

You can set an optional IP address or range from which access
will be accepted.

You can restrict access from HTTPS clients by specifying the
accepted protocol.

An SAS is used to allow clients to read, write, or delete data in your
Azure Storage account without access to your account key. This is
typically necessary when a client wants to upload large amounts of
data or high-volume transactions to your storage account, and
creating a service to scale and match demand is too difficult or
expensive.

The SAS is a signed Uniform Resource Identifier (URI) that points to
resources and includes a token containing a set of query parameters



that indicate how the resource can be accessed. Azure Storage
checks both the storage piece and the provided token piece of the
SAS URI to verify the request. If for any reason the SAS is not valid, it
receives an error code 403 (Forbidden), and access is denied.

There are three different types of SAS:

User delegation shared access signatures rely on Azure AD
credentials.

The service SAS delegates access via the storage account key
to a resource in a single storage service (blob, queue, table, or
file service).

The account-level SAS delegates access via the storage
account key to resources in one or more storage services within
a storage account. This also includes the option to apply access
to services such as Get/Set Service Properties and Get Service
Stats.

 For details on all the parameters that can be set with shared
access signatures, see
https://learn.microsoft.com/azure/storage/common/storage-
dotnet-shared-access-signature-part-1#shared-access-signature-
parameters.

You can create an ad hoc SAS either as an account SAS or a service
SAS, and the start time, expiry time, and permissions are all specified
in the SAS URI, the SECRET that is used to eventually create the
CREDENTIAL in SQL Server.

You can also create policies to use for many shared access
signatures. You may find that using the free Azure Storage Explorer
application makes creating stored access policies and shared access
signatures easy. You can download it here:
https://aka.ms/storageexplorer. You can also create policies and
shared access signatures in PowerShell.

https://learn.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1#shared-access-signature-parameters
https://aka.ms/storageexplorer


Inside OUT
Are there any risks to using or storing a SAS URI?

Yes. Anyone who has the SAS URI can access your storage
account. It belongs in the SECRET of a CREATE CREDENTIAL T-
SQL statement and shouldn’t be stored anywhere it could be
discovered—including in source control or unsecured
documentation.

If a SAS expires (an expiration date must be provided),
applications relying on the SAS could break. In SQL Server,
you should generate a new SAS and ALTER the credential to
use it.

To mitigate against SAS expiration, we recommended that
you:

Always use HTTPS to create or distribute a SAS.

Use storage access policies.

Set the expiration on an account SAS far in the future and
regularly monitor and rotate the SAS as necessary.

Set the expiration on an ad hoc SAS shorter to reduce the
risk if compromised.

Ensure clients renew with enough time to avoid disruption.

Ensure you use the principle of least privilege when
creating SAS URIs to reduce risk. Consider multiple
shared access signatures with narrowly defined
permissions.

Data uploaded with a SAS is not validated in any way, so a middle
tier that performs rule validation, authentication, and auditing may still



be the better option. Regardless of what you choose, monitor your
storage for spikes in authentication failures.

 Examples of how to create account and service SAS can be
found at
https://learn.microsoft.com/azure/storage/common/storage-
dotnet-shared-access-signature-part-1#sas-examples.

Port requirements for Hadoop
If you plan to access Hadoop with PolyBase in SQL Server 2016
through SQL Server 2019, there are some additional requirements.
These relate to which cluster components and ports need to be open
for PolyBase to interact correctly with a Hadoop external data source.
The ports for the following cluster components must be open:

HDFS ports

NameNode

DataNode

Resource manager

Job submission

Job history

Table 7-2 shows the default ports for these components. These ports
are dependent on the version of Hadoop. In addition, the ports may
be different if Hadoop is using a custom configuration.

Table 7-2 Port requirements for Hadoop access with PolyBase.

Hadoop cluster component
Default
port

NameNode 8020
DataNode (Data transfer, non-privilege IPC port) 50010

https://learn.microsoft.com/azure/storage/common/storage-dotnet-shared-access-signature-part-1#sas-examples


Hadoop cluster component
Default
port

DataNode (Data transfer, privilege IPC port)

1019

Resource Manager Job Submission (Hortonworks 1.3) 50300
Resource Manager Job Submission (Cloudera 4.3) 8021
Resource Manager Job Submission (Hortonworks 2.0 on
Windows, Cloudera 5.x on Linux)

8032

Resource Manager Job Submission (Hortonworks 2.x, 3.0
on Linux, Hortonworks 2.1–3 on Windows)

8050

Resource Manager Job History 10020

Database scoped credential
Database scoped credentials are used to access non-public blob
storage accounts from SQL Server or Azure Synapse with PolyBase.
SQL Server with PolyBase also requires database scoped credentials
for several types of connectors for PolyBase, including S3-compliant
object storage, ODBC generic types, and Azure Blob Storage.

 Find the syntax to create scoped credentials at
https://learn.microsoft.com/sql/t-sql/statements/create-
database-scoped-credential-transact-sql.

Inside OUT
Can I just use system credentials for my scoped
credentials?

System credentials start with ##. Database scoped credentials
cannot start with the pound sign (#). This means system

https://learn.microsoft.com/sql/t-sql/statements/create-database-scoped-credential-transact-sql


credentials are not eligible to be scoped credentials.

Note
If your SAS key value begins with a question mark (?), be sure
to remove the leading ? because it will not be recognized.
Ensure you have already set up a master key. The master key
will be used to protect these credentials. If you do not yet have
a master key, the instructions to set it up can be found later in
this chapter in the section, “External tables.”

External data sources
External data sources are used to establish connectivity to systems
outside of SQL Server for data virtualization or loading data using
PolyBase. The most common use cases are loading data with bulk
INSERT or OPENROWSET activities, or accessing data that would
otherwise not be available in SQL Server because it resides on
another system—even a non-relational storage system.

The details of the CREATE EXTERNAL DATA SOURCE T-SQL syntax have
changed with every major version of SQL Server. In Microsoft Docs,
pay special attention to the version selector (top-left) in the CREATE
EXTERNAL DATA SOURCE reference article:
https://learn.microsoft.com/sql/t-sql/statements/create-external-data-
source-transact-sql.

The following example shows how to load data from a CSV file in an
Azure Blob Storage location that has been configured as an external
data source. This requires a database scoped credential using a
shared access signature.
Click here to view code image

-- Create the External Data Source 
-- Remove the ? from the beginning of the SAS token 
-- Do not put a trailing /, file name, or shared access 

https://learn.microsoft.com/sql/t-sql/statements/create-external-data-source-transact-sql


signature parameters at the end 
of the LOCATION URL when configuring an external data source 
for bulk operations. 
CREATE DATABASE SCOPED CREDENTIAL AccessPurchaseOrder 
WITH 
     IDENTITY = 'SHARED ACCESS SIGNATURE' 
, SECRET = '******srt=sco&sp=rwac&se=2022-02-
01T00:55:34Z&st=2023-12- 
29T16:55:34Z***************' 
; 
CREATE EXTERNAL DATA SOURCE ExternalPurchaseOrder 
WITH 
(LOCATION   = 
'https://newinvoices.blob.core.windows.net/week3' 
,CREDENTIAL = AccessPurchaseOrder, TYPE = BLOB_STORAGE) 
; 
--Insert into 
BULK INSERT Sales.Orders 
FROM 'order-2022-11-04.csv' 
WITH (DATA_SOURCE = ' ExternalPurchaseOrder');

Note
Ensure you have at least read permission on the object that is
being loaded, and that the expiration period of the SAS is valid
(all dates are in UTC time). A credential is not needed if the
Azure Blob Storage account has public access.

Creating the external data source can be tricky. Your external data
source may require some specifics of the connection string to be
provided via the CONNECTION_OPTIONS parameter of the CREATE
EXTERNAL DATABASE statement.

 Microsoft recently documented the details of potentially
required third-party provider parameters in an article for
CREATE EXTERNAL DATA SOURCE CONNECTION_OPTIONS, at
https://learn.microsoft.com/sql/t-sql/statements/create-
external-data-source-connection-options.

https://learn.microsoft.com/sql/t-sql/statements/create-external-data-source-connection-options


External file format
The external file format is required before you can create the external
table, but only for some external data source types. As suggested,
the file format specifies the layout of the data to be referenced by the
external table. Hadoop, Azure Blob Storage, and Azure Data Lake
Storage all need an external file format object defined for PolyBase.
Delimited text files, Parquet, and both RCFile and ORC Hive files are
supported.

Here’s an example:
Click here to view code image

CREATE EXTERNAL FILE FORMAT skipHeader_CSV 
WITH (FORMAT_TYPE = DELIMITEDTEXT, 
      FORMAT_OPTIONS( 
          FIELD_TERMINATOR = ',', 
          STRING_DELIMITER = '"', 
          FIRST_ROW = 2, 
          USE_TYPE_DEFAULT = True) 
);

 Syntax for this command can be found at
https://learn.microsoft.com/sql/t-sql/statements/create-
external-file-format-transact-sql.

Starting with SQL Server 2022, you can also query data directly from
the folder of Delta tables in Azure Blob Storage. Creating an external
file format is required, but simpler:
Click here to view code image

CREATE EXTERNAL FILE FORMAT deltaTable1 WITH (FORMAT_TYPE = 
DELTA);

Inside OUT
Can any format be used as an external file?

https://learn.microsoft.com/sql/t-sql/statements/create-external-file-format-transact-sql


Delimited text files, RCFile, Apache Parquet, and ORC Hive
files are supported but have some limitations. ORC offers
better compression and performance than the RCFile.
Delimited text has some limitations on the field terminators,
string delimiters, and date formats.

External tables
External tables are used to read specific external data and to import
data into SQL Server. You don’t have to create an external table. You
can use OPENROWSET to query data on some external data sources, but
external tables provide strong data typing and easy joins to traditional
SQL Server tables using T-SQL queries. External tables are an
important part of the promise PolyBase brings as a single plane of
data, inside SQL Server, for your entire data estate.

No actual data is moved to SQL Server during the creation of an
external table; only the metadata and basic statistics about the folder
and file are stored. The intent of the external table is to be the link
connecting the external data to SQL Server to create the data
virtualization. The external table looks much like a regular SQL
Server table in format and has a similar syntax, as you see here with
this external Oracle table.
Click here to view code image

-- Create a Master Key 
   CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'; 
   CREATE DATABASE SCOPED CREDENTIAL credential_name 
   WITH IDENTITY = 'username', Secret = 'password'; 
-- LOCATION: Location string for data 
   CREATE EXTERNAL DATA SOURCE external_data_source_name 
   WITH ( LOCATION = 'oracle://<server address>[:<port>]', 
   CREDENTIAL = credential_name) 
--Create table 
   CREATE EXTERNAL TABLE customers( 
   [O_ORDERKEY] DECIMAL(38) NOT NULL, 
   [O_CUSTKEY] DECIMAL(38) NOT NULL, 
   [O_ORDERSTATUS] CHAR COLLATE Latin1_General_BIN NOT NULL, 



   [O_TOTALPRICE] DECIMAL(15,2) NOT NULL, 
   [O_ORDERDATE] DATETIME2(0) NOT NULL, 
   [O_ORDERPRIORITY] CHAR(15) COLLATE Latin1_General_BIN NOT 
NULL, 
   [O_CLERK] CHAR(15) COLLATE Latin1_General_BIN NOT NULL, 
   [O_SHIPPRIORITY] DECIMAL(38) NOT NULL, 
   [O_COMMENT] VARCHAR(79) COLLATE Latin1_General_BIN NOT 
NULL 
   ) 
   WITH ( LOCATION='customer', DATA_SOURCE= 
external_data_source_name   );

Note
Schema drift can affect external tables. If the external source
changes, it is not automagically changed in the external table
definition. Any change to the external source will need to be
reflected in the external table definition.

In ad hoc query scenarios, such as querying Hadoop data, PolyBase
stores the rows retrieved from the external data source in a
temporary table. After the query completes, PolyBase removes and
deletes the temporary table. No permanent data is stored in SQL
tables.

In an import scenario, such as SELECT INTO from an external table,
PolyBase stores rows returned as permanent data in the SQL table.
The new table is created during query execution when PolyBase
retrieves the external data.

PolyBase can push some of the query computation to improve query
performance. This action is called predicate pushdown. It is used by
specifying the Hadoop resource manager location option when
creating the external data source and enabling pushdown using these
parameters:
Click here to view code image

PUSHDOWN                  = [ON | OFF] 
, RESOURCE_MANAGER_LOCATION = '<resource_manager>[:<port>]'



With some third-party data providers, instead of using the PUSHDOWN
keyword, you may need to specify pushdown-related keywords in the
CONNECTION_OPTIONS argument of CREATE EXTERNAL DATA SOURCE.

You can create many external tables that reference the same or
different external data sources.

Note
Elastic query also uses external tables, but the same table
cannot be used for both elastic queries and PolyBase. Although
they have the same name, they are not the same.

Statistics
Statistics on external tables are created the same as other tables.

Syntax for CREATE STATISTICS can be found at
https://learn.microsoft.com/sql/t-sql/statements/create-statistics-
transact-sql.

Catalog views
There are catalog views for the installation and running of PolyBase.

sys.external_data_sources. Used to identify external data
sources and to give visibility into related metadata. This includes
the source, type, and name of the remote database, and in the
case of Hadoop, the resource manager’s IP and port. This can
be very helpful.

sys.external_file_formats. Used to obtain details on the
external file format for the sources. Along with the file format
type, it includes details about the delimiters, general format,
encoding, and compression.

https://learn.microsoft.com/sql/t-sql/statements/create-statistics-transact-sql


sys.external_tables. Contains a row for each external table in
the current database. It details information needed about the
tables, such as ID links to preceding tables. Many of the
columns provide details about external tables over the shard
map manager; this is a special database that maintains global
mapping information about all shards (databases) in a shard set.
The metadata allows an application to connect to the correct
database based upon the value of the sharding key. Every shard
in the set contains maps that track the local shard data (known
as shardlets).

Dynamic management views
Several dynamic management views can be used with PolyBase to
troubleshoot issues, such as finding long-running queries, and to
monitor nodes in a PolyBase group.

 A list of relevant views can be found at
https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-troubleshooting#dynamic-
management-views.

More PolyBase examples, architectures including
S3 and URL queries
S3-compatible object storage is a new feature of SQL Server 2022,
providing both backup and restores to S3-compatible storage and for
use with PolyBase. SQL Server 2022 enables you to connect to
external data stored in any S3-compatible object storage. These
functions allow you to connect to various files stored in S3 storage,
including Parquet files. You can read from these files and, if you grant
the correct permissions to the S3 user, write to them.

Many developers like to use S3-compatible object storage, and the
relative low cost makes it a desirable solution to store files. However,
challenges can arise when trying to access these files within a
relational database. If you would like to write files directly to S3-

https://learn.microsoft.com/sql/relational-databases/polybase/polybase-troubleshooting#dynamic-management-views


compatible storage without using SSIS, PolyBase may be a good
solution. To set this connection up, you need to create several
objects, including a database scoped credential, external data
source, external file format, and external table.

 For more information and details on the permissions and
limitations of this new feature of SQL Server 2022, see
https://learn.microsoft.com/sql/relational-
databases/polybase/polybase-configure-s3-compatible.

The following code walks you through how to set this up.
Click here to view code image

-- Create database scoped credential 
IF NOT EXISTS(SELECT * FROM sys.credentials WHERE name = 
'sqlserver2022parquets3') 
BEGIN 
 CREATE DATABASE SCOPED CREDENTIAL sqlserver2022parquets3 --
PolyBaseS3 
 WITH IDENTITY = 'S3 Access Key', 
 SECRET = '######'; 
END 
-- Create external source 
-- Can use URL not just IP address 
CREATE EXTERNAL DATA SOURCE sqlserver2022parquetdc 
WITH 
( 
    LOCATION = 's3://sqlserver2022parquet.s3.us-east-
1.amazonaws.com/', 
    CREDENTIAL = sqlserver2022parquets3 
); 
-- Create external file format 
CREATE EXTERNAL FILE FORMAT ParquetFileFormat WITH 
(FORMAT_TYPE = PARQUET); 
GO 
-- Create external table 
-- Location below specifies folder and filename 
CREATE EXTERNAL TABLE Warehouse.ColdRoomTemperaturesParquet ( 
    [ColdRoomTemperatureID] [bigint] , 
    [ColdRoomSensorNumber] [int] , 
    [RecordedWhen] [datetime2](7) , 

https://learn.microsoft.com/sql/relational-databases/polybase/polybase-configure-s3-compatible


    [Temperature] [decimal](10, 2) , 
    [ValidFrom] [datetime2](7) , 
    [ValidTo] [datetime2](7)  ) 
WITH (LOCATION = '/output/ColdRoomTemperatures.parquet', 
DATA_SOURCE = sqlserver2022parquetdc, 
FILE_FORMAT = ParquetFileFormat); 
GO 
-- Query data directly from S3 storage with OPENROWSET 
SELECT  TOP 1 * 
FROM    OPENROWSET 
        (   BULK 'output/ColdRoomTemperatures.parquet', 
            FORMAT       = 'PARQUET', 
            DATA_SOURCE  = 'sqlserver2022parquetdc' 
        ) AS [cc]; 
-- Can query the external table directly as well 
SELECT  TOP 1 * 
FROM Warehouse.ColdRoomTemperaturesParquet;

Inside OUT
How do you set up S3-compatible object storage?

Over the past several years, the use of S3-compatible object
storage has become increasingly popular among developers.
However, one of the challenges has been how to integrate S3-
compatible object storage with SQL Server. For those of us
accustomed to working with SQL Server, this becomes even
trickier, as we are not always familiar with how to set up S3-
compatible object storage. This can make it increasingly
difficult to get a proof-of-concept set up and tested.

If you want to set up your own S3-compatible object storage
with the new capabilities of SQL Server 2022, you can with
MinIO using their free GNU AGPL v3 edition. Anthony
Nocentino has written detailed instructions on how you can
get MinIO set up correctly. You can find more details at
https://www.nocentino.com/posts/2022-06-10-setting-up-
minio-for-sqlserver-object-storage.

https://www.nocentino.com/posts/2022-06-10-setting-up-minio-for-sqlserver-object-storage


PolyBase examples with a generic ODBC driver
While PolyBase allowed connections to Oracle, Teradata, and
MongoDB in prior versions of SQL Server, SQL Server 2022
introduces the ability to connect using ODBC generic types. By
installing the appropriate driver and setting up the external database
objects, you can connect to other relational databases, including
MySQL or SAP as examples. (This feature is supported only by SQL
Server on Windows at the time of this book’s writing.)

The following sample code contains an example of a generic ODBC
connector for MySQL:
Click here to view code image

-- Create database scoped credential 
IF NOT EXISTS(SELECT * FROM sys.credentials WHERE name = 
'sqlserver2022mysql') 
BEGIN 
 CREATE DATABASE SCOPED CREDENTIAL sqlserver2022mysql 
 WITH IDENTITY = 'sqlzelda', 
 SECRET = '<Strong Password>'; 
END 
-- Create external source 
CREATE EXTERNAL DATA SOURCE sqlserver2022mysqldc 
WITH ( LOCATION = 'odbc://localhost:3306', 
CONNECTION_OPTIONS = 'Driver={MySQL ODBC 8.0 ANSI Driver}; 
ServerNode = localhost:3306', 
--PUSHDOWN = ON, 
CREDENTIAL = sqlserver2022mysql ); 
-- Create external table 
-- Location below specifies folder and filename 
CREATE EXTERNAL TABLE Warehouse.ColdRoomTemperatureMySQL 
( 
    ColdRoomTemperatureID INT NOT NULL, 
    ColdRoomSensorNumber INT NOT NULL, 
    Temperature DECIMAL(10, 2) NOT NULL--, 
) 
 WITH 
 ( 
    LOCATION='coldroom.coldroomtemperatures', 
    DATA_SOURCE = sqlserver2022mysqldc 



 ); 
GO 
-- Add index to external table 
CREATE STATISTICS stx_coldroomsensornumber 
ON Warehouse.ColdRoomTemperatureMySQL (ColdRoomSensorNumber) 
WITH FULLSCAN; 
-- Can query the external table directly as well 
SELECT TOP 1 ColdRoomTemperatureID

Here, FROM [Warehouse].[ColdRoomTemperatureMySQL] is the external
table virtualizing data through the generic ODBC connector. To re-
create this example, you need to download the MySQL ODBC 8.0
ANSI driver, though you can use any data provider’s ODBC driver to
use this feature.

Azure bulk operations examples
In addition to being able to access Azure Blob Storage, PolyBase will
also allow you to access CSV files and Delta tables. When
connecting to Azure Blob Storage, you will be able to query, import,
and export data. You can access these files by querying external
tables or opening the files directly using OPENROWSET. For example:
Click here to view code image

CREATE DATABASE SCOPED CREDENTIAL AzureBlob 
WITH  IDENTITY = 'SHARED ACCESS SIGNATURE', 
SECRET = 'sv=2018-03-28&ss=bfqt&srt=sco&sp=rwdlacup 
&se=2099-08-19T23:56:04Z&st=2022-08-
19T15:56:04Z&spr=https&sig=ZWHPwhateverD'; 
CREATE EXTERNAL DATA SOURCE AzureBlob_ForBulk 
WITH  ( LOCATION = 
'https://container.blob.core.windows.net/subfolder' , --No 
trailing / 
CREDENTIAL = AzureBlob, TYPE = BLOB_STORAGE);



Part III

SQL Server management



Chapter 8

Maintain and monitor SQL
Server

Detect, prevent, and respond to database corruption
Maintain indexes and statistics
Manage database file sizes
Monitor activity with DMOs
Monitor with the SQL Assessment API
Use Extended Events
Capture performance metrics with DMOs and data collectors
Protect important workloads with Resource Governor
Understand the SQL Server servicing model

Previous chapters covered the importance and logistics of database
backups, but what else do you need to do on a regular basis to
maintain a healthy SQL Server?

This chapter lays the foundation for the what and why of Microsoft
SQL Server monitoring, based on dynamic management objects
(DMOs), Database Consistency Checker (DBCC) commands,
Extended Events (which replace Profiler/trace), and other tools
provided by Microsoft.



Beyond simply setting up these tools, this chapter reviews what to
look for on SQL Server instances on Windows and Linux, as well as
SQL monitoring solutions in the Azure portal.

There is a lot for a DBA to be concerned with to monitor your
databases—corrupt data files, lack of use of indexes and stats,
properly sized data files, and baselined performance metrics, just to
start. This chapter covers these topics and more.

All sample scripts in this book are available for download at
https://MicrosoftPressStore.com/SQLServer2022InsideOut/download
s.

Detect, prevent, and respond to
database corruption
After database backups, the second most important task concerning
database integrity is proper configuration to prevent—and monitoring
to mitigate—database corruption. A very large part of this is a
proactive schedule of detection for rare cases when corruption occurs
despite your best efforts. This isn’t a complicated topic and mostly
revolves around configuring one setting and regularly running one
command.

Set the database’s page verify option
For all databases, the page verify option should be CHECKSUM. Since
SQL Server 2005, CHECKSUM has been the superior and default
setting, but it requires a manual change after a database is restored
up to a new SQL Server version.

If you still have databases whose page verify option is not CHECKSUM,
you should change this setting immediately. The legacy NONE or
TORN_PAGE_DETECTION options for this setting are a clear sign that this
database has been moved over the years from a pre–SQL Server
2005 version. This setting is never automatically changed; you must

https://microsoftpressstore.com/SQLServer2022InsideOut/downloads


change this setting after restoring the database up to a new version
of SQL Server.

Warning
Before making the change to the CHECKSUM page verify option,
take a full backup!

Inside OUT
Is enabling the CHECKSUM page verify option as easy as
changing the setting in the database?

Unfortunately, no. Changing the page verify option to
CHECKSUM is a quick change, but the checksums are not
immediately created and so do not begin to protect the data
pages immediately.

A checksum must be generated and stored for each page, so
to truly verify that no corruption exists, it is recommended that
you rebuild every index on every table after changing the
page verify option to CHECKSUM. This obviously can be time
consuming and could create a lot of transaction log activity,
but it is necessary.

If corruption is found with the newly enabled CHECKSUM setting, the
database can drop into a SUSPECT state, in which it becomes
inaccessible. It is entirely possible that changing a database from
NONE or TORN_PAGE_DETECTION to CHECKSUM could result in the
discovery of existing, even long-present database corruption.

You should periodically run CHECKDB on all databases. This is a time-
consuming but crucial process. You should run DBCC CHECKDB at least
as often as your backup retention plan. Consider DBCC CHECKDB nearly
as important as regular database backups.



The only reliable solution to database corruption is restoring from a
known good backup.

For example, if you keep local backups around for one month, you
should ensure that you perform a successful DBCC CHECKDB at least
once per month, but more often is recommended. This ensures you
will at least have a recovery point for uncorrupted, unchanged data,
and a starting point for corrupted data fixes.

The DBCC CHECKDB command covers other more granular database
integrity check tasks, including DBCC CHECKALLOC, DBCC CHECKTABLE,
and DBCC CHECKCATALOG, all of which are important, and in only rare
cases need to be run separately to split up the workload.

Running DBCC CHECKDB with no other parameters or syntax performs
an integrity test on the current database context. Without specifying a
database, however, no other additional options can be provided.

On large databases, DBCC CHECKDB is a resource-intensive operation
(CPU, memory, and I/O), can take hours, and affects other user
queries because of that resource consumption. DBCC CHECKDB may
take hours to complete and tie up CPU resources, so it should be run
only outside of business hours. To mitigate this, consider specifying
the MAXDOP option (more on that in a moment). You can evaluate
the progress of a DBCC CHECKDB operation (as well as backup and
restore operations) by referencing the value in
sys.dm_exec_requests.percent_complete for the executing session.

Here are some parameters worth noting:

NOINDEX. This can reduce the duration of the integrity check by
skipping checks on nonclustered rowstore and columnstore
indexes. It is not recommended.

Example usage:
Click here to view code image
DBCC CHECKDB (databasename, NOINDEX);



REPAIR_REBUILD. This ensures you have no data loss.
However, there are some limitations to its potential benefit. You
should run this only after considering other options, including a
backup and restore, because although it might have some
success, it is unlikely to result in a complete repair. It can also
be very time consuming, involving the rebuilding of indexes
based on attempted repair data.

 Review the DBCC CHECKDB documentation at
https://learn.microsoft.com/sql/t-sql/database-console-
commands/dbcc-checkdb-transact-sql.

Example usage:
Click here to view code image
DBCC CHECKDB (databasename) WITH REPAIR_REBUILD;

REPAIR_ALLOW_DATA_LOSS. You should run this only as a
last resort to achieve a partial database recovery, because it can
force a database to resolve errors by simply deallocating pages,
potentially creating gaps in rows or columns. You must run this
in SINGLE_USER mode, and you should run it in EMERGENCY mode.
Review the DBCC CHECKDB documentation for a number of
caveats, and do not execute this command casually.

Example usage (last resort only, not recommended!):
Click here to view code image
ALTER DATABASE WorldWideImporters SET EMERGENCY, 
SINGLE_USER; 
DBCC CHECKDB('WideWorldImporters', 
REPAIR_ALLOW_DATA_LOSS); 
ALTER DATABASE WorldWideImporters SET MULTI_USER;

Note
A complete review of EMERGENCY mode and
REPAIR_ALLOW_DATA_LOSS is detailed in this blog post by
Microsoft’s original DBCC CHECKDB engineer, Paul Randal:

https://learn.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql


http://sqlskills.com/blogs/paul/checkdb-from-every-angle-
emergency-mode-repair-the-very-very-last-resort.

WITH NO_INFOMSGS. This suppresses informational status
messages and returns only errors.

Example usage:
Click here to view code image
DBCC CHECKDB (databasename) WITH NO_INFOMSGS;

WITH ESTIMATEONLY. This estimates the amount of space
required in tempdb for the CHECKDB operation.

Example usage:
Click here to view code image
DBCC CHECKDB (databasename) WITH ESTIMATEONLY;

WITH MAXDOP = n. Similar to limiting the maximum degree of
parallelism in other areas of SQL Server, this option limits the
CHECKDB operation’s parallelism, possibly extending duration but
potentially reducing the CPU utilization. SQL Server Enterprise
edition supports parallel execution of the DBCC CHECKDB
command, up to the server’s MAXDOP setting. Therefore, in
Enterprise edition, consider MAXDOP = 1 to run the command
single-threaded, or, overriding the other limitations on maximum
degree of parallelism with MAXDOP = 0, allowing the CHECKDB
unlimited parallelism to potentially finish sooner. Outside of
Enterprise and Developer editions of SQL Server, objects are
not checked in parallel.

Example usage, combined with the aforementioned NO_INFOMSGS
command to show multiple parameters:

Click here to view code image
DBCC CHECKDB (databasename) WITH NO_INFOMSGS, MAXDOP = 0;

http://sqlskills.com/blogs/paul/checkdb-from-every-angle-emergency-mode-repair-the-very-very-last-resort


 You can see all the syntax options for CHECKDB, and those options
that can be used together, at https://learn.microsoft.com/sql/t-
sql/database-console-commands/dbcc-checkdb-transact-
sql#syntax.

 For more information on automating DBCC CHECKDB, see Chapter 9,
“Automate SQL Server administration.”

Inside OUT
How do you tell when a DBCC CHECKDB was last run on
a database?

SQL Server writes each execution of DBCC CHECKDB to the SQL
Server Error Log, but also records it internally. You can
retrieve the latest good known execution date of DBCC CHECKDB
by using the SELECT DATABASEPROPERTYEX command.

For example:
Click here to view code image

SELECT DATABASEPROPERTYEX ('dbname' , 
'LastGoodCheckDbTime');

Repair database data file corruption
Of course, the only real remedy to data corruption after it has
happened is to restore from a backup that predates the corruption.
The well-documented DBCC CHECKDB option for
REPAIR_ALLOW_DATA_LOSS, discussed previously, should be a last
resort.

It is possible to repair missing pages in clustered indexes by piecing
together missing columns in nonclustered indexes. If you are
fortunate enough that corruption is only in nonclustered indexes, you

https://learn.microsoft.com/sql/t-sql/database-console-commands/dbcc-checkdb-transact-sql#syntax


can simply rebuild those indexes to recover from corruption.
However, in many cases, clustered index or system pages are
corrupt, meaning the only option is to restore the database. It is also
possible to recover from data corruption, admittedly a lucky endeavor
that this author has benefited from, by identifying the objects reported
by DBCC CHECKDB and performing index rebuild operations on them.

Finally, availability groups provide a built-in data-corruption detection
and automatic repair capability by using uncorrupted data on one
replica to replace inaccessible data on another.

 For more information on this feature of availability groups, see
Chapter 11, “Implement high availability and disaster
recovery.”

Recover from database transaction log file
corruption
In addition to following guidance in the previous chapter on the
importance of backups, you can reconstitute a corrupted or lost
database transaction log file by using the code that follows. A lost
transaction log file could result in the loss of uncommitted data (or in
the case of delayed durability tables, the loss of data that hasn’t been
made durable in the log yet), but in the event of a disaster recovery
involving the loss of the .ldf file with an intact .mdf file, this could be a
valuable step.

It is possible to rebuild a blank transaction log file in a new file
location for a database by using the following command:
Click here to view code image

ALTER DATABASE DemoDb SET EMERGENCY, SINGLE_USER; 
ALTER DATABASE DemoDb REBUILD LOG 
ON (NAME= DemoDb_Log, FILENAME = 'F:\DATA\DemoDb_new.ldf'); 
ALTER DATABASE DemoDb SET MULTI_USER;

Note



Rebuilding a blank transaction log file using ALTER DATABASE …
REBUILD LOG is not supported for databases containing a
MEMORY_OPTIMIZED_DATA filegroup.

Database corruption in Azure SQL Database
Like many other administrative concerns with a platform as a service
(PaaS) database, integrity checks for Azure SQL Database are
automated. Microsoft takes data integrity in its PaaS database
offering very seriously and provides strong assurances of assistance
and recovery for this product. Albeit rare, Azure engineering teams
respond 24×7 globally to data-corruption reports. The Azure SQL
Database engineering team details its response promises at
https://azure.microsoft.com/blog/data-integrity-in-azure-sql-database/.

Note
While Azure SQL Managed Instance has many PaaS-like
qualities, automated integrity checks are not one of them. You
should set up maintenance plans to execute DBCC CHECKDB,
index maintenance, and other maintenance topics discussed in
this chapter for Azure SQL Managed Instance.

 We discuss Azure SQL Managed Instance in detail in Chapter
18, “Provision Azure SQL Managed Instance.”

Maintain indexes and statistics
Index fragmentation occurs when insert, update, and delete activity
occurs within tables, and there is not enough free space for that data,
causing data to be split across pages. It can also happen when index
pages get out of order, resulting in inefficient scans. Index
fragmentation is caused by improper organization of rowstore data
within the file that SQL Server maintains. Removing fragmentation is
really about minimizing the number of pages that must be involved

https://azure.microsoft.com/blog/data-integrity-in-azure-sql-database/


when queries read or write those data pages. Reducing
fragmentation in database objects is vastly different from reducing
fragmentation at the drive level, and has little in common with the
Windows Disk Defragmenter application. Although this doesn’t
translate to page locations on disk, and has even less relevance on
storage area networks (SANs), it does translate to the activity of I/O
systems when retrieving data.

In performance terms, the higher the amount of fragmentation (easily
measurable in dynamic management views, as discussed later), the
more activity is required for accessing the same amount of data.

The causes of index fragmentation are writes. Our data would stay
nice and tidy if applications would stop writing to it! Updates and
deletes will inevitably have a significant effect on clustered and
nonclustered index fragmentation, plus the effect that inserts can
have on fragmentation because of clustered index design.

Inside OUT
Can heaps be fragmented?

A heap (a table without a clustered index) doesn’t suffer from
fragmentation. (How can unordered pages be out of order?)
Rather, heaps suffer from wasted space within the heap
structure. This is thanks to the use of forwarding pointers, a
mechanism for keeping data associated, but is realistically far
worse for performance than fragmentation.

Forwarding pointers are followed from pointer to pointer as the
table is scanned, until finally arriving at the page where the
data is now stored. Deletes and updates leave wasted space,
where the data will no longer fit on the same page, in a heap
that cannot be reclaimed even with an index rebuild operation.

To reclaim wasted space within a heap, you must execute an
ALTER TABLE statement with the REBUILD option or, ironically,



create a clustered index on the table, and then, to make it a
heap again, drop the clustered index. The latter process can
be very costly if you have nonclustered indexes on the table,
as they will all be rebuilt twice in the process.

The information in this section is largely unchanged from previous
versions of SQL Server and applies to SQL Server instances,
databases in Azure SQL Database, Azure SQL Managed Instance,
and even dedicated SQL pools in Azure Synapse Analytics (formerly
known as Azure SQL Data Warehouse).

Change the fill factor when beneficial
Each rowstore index on disk-based objects has a numeric property
called a fill factor that specifies the percentage of space to be filled
with rowstore data in each leaf-level data page of the index when it is
created or rebuilt. The instance-wide default fill factor is 100 percent,
which is represented by the setting value 0, and means that each
leaf-level data page will be filled with as much data as possible. A fill
factor setting of 80 (percent) means that 20 percent of leaf-level data
pages will be intentionally left empty when data is inserted. You can
adjust this fill factor percentage for each index to manage the
efficiency of data pages.

A non-default fill factor may help reduce the number of page splits,
which occur when the Database Engine attempts to add a new row of
data or update an existing row with more data to a page that does not
have enough space to add a new row. In this case, the Database
Engine will clear out space for the new row by moving a proportion of
the old rows to a new page. A page split can be a time-consuming
and resource-consuming operation, with many page splits possible
during writes, and will lead to index fragmentation.

However, setting a non-default fill factor will also increase the number
of pages needed to store the same data and increase the number of
reads needed for query operations. For example, a fill factor of 50 will



roughly double the space on the drive that it initially takes to store
and therefore access the data when compared to the default fill factor
of 0.

In most instances, data is read far more often than it is written and
inserted, updated, and deleted upon occasion. Indexes will therefore
benefit from a high or default fill factor—usually more than 80—
because it is almost always more important to keep the number of
reads to a manageable level than to minimize the resources needed
to perform a page split. You can deal with index fragmentation by
using the REBUILD or REORGANIZE commands, as discussed in the next
section.

If the key value for an index is constantly increasing, such as an
autoincrementing IDENTITY or SEQUENCE-populated field as the first
key of a clustered index, the data is added to the end of a data page
and any gaps would not need to be filled. In the case of a table for
which data is always inserted sequentially and never updated,
changing the fill factor from the default may offer no advantage. Even
after fine-tuning a fill factor, the benefit of reducing page splits might
not be noticeable to write performance. The design of your database
may affect your choice of fill factor—for example, if your clustered
index key is a GUID, you may choose to lower the fill factor.

You can set a fill factor when an index is first created, or you can
change it by using the ALTER INDEX ... REBUILD syntax, as discussed
in the next section.

Note
The OPTIMIZE_FOR_SEQUENTIAL_KEY feature, introduced in SQL
Server 2019, can further benefit IDENTITY and SEQUENCE-
populated columns. For more on this recommended new
feature, see Chapter 15, “Understand and design indexes.”

Track page splits



If you intend to fine-tune the fill factor for important tables to maximize
the performance/storage space ratio, you can measure page splits in
two ways: with a query on a DMV (discussed here), and with an
Extended Event session (covered later in this chapter).

You can use the performance counter DMV to measure page splits in
aggregate on Windows Server, as shown here:
Click here to view code image

SELECT * FROM sys.dm_os_performance_counters WHERE 
counter_name ='Page Splits/sec';

The cntr_value increments whenever a page split is detected. This is
a bit misleading because to calculate the page splits per second, you
must sample the incrementing value twice and divide by the time
difference between the samples. When viewing this metric in
Performance Monitor, the calculation is done for you.

You can also track page_split events alongside statement execution
by adding the page_split event to sessions such as the Transact-
SQL (T-SQL) template in the Extended Events wizard. You’ll see an
example of this later in this chapter, in the section “Use Extended
Events to detect page splits.”

 Extended Events and the sys.dm_os_performance_counters
DMV are discussed in more detail later in this chapter in the
section “Query performance metrics with DMVs.” This section
also includes a sample session script to track page_split
events.

Monitor index fragmentation
You can find the extent to which an index is fragmented by
interrogating the sys.dm_db_index_physical_stats dynamic
management function (DMF).

Unlike most DMVs, this function can have a significant impact on
server performance because it can tax I/O. To query this DMF, you



must be a member of the sysadmin server role or the db_ddladmin or
db_owner database roles. Alternatively, you can grant the VIEW
DATABASE STATE or VIEW SERVER STATE permissions. The
sys.dm_db_index_physical_stats DMF is often joined to catalog
views like sys.indexes or sys.objects, which require the user to have
some permissions to the tables in addition to VIEW DATABASE STATE or
VIEW SERVER STATE.

 For more information, visit
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sys-dm-db-index-physical-stats-
transact-sql#permissions and
https://learn.microsoft.com/sql/relational-
databases/security/metadata-visibility-configuration.

Keep this in mind when scripting this operation for automated index
maintenance. (We talk more about automating index maintenance in
Chapter 9.)

Some of the following samples can be executed against the
WideWorldImporters sample database. You can download then
restore the WideWorldImporters-Full.bak file from this location:
https://go.microsoft.com/fwlink/?LinkID=800630. For example, to find
the fragmentation level of all indexes on the Sales.Orders table in the
WideWorldImporters sample database, you can use a query such as
the following:
Click here to view code image

USE WideWorldImporters; 
SELECT 
DB = db_name(s.database_id) 
, [schema_name] = sc.name 
, [table_name] = o.name 
, index_name = i.name 
, s.index_type_desc 
, s.partition_number -- if the object is partitioned 
, avg_fragmentation_pct = s.avg_fragmentation_in_percent 
, s.page_count -- pages in object partition 
FROM sys.indexes AS i 

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-db-index-physical-stats-transact-sql#permissions
https://learn.microsoft.com/sql/relational-databases/security/metadata-visibility-configuration
https://go.microsoft.com/fwlink/?LinkID=800630


CROSS APPLY sys.dm_db_index_physical_stats 
(DB_ID(),i.object_id,i.index_id, NULL, NULL) AS s 
INNER JOIN sys.objects AS o ON o.object_id = s.object_id 
INNER JOIN sys.schemas AS sc ON o.schema_id = sc.schema_id 
WHERE i.is_disabled = 0 
AND o.object_id = OBJECT_ID('Sales.Orders');

The sys.dm_db_index_physical_stats DMF accepts five parameters:
database_id, object_id, index_id, partition_id, and mode. The mode
parameter defaults to LIMITED, the fastest method, but you can set it
to Sampled or Detailed. These additional modes are rarely necessary,
but they provide more data, as well as more precise data. Some
result set columns will be NULL in LIMITED mode. For the purposes of
determining fragmentation, the default mode of LIMITED (used when
the parameter value of NULL is provided or the literal LIMITED)
suffices.

The five parameters of the sys.dm_db_index_physical_stats DMF
are all nullable. For example, if you run the following script, you will
see fragmentation statistics for all databases, objects, indexes, and
partitions:
Click here to view code image

SELECT * FROM 
sys.dm_db_index_physical_stats(NULL,NULL,NULL,NULL,NULL);

We recommend against executing this in a production environment
during operational hours because, again, it can have a significant
impact on server resources, resulting in a noticeable drop in
performance.

Maintain indexes
After your automated script has identified the objects most in need of
maintenance with the aid of sys.dm_db_index_physical_stats, it
should proceed with steps to remove fragmentation in a timely
fashion during a maintenance window. The commands to remove
fragmentation are ALTER INDEX and ALTER TABLE, with REBUILD and



REORGANIZE options. We explain the differences later, but briefly,
rebuild is more thorough and potentially disruptive, whereas
reorganize is less thorough, not disruptive, but often sufficient.

You must implement index maintenance for both rowstore and
columnstore indexes; we cover strategies for both in this section.

Ideally, your automated index maintenance script runs as often as
possible during regularly scheduled maintenance windows and for a
limited amount of time. For example, if your business environment
allows for a maintenance window each night between 1 a.m. and 4
a.m., try to run index maintenance each night in that window. If
possible, modify your script to avoid starting new work after 4 a.m. or
using the RESUMABLE PAUSE feature at 4 a.m. (More on the latter
strategy in the upcoming section “Rebuild indexes.”) In databases
with very large tables, index maintenance may require more time than
you have within in a single maintenance window. Try to use the
limited amount of time in each maintenance window with the greatest
effect. Given ample time, this approach tends to work best to reduce
fragmentation rather than, for example, a single very long
maintenance period during a weekend. This feature also allows your
active transaction log pages to be cleared with a log backup during
the paused phases of an index rebuild.

 For more on maintenance plans and automating index
maintenance, including the typical “care and feeding” of a
SQL Server, see Chapter 9.

Inside OUT
Can you cancel an index maintenance operation?

If index maintenance runs long and begins to disrupt other
activities, be careful when stopping or killing the process and
forcing a rollback. Killing the session or cancelling the request
of a long-running index rebuild is no quick remedy, but a
painful rollback can be avoided in two ways:



If you started the index maintenance operation with the
RESUMABLE option, introduced in SQL Server 2017, issue a
PAUSE command. (More on the RESUMABLE option later in
this chapter.)

Accelerated database recovery (ADR) can prevent a
lengthy rollback after the operation is killed.

Without ADR, the rollback of a large, long-running index
REBUILD step could take a very long time and continue
blocking, even after a SQL Server service restart. Even when
an ONLINE index REBUILD operation is killed, its rollback is not
an ONLINE operation!

Instead, consider the following measures to prevent this
scenario from happening:

In your index maintenance loop that performs index
maintenance, rebuild or reorganize an index as granularly
as possible. Avoid using the ALL keyword to process all
indexes on a table. Perform index maintenance on
individual index partitions if possible.

In your index maintenance script, write code to check the
time. If your index maintenance is outside of an allowed
time window, don’t begin a new index maintenance
operation, or use the PAUSE option, explained next.

Specify ONLINE = ON, RESUMABLE = ON when beginning the
REBUILD operation. If an index maintenance step overruns
a maintenance window, you can issue a PAUSE, saving you
the time of a lengthy and disruptive rollback. You could
also specify a MAX_DURATION option when starting index
rebuild; that way, the operation will automatically pause
itself if it exceeds the duration. The rebuild can then be
resumed later on. (The RESUMABLE option is covered in
more detail in the next section.)

Enable the new accelerated database recovery (ADR)
option in each database.



 For more on enabling the accelerated database recovery
option, see Chapter 6, “Provision and configure SQL Server
databases.”

Rebuild indexes
Performing an INDEX REBUILD operation on a rowstore index
(clustered or nonclustered) physically re-creates the index B-tree leaf
level. The goal of moving the pages is to make storage more efficient
and to match the logical order provided by the index key. A rebuild
operation is destructive to the index object and blocks other queries
attempting to access the pages unless you provide the ONLINE option.
Because the rebuild operation destroys and re-creates the index, it
must update the index statistics afterward, eliminating the need to
perform a subsequent UPDATE STATISTICS operation as part of regular
maintenance.

Long-term table locks are held during the rebuild operation. One
major advantage of SQL Server Enterprise edition remains the ability
to specify the ONLINE option, which allows for rebuild operations that
are significantly less disruptive to other queries, though not
completely. This makes index maintenance feasible on SQL Servers
with round-the-clock activity.

Consider using ONLINE with index rebuild operations whenever short
maintenance windows are insufficient for rebuilding fragmented
indexes offline. An online index rebuild, however, might take longer
than an offline rebuild. There are also scenarios for which an online
rebuild is not possible, including deprecated data types image, text,
and ntext, or the xml data type. Since SQL Server 2012, it has been
possible to perform ONLINE index rebuilds on the max lengths of the
data types varchar, nvarchar, and varbinary.

For the syntax to rebuild the FK_Sales_Orders_CustomerID
nonclustered index on the Sales.Orders table with the ONLINE



functionality in Enterprise edition, see the following code sample:
Click here to view code image

ALTER INDEX FK_Sales_Orders_CustomerID 
ON Sales.Orders 
REBUILD WITH (ONLINE=ON);

It’s important to note that if you perform any kind of index
maintenance on the clustered index of a rowstore table, it does not
affect the nonclustered indexes. Nonclustered index fragmentation
will not change if you rebuild the clustered index.

Instead of rebuilding each index on a table individually, you can
rebuild all indexes on a table by replacing the name of the index with
the keyword ALL. For example, to rebuild all indexes on the
Sales.OrderLines table, do the following:
Click here to view code image

ALTER INDEX ALL ON [Sales].[OrderLines] REBUILD;

This is usually overkill and inefficient, however, because not all
indexes may have the same level of fragmentation or need for
maintenance. Remember, we should perform index maintenance as
granularly as possible.

For memory-optimized tables, we recommend a manual routine
maintenance step using the ALTER TABLE … ALTER INDEX … REBUILD
syntax. This is not to reduce fragmentation in the in-memory data;
rather, it is to examine the number of buckets in a memory-optimized
table’s hash indexes. For more information on rebuilding hash
indexes and bucket counts, see Chapter 15.

Note
You can change the data compression option for indexes with
the rebuild operation using the DATA_COMPRESSION option. For
more detail on data compression, see Chapter 3, “Design and
implement an on-premises database infrastructure.”



Aside from ONLINE, there are other options that you might want to
consider for rebuild operations. Let’s look at them:

SORT_IN_TEMPDB. Use this when you want to create or
rebuild an index using tempdb for sorting the index data,
potentially increasing performance by distributing the I/O activity
across multiple drives. This also means that these sorting
worktables are written to the tempdb database transaction log
instead of the user database transaction log, potentially reducing
the impact on the user database log file, and allowing for the
user database transaction log to be backed up during the
operation.

MAXDOP. Use this to mitigate some of the impact of index
maintenance by preventing the operation from using parallel
processors. This can cause the operation to run longer, but to
have less impact on performance.

WAIT_AT_LOW_PRIORITY. First introduced in SQL Server
2014, this is the first of a set of parameters that you can use to
instruct the ONLINE index maintenance operation to try not to
block other operations. This feature is known as Managed Lock
Priority, and this syntax is not usable outside of online index
operations and partition-switching operations. (SQL Server 2022
also introduced the ability to use WAIT_AT_LOW_PRIORITY for DBCC
SHRINKDATABASE and DBCC SHRINKFILE operations.) Here is the
full syntax:

Click here to view code image
ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
REBUILD WITH (ONLINE=ON (WAIT_AT_LOW_PRIORITY 
(MAX_DURATION = 5 MINUTES, 
ABORT_AFTER_WAIT = SELF)));

The parameters for MAX_DURATION and ABORT_AFTER_WAIT instruct
the statement on how to proceed if it begins to be blocked by
another operation. The online index operation will wait, allowing
other operations to proceed.



The ABORT_AFTER_WAIT parameter provides an action at the end
of the MAX_DURATION wait:

SELF instructs the statement to terminate its own process,
ending the online rebuild step.

BLOCKERS instructs the statement to terminate the other
process that is being blocked, terminating what is
potentially a user transaction. Use with caution.

NONE instructs the statement to continue to wait. When
combined with MAX_DURATION = 0, it is essentially the same
behavior as not specifying WAIT_AT_LOW_PRIORITY.

RESUMABLE. Introduced in SQL Server 2017, this feature
makes it possible to initiate an online index creation or rebuild
that can be paused and resumed later, even after a server
shutdown. You can also specify a MAX_DURATION in minutes when
starting an index rebuild operation, which will pause the
operation if it exceeds the specified duration. You cannot specify
the ALL keyword for a resumable operation. The
SORT_IN_TEMPDB=ON option is not compatible with the RESUMABLE
option.

Note
Starting with SQL Server 2019, the RESUMABLE syntax can also
be used when creating an index. An ALTER INDEX and CREATE
INDEX statement can be similarly paused and resumed.

To leverage resumable index maintenance operations, you can see a
list of resumable and paused index operations in a new DMV,
sys.index_resumable_operations, where the state_desc field will
reflect RUNNING (and pausable) or PAUSED (and resumable).

Here is a sample scenario of a paused/resumed index maintenance
operation on a large table in the sample WideWorldImporters
database:



Click here to view code image

ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
REBUILD WITH (ONLINE = ON, RESUMABLE = ON);

From another session, show that the index rebuild is RUNNING with the
RESUMABLE option:
Click here to view code image

SELECT object_name = object_name (object_id), * 
FROM sys.index_resumable_operations;

From a third session, run the following to pause the operation:
Click here to view code image

ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
PAUSE;

You can then show that the index rebuild is paused:
Click here to view code image

SELECT object_name = object_name (object_id), * FROM 
sys.index_resumable_operations;

This sample is on a relatively small table, and may not allow you to
execute the pause before the index rebuild is completed. This will
result in a disconnection of the session of the original index
maintenance, and a severe error message. In the SQL Server Error
Log, the event is not a severe error message, but an informative note
that “An ALTER INDEX ‘PAUSE’ was executed for….”

To resume the index maintenance operation, you have two options:

Reissue the same index maintenance operation, which will warn
you it’ll just resume instead.

Click here to view code image
ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
REBUILD 



WITH (ONLINE = ON, RESUMABLE = ON);

Issue a RESUME to the same index.

Click here to view code image
ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
RESUME;

Inside OUT
Are all CREATE and ALTER INDEX operations resumable
now?

These operations are not resumable by default, only with
those operations that were started with the syntax RESUMABLE
= ON. The default of this parameter is RESUMABLE=OFF, so index
operations are not resumable by default.

Be aware of this beneficial new feature for both index CREATE
and ALTER operations, and prepare to take advantage of it
from now on. For very large tables, you should consider using
the RESUMABLE feature to pause index maintenance during
normal utilization.

It is possible for a RESUMABLE rebuild operation to be blocked
by uncommitted transactions and unable to be paused. In this
case, you will see the ALTER INDEX … PAUSE statement is
blocked by the ALTER INDEX … REBUILD statement. Long-
running transactions can be a problem for many reasons, with
this among them.

The RESUMABLE syntax also supports a MAX_DURATION syntax,
which has a different meaning than the MAX_DURATION syntax
used in the ABORT_AFTER_WAIT. The MAX_ DURATION option
could be very useful to you, automatically pausing an online
index operation after a specified amount of time. For example,
this allows for the index operation to be resumed during the



next maintenance window. The MAX_DURATION > 0 option
allows the operation to run indefinitely, and is not a required
parameter for RESUMABLE=ON. Here’s an example:

Click here to view code image

ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
REBUILD WITH (ONLINE=ON, RESUMABLE=ON, MAX_DURATION = 
60 MINUTES);

Reorganize indexes
Performing a REORGANIZE operation on an index uses fewer system
resources and is much less disruptive than performing a full rebuild,
while still accomplishing the goal of reducing fragmentation. It
physically reorders the leaf-level pages of the index to match the
logical order. It also compacts pages to match the fill factor on the
index, though it does not allow the fill factor to be changed. This
operation is always performed online, so long-term table locks
(except for schema locks) are not held, and queries or modifications
to the underlying table or index data will not be blocked by the
schema lock during the REORGANIZE transaction.

Because the REORGANIZE operation is not destructive, it does not
automatically update the statistics for the index afterward as a rebuild
operation does. Thus, you should always follow a REORGANIZE step
with an UPDATE STATISTICS step.

 For more on statistics objects and their impact on
performance, see Chapter 15.

The following example presents the syntax to reorganize the
PK_Sales_OrderLines index on the Sales.OrderLines table:
Click here to view code image

ALTER INDEX PK_Sales_OrderLines on [Sales].[OrderLines] 
REORGANIZE;



None of the options available to rebuild that we covered in the
previous section are available to the REORGANIZE command. The only
additional option that is specific to REORGANIZE is the LOB_COMPACTION
option. It compresses large object (LOB) data, which affects only LOB
data types: image, text, ntext, varchar(max), nvarchar(max),
varbinary(max), and xml. By default, this option is enabled, but you
can disable it for non-heap tables to potentially skip some activity,
though we do not recommend it. For heap tables, LOB data is always
compacted.

Update index statistics
SQL Server uses statistics to describe the distribution and nature of
the data in tables. The Query Optimizer needs the auto create setting
enabled (it is enabled by default) so it can create single-column
statistics when compiling queries. These statistics help the Query
Optimizer create the most optimal query plans at runtime. The auto
update statistics option prompts statistics to be updated automatically
when accessed by a T-SQL query. This only occurs when the table is
discovered to have passed a threshold of rows changed. Without
relevant and up-to-date statistics, the Query Optimizer might not
choose the best way to run queries.

An update of index statistics should accompany INDEX REORGANIZE
steps to ensure that statistics on the table are current, but not INDEX
REBUILD steps. Remember that the INDEX REBUILD command also
updates the index statistics.

The basic syntax to update the statistics for an individual table is as
follows:
Click here to view code image

UPDATE STATISTICS [Sales].[Invoices];

The only command option to be aware of concerns the depth to which
the statistics are scanned before being recalculated. By default, SQL
Server samples a statistically significant number of rows in the table.
This sampling is done with a parallel process starting with database



compatibility level 150. This is fast and adequate for most workloads.
You can optionally choose to scan the entire table by specifying the
FULLSCAN option, or a sample of the table based on a percentage of
rows or a fixed number of rows using the SAMPLE option, but these
options are typically reserved for cases of unusual data skew where
the default sampling may not provide adequate coverage for your
column or index.

You can manually verify that indexes are being kept up to date by the
Query Optimizer when auto_create_stats is enabled. The
sys.dm_db_stats_properties DMF accepts an object_id and
stats_id, which is functionally the same as the index_id, if the
statistics object corresponds to an index. The
sys.dm_db_stats_properties DMF returns information such as the
modification_counter of rows changed since the last statistics
update, and the last_updated date, which is NULL if the statistics
object has never been updated since it was created.

Not all statistics are associated with an index, such as statistics that
are automatically created. There will generally be more statistics
objects than index objects. This function works in SQL Server and
Azure SQL Database. You can easily tell if a statistics object (which
you can gather from querying sys.stats) is automatically created by its
naming convention, WA_Sys_<column_name>_<object_id_hex>, or
by looking at the user_created and auto_created columns in the
same view.

 For more on statistics objects and their impact on
performance, see Chapter 15.

Inside OUT
Do you need to update statistics regularly even if
auto_create_stats is enabled for the database?

Yes, you should still maintain statistics health by updating
them regularly. Updating statistics regularly, if your



maintenance window time allows, will definitely not hurt, and
will likely help by reducing the number of statistics updates
that happen automatically during regular business hours.

When auto_update_stats is on, statistics are updated
periodically based on (and during) actual usage. Statistics are
considered out of date by the Query Optimizer when a ratio of
data modifications to rows in the table has been reached. The
Query Optimizer will check for and update the out-of-date
statistic before running a query plan. Therefore, the
auto_update_stats option has some small runtime overhead,
though the performance benefit of updated statistics usually
outweighs this cost. We also highly recommend enabling the
auto_update_stats_async option because it helps minimize
this runtime overhead by updating the statistics after running
the query, instead of before.

You should also enable the auto_update_stats and
auto_update_ stats_async options, as discussed in Chapter
4, “Install and configure SQL Server instances and features,”
and Chapter 14, “Performance tune SQL Server,” on all user
databases, unless the application specifically requests that it
be disabled, such as with Microsoft SharePoint.

Reorganize columnstore indexes
You must also maintain columnstore indexes, but these use different
internal objects to measure the fragmentation of the internal
columnstore structure. Columnstore indexes need only the
REORGANIZE operation. For more on designing columnstore indexes,
see Chapter 15.

You can review the current structure of the groups of columnstore
indexes by using the DMV
sys.dm_db_column_store_row_group_physical_stats. This returns
one row per row group of the columnstore structure. The state of a
row group, and the current count of row groups by their states,



provides some insight into the health of the columnstore index. Most
row group states should be COMPRESSED. Row groups in the OPEN and
CLOSED states are part of the delta store and are awaiting
compression. These delta store row groups are served up alongside
compressed data seamlessly when queries use columnstore data.

The number of deleted rows in a rowgroup is also an indication that
the index needs maintenance. As the ratio of deleted rows to total
rows in a row group that is in the COMPRESSED state increases, the
performance of the columnstore index will be reduced. If delete_rows
is larger than or greater than the total rows in a rowgroup, a
REORGANIZE step will be beneficial.

Performing a REBUILD operation on a columnstore index is essentially
the same as performing a drop/re-create and is not necessary.
However, if you want to force the rebuild process, using the WITH
(ONLINE = ON) syntax is supported starting with SQL Server 2019 for
rebuilding (and creating) columnstore indexes. A REORGANIZE step for
a columnstore index, just as for a nonclustered index, is an online
operation that has minimal impact to concurrent queries.

You can also use the REORGANIZE WITH
(COMPRESS_ALL_ROW_GROUPS=ON) option to force all delta store row
groups to be compressed into a single compressed row group. This
can be useful when you observe many compressed row groups with
fewer than 100,000 rows.

Without COMPRESS_ALL_ROW_GROUPS, only compressed row groups will
be compressed and combined. Typically, compressed row groups
should contain up to one million rows each, but SQL might align rows
in compressed row groups that align with how the rows were inserted,
especially if they were inserted in bulk operations.

 We talk more about automating index maintenance in Chapter
9.

Manage database file sizes



It is important to understand the distinction between the size of a
database data or log files, which act simply as reservations for SQL
Server to work in, and the data within those reservations. Note that
this section does not apply to Azure SQL Database, because this
level of file management is not available and is automatically
managed.

In SQL Server Management Studio (SSMS), you can right-click a
database, select Reports, and choose Disk Usage to view the Disk
Usage report for a database. It contains information about how much
data is in the database’s files.

Alternatively, the following query uses the FILEPROPERTY function to
reveal how much data there is inside a file reservation. We again use
the undocumented but well-understood sp_msforeachdb stored
procedure to iterate through each of the databases, accessing the
sys.database_files catalog view.
Click here to view code image

DECLARE @FILEPROPERTY TABLE 
( DatabaseName sysname 
,DatabaseFileName nvarchar(500) 
,FileLocation nvarchar(500) 
,FileId int 
,[type_desc] varchar(50) 
,FileSizeMB decimal(19,2) 
,SpaceUsedMB decimal(19,2) 
,AvailableMB decimal(19,2) 
,FreePercent decimal(19,2) ); 
INSERT INTO @FILEPROPERTY 
exec sp_MSforeachdb 'USE [?]; 
SELECT 
 Database_Name                   = d.name 
, Database_Logical_File_Name     = df.name 
, File_Location                  = df.physical_name 
, df.File_ID 
, df.type_desc 
, FileSize_MB = CAST(size/128.0 as Decimal(19,2)) 
, SpaceUsed_MB = CAST(CAST(FILEPROPERTY(df.name, "SpaceUsed") 
AS int)/128.0 AS 
decimal(19,2)) 



, Available_MB = CAST(size/128.0 - CAST(FILEPROPERTY(df.name, 
"SpaceUsed") AS int)/128.0 
AS decimal(19,2)) 
, FreePercent = CAST((((size/128.0) - 
(CAST(FILEPROPERTY(df.name, "SpaceUsed") AS 
int)*8/1024.0)) / (size*8/1024.0) ) * 100. AS decimal(19,2)) 
 FROM sys.database_files as df 
 CROSS APPLY sys.databases as d 
 WHERE d.database_id = DB_ID();' 
SELECT * FROM @FILEPROPERTY 
WHERE SpaceUsedMB is not null 
ORDER BY FreePercent asc; --Find files with least amount of 
free space at top

Run this on a database in your environment to see how much data
there is within database files. You might find that some data or log
files are near full, whereas others have a large amount of space. Why
would this be?

Files that have a large amount of free space might have grown in the
past but have since been emptied out. If a transaction log in the full
recovery model has grown for a long time without having a
transaction log backup, the .ldf file will have grown unchecked. Later,
when a transaction log backup is taken, causing the log to truncate, it
will be nearly empty, but the size of the .ldf file itself will not have
changed. It isn’t until you perform a shrink operation that the .ldf file
will give its unused space back to the operating system (OS). In most
cases, you should never shrink a data file, and certainly not on a
schedule. The two main exceptions are if you mistakenly oversize a
file or you applied data compression to a number of large database
objects. In these cases, shrinking files as a one-time corrective action
may be appropriate.

You should manually grow your database and log files to a size that is
well ahead of the database’s growth pattern. You might fret over the
best autogrowth rate, but ideally, autogrowth events are best avoided
altogether by proactive file management.

Autogrowth events can be disruptive to user activity, causing all
transactions to wait while the database file asks the OS for more



space and grows. Depending on the performance of the I/O system,
this could take seconds, during which activity on the database must
wait. Depending on the autogrowth setting and the size of the write
transactions, multiple autogrowth events could be suffered
sequentially.

 Growth of database data files is also greatly sped up by instant
file initialization, which is covered in Chapter 3.

Understand and find autogrowth events
You should change autogrowth rates for database data and log files
from the initial (and far too small) default settings, but, more
importantly, you should maintain enough free space in your data and
log files so that autogrowth events do not occur. As a proactive DBA,
you should monitor the space in database files and grow the files
ahead of time, manually and outside of peak business hours.

You can view recent autogrowth events in a database via a report in
SSMS or a T-SQL script (see the code example that follows). In
SSMS, in Object Explorer, right-click the database name. Then, on
the shortcut menu that opens, select Reports, select Standard
Reports, and then select Disk Usage. An expandable/collapsible
region of the report contains data/log files autogrow/autoshrink
events.

The autogrowth report in SSMS reads data from the SQL Server
instance’s default trace, which captures autogrowth events. This data
is not captured by the default Extended Events session, called
system_health, but you could capture autogrowth events with the
sqlserver.database_file_size_change event in an Extended Event
session.

To view and analyze autogrowth events more quickly, and for all
databases simultaneously, you can query the SQL Server instance’s
default trace yourself. The default trace files are limited to 20 MB, and
there are at most five rollover files, yielding 100 MB of history. The
amount of time this covers depends on server activity. The following



sample code query uses the fn_trace_gettable() function to open
the default trace file in its current location:
Click here to view code image

SELECT 
DB = g.DatabaseName 
, Logical_File_Name = mf.name 
, Physical_File_Loc = mf.physical_name 
, mf.type 
-- The size in MB (converted from the number of 8-KB pages) 
the file increased. 
, EventGrowth_MB = 
convert(decimal(19,2),g.IntegerData*8/1024.) 
, g.StartTime --Time of the autogrowth event 
-- Length of time (in seconds) necessary to extend the file. 
, EventDuration_s = 
convert(decimal(19,2),g.Duration/1000./1000.) 
, Current_Auto_Growth_Set = CASE 
WHEN mf.is_percent_growth = 1 
 THEN CONVERT(char(2), mf.growth) + '%' 
 ELSE CONVERT(varchar(30), mf.growth*8./1024.) + 'MB' 
END 
, Current_File_Size_MB = 
CONVERT(decimal(19,2),mf.size*8./1024.) 
, d.recovery_model_desc 
FROM fn_trace_gettable( 
(select substring((SELECT path 
FROM sys.traces WHERE is_default =1), 0, charindex('\log_', 
(SELECT path FROM sys.traces WHERE is_default =1),0)+4) 
+ '.trc'), DEFAULT) AS [g] 
INNER JOIN sys.master_files mf 
ON mf.database_id = g.DatabaseID 
AND g.FileName = mf.name 
INNER JOIN sys.databases d 
ON d.database_id = g.DatabaseID 
ORDER BY StartTime desc;

Understanding autogrowth events helps explain what happens to
database files when they don’t have enough space. They must grow,
or transactions cannot be accepted. What about the opposite



scenario, where a database file has “too much” space? We cover that
next.

Shrink database files
We need to be as clear as possible about this: Shrinking database
files is not something that you should do regularly or casually. If you
find yourself every morning shrinking a database file that grew
overnight, stop. Think. Isn’t it just going to grow again tonight?

One of the main concerns with shrinking a file is that it
indiscriminately returns free pages to the OS, helping to create
fragmentation. Aside from potentially ensuring autogrowth events in
the future, shrinking a file creates the need for further index
maintenance to alleviate the fragmentation. A shrink step can be time
consuming, can block other user activity, and is not part of a healthy
complete maintenance plan.

Database data and logs under normal circumstances—and in the
case of the full recovery model with regular transaction log backups—
grow to the size they need to be because of actual usage. Frequent
autogrowth events and shrink operations are bad for performance
and create fragmentation.

To increase concurrency of shrink operations, by allowing DBCC
SHRINKDATABASE and DBCC SHRINKFILE to patiently wait for locks, SQL
Server 2022 introduces the WAIT_AT_LOW_PRIORITY syntax. This same
keyword has similar application for online index maintenance
commands and behaves similarly. When you specify
WAIT_AT_LOW_PRIORITY, the shrink operation waits until it can claim
the shared schema (Sch-S) and shared metadata (Sch-M) locks it
needs. Other queries won’t be blocked until the shrink can actually
proceed, resulting in less potential for blocked queries. The
WAIT_AT_LOW_PRIORITY option is less configurable for the two shrink
commands, and is hard-coded to a 1-minute timeout. If after 1 minute
the shrink operation cannot obtain the necessary locks to proceed, it
will be cancelled.



Shrink data files
Try to proactively grow database files to avoid autogrowth events
altogether. You should shrink a data file only as a one-time event to
solve one of three scenarios:

A drive volume is out of space and, in an emergency break-fix
scenario, you reclaim unused space from a database data or log
file.

A database transaction log grew to a much larger size than is
normally needed because of an adverse condition and should
be reduced back to its normal operating size. An adverse
condition could be a transaction log backup that stopped
working for a timespan, a large uncommitted transaction, or a
replication availability group issue that prevented the transaction
log from truncating.

For the rare situation in which a database had a large amount of
data deleted from the file, an amount of data that is unlikely ever
to exist in the database again, a one-shrink file operation might
be appropriate.

Shrink transaction log files
For the case in which a transaction log file should be reduced in size,
the best way to reclaim the space and re-create the file with optimal
virtual log file (VLF) alignment is to first create a transaction log
backup to truncate the log file as much as possible. If transaction log
backups have not recently been generated on a schedule, it may be
necessary to create another transaction log backup to fully clear out
the log file. Once empty, shrink the log file to reclaim all unused
space, then immediately grow the log file back to its expected size in
increments of no more than 8,000 MB at a time. This allows SQL
Server to create the underlying VLF structures in the most efficient
way possible.



 For more information on VLFs in your database log files, see
Chapter 3.

The following sample script of this process assumes a transaction log
backup has already been generated to truncate the database
transaction log and that the database log file is mostly empty. It also
grows the transaction log file backup to 9 GB (9,216 MB or 9,437,184
KB). Note the intermediate step of growing the file first to 8,000 MB,
then to its intended size.
Click here to view code image

USE [WideWorldImporters]; 
--TRUNCATEONLY returns all free space to the OS 
DBCC SHRINKFILE (N'WWI_Log' , 0, TRUNCATEONLY); 
GO 
USE [master]; 
ALTER DATABASE [WideWorldImporters] 
MODIFY FILE ( NAME = N'WWI_Log', SIZE = 8192000KB ); 
ALTER DATABASE [WideWorldImporters] 
MODIFY FILE ( NAME = N'WWI_Log', SIZE = 9437184KB ); 
GO

Caution
You should never enable the autoshrink database setting. It
automatically returns any free space of more than 25 percent of
the data file or transaction log. You should shrink a database
only as a one-time operation to reduce file size after unplanned
or unusual file growth. This setting could result in unnecessary
fragmentation, overhead, and frequent rapid log autogrowth
events. This setting was originally intended, and might only be
appropriate, for tiny local and/or embedded databases.

Monitor activity with DMOs
SQL Server provides a suite of internal dynamic management objects
(DMOs) in the form of views (DMVs) and functions (DMFs). It is



important for you as a DBA to have a working knowledge of these
objects because they unlock the analysis of SQL Server outside of
built-in reporting capabilities and third-party tools. In fact, third-party
tools that monitor SQL Server almost certainly use these very
dynamic management objects.

DMO queries are discussed in several other places in this book:

Chapter 14 discusses reviewing, aggregating, and analyzing
cached execution plan statistics, including the Query Store
feature introduced in SQL Server 2016.

Chapter 14 also discusses reporting from DMOs and querying
performance monitor metrics within SQL Server DMOs.

Chapter 15 covers index usage statistics and missing index
statistics.

Chapter 11 details high availability and disaster recovery
features like automatic seeding.

The section “Monitor index fragmentation” earlier in this chapter
talked about using a DMF to query index fragmentation.

Observe sessions and requests
Any connection to a SQL Server instance is a session and is reported
live in the DMV sys.dm_exec_sessions. Any actively running query on
a SQL Server instance is a request and is reported live in the DMV
sys.dm_exec_requests. Together, these two DMVs provide a thorough
and far more detailed replacement for the sp_who or sp_who2 system
stored procedures, as well as the deprecated sys.sysprocesses
system view, with which longtime DBAs might be more familiar. With
DMVs, you can do so much more than replace sp_who.

By adding a handful of other DMOs, we can turn this query into a
wealth of live information, including:

Complete connection source information



The actual runtime statement currently being run (like DBCC
INPUTBUFFER, but not limited to 254 characters)

The actual plan XML (provided with a blue hyperlink in the
SSMS results grid)

Request duration

Cumulative resource consumption

The current and most recent wait types experienced

Sure, it might not be as easy to type in as sp_who2, but it provides
much more data, which you can easily query and filter. Save this as a
go-to script in your personal DBA tool belt. If you are unfamiliar with
any of the data being returned, take some time to dive into the result
set and explore the information it provides; it will be an excellent
hands-on learning resource. You might choose to add more filters to
the WHERE clause specific to your environment. Let’s take a look:
Click here to view code image

SELECT 
 when_observed = sysdatetime() 
, s.session_id, r.request_id 
, session_status = s.[status] -- running, sleeping, dormant, 
preconnect 
, request_status = r.[status] -- running, runnable, 
suspended, sleeping, background 
, blocked_by = r.blocking_session_id 
, database_name = db_name(r.database_id) 
, s.login_time, r.start_time 
, query_text = CASE 
 WHEN r.statement_start_offset = 0 
 and r.statement_end_offset= 0 THEN left(est.text, 4000) 
 ELSE SUBSTRING (est.[text], r.statement_start_offset/2 + 1, 
 CASE WHEN r.statement_end_offset = -1 
    THEN LEN (CONVERT(nvarchar(max), est.[text])) 
    ELSE r.statement_end_offset/2 - 
r.statement_start_offset/2 + 1 
 END 
) END --the actual query text is stored as nvarchar, 



--so we must divide by 2 for the character offsets 
, qp.query_plan 
, cacheobjtype = LEFT (p.cacheobjtype + ' (' + p.objtype + 
')', 35) 
, est.objectid 
, s.login_name, s.client_interface_name 
, endpoint_name = e.name, protocol = e.protocol_desc 
, s.host_name, s.program_name 
, cpu_time_s = r.cpu_time, tot_time_s = r.total_elapsed_time 
, wait_time_s = r.wait_time, r.wait_type, r.wait_resource, 
r.last_wait_type 
, r.reads, r.writes, r.logical_reads --accumulated request 
statistics 
FROM sys.dm_exec_sessions as s 
LEFT OUTER JOIN sys.dm_exec_requests as r on r.session_id = 
s.session_id 
LEFT OUTER JOIN sys.endpoints as e ON e.endpoint_id = 
s.endpoint_id 
LEFT OUTER JOIN sys.dm_exec_cached_plans as p ON 
p.plan_handle = r.plan_handle 
OUTER APPLY sys.dm_exec_query_plan (r.plan_handle) as qp 
OUTER APPLY sys.dm_exec_sql_text (r.sql_handle) as est 
LEFT OUTER JOIN sys.dm_exec_query_stats as stat on 
stat.plan_handle = r.plan_handle 
AND r.statement_start_offset = stat.statement_start_offset 
AND r.statement_end_offset = stat.statement_end_offset 
WHERE 1=1 --Veteran trick that makes for easier commenting of 
filters 
AND s.session_id >= 50 --retrieve only user spids 
AND s.session_id <> @@SPID --ignore this session 
ORDER BY r.blocking_session_id desc, s.session_id asc;

Notice that the preceding script returned wait_type and
last_wait_type. Let’s dive into these important performance signals
now.

Understand wait types and wait statistics
Wait statistics in SQL Server are an important source of information
and can be a key resource for finding bottlenecks in performance at
the aggregate level and at the individual query level. A wait is a signal



recorded by SQL Server indicating what SQL Server is waiting on
when attempting to finish processing a query. This section provides
insights into this broad and important topic. However, entire books,
training sessions, and software packages have been developed to
address wait type analysis.

Wait statistics can be queried and provide value to SQL Server
instances as well as databases in Azure SQL Database and Azure
SQL Managed Instance, though there are some waits specific to the
Azure SQL Database platform (which we’ll review). Like many DMOs,
membership in the sysadmin server role is not required, only the
permission VIEW SERVER STATE, or in the case of Azure SQL
Database, VIEW DATABASE STATE.

You saw in the query in the previous section the ability to see the
current and most recent wait type for a session. Let’s dive into how to
observe wait types in the aggregate, accumulated at the server level
or at the session level. Waits can occur when a request is in the
runnable or suspended state. SQL Server can track many different
wait types for a single query, many of which are of negligible duration
or are benign in nature. There are quite a few waits that can be
ignored or that indicate idle activity, as opposed to waits that indicate
resource constraints and blocking. There are more than 1,000 distinct
wait types in SQL Server 2022 and even more in Azure SQL
Database. Some are better documented and understood than others.
We review some that you should know about later in this section.

 You can see the complete list of wait types at
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sys-dm-os-wait-stats-transact-
sql#WaitTypes.

Monitor wait type aggregates
To view accumulated waits for a session, which live only until the
close or reset of the session, use the
sys.dm_exec_session_wait_stats DMV.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-wait-stats-transact-sql#WaitTypes


In sys.dm_exec_sessions, you can see the current wait type and most
recent wait type, but this isn’t always that interesting or informative.
Potentially more interesting would be to see all the accumulated wait
stats for an ongoing session. This code sample shows how the DMV
returns one row per session, per wait type experienced, for user
sessions:
Click here to view code image

SELECT * FROM sys.dm_exec_session_wait_stats 
ORDER BY wait_time_ms DESC;

There is a distinction between the two time measurements in this
query and others. The value from signal_wait_time_ms indicates the
amount of time the thread waited on CPU activity, correlated with time
spent in the runnable state. The wait_time_ms value indicates the
accumulated time in milliseconds for the wait type, including the
signal_wait_time_ms, and so includes time the request spent in the
runnable and suspended states. Typically, wait_time_ms is the wait
measurement that we aggregate. The waiting_tasks_count is also
informative, indicating the number of times this wait_type was
encountered. By dividing wait_time_ms by waiting_tasks_count, you
can get an average number of milliseconds (ms) each task
encountered this wait.

You can view aggregate wait types at the instance level with the
sys.dm_os_wait_stats DMV. This is the same as
sys.dm_exec_session_wait_stats, but without the session_id, which
includes all activity in the SQL Server instance without any granularity
to database, query, time frame, and so on. This can be useful for
getting the “big picture,” but it is limited over long spans of time
because the wait_time_ms counter accumulates, as illustrated here:
Click here to view code image

SELECT TOP (25) 
 wait_type 
, wait_time_s = wait_time_ms / 1000. 
, Pct = 100. * wait_time_ms/nullif(sum(wait_time_ms) 
OVER(),0) 



, avg_ms_per_wait = wait_time_ms / 
nullif(waiting_tasks_count,0) 
FROM sys.dm_os_wait_stats as wt ORDER BY Pct DESC;

Eventually, the wait_time_ms numbers will be so large for certain wait
types that trends or changes in wait type accumulations rates will be
mathematically difficult to see. You want to use the wait stats to keep
a close eye on server performance as it trends and changes over
time, so you need to capture these accumulated wait statistics in
chunks of time, such as one day or one week.
Click here to view code image

--Script to set up capturing these statistics over time 
CREATE TABLE dbo.usr_sys_dm_os_wait_stats 
(   id int NOT NULL IDENTITY(1,1) 
,   datecapture datetimeoffset(0) NOT NULL 
,   wait_type nvarchar(512) NOT NULL 
,   wait_time_s decimal(19,1) NOT NULL 
,   Pct decimal(9,1) NOT NULL 
,   avg_ms_per_wait decimal(19,1) NOT NULL 
,   CONSTRAINT PK_sys_dm_os_wait_stats PRIMARY KEY CLUSTERED 
(id) 
); 
--This part of the script should be in a SQL Agent job, run 
regularly 
INSERT INTO 
Dbo.usr_sys_dm_os_wait_stats 
(datecapture, wait_type, wait_time_s, Pct, avg_ms_per_wait) 
SELECT 
datecapture = SYSDATETIMEOFFSET() 
, wait_type 
, wait_time_s = convert(decimal(19,1), round( wait_time_ms / 
1000.0,1)) 
, Pct = wait_time_ms/ nullif(sum(wait_time_ms) OVER(),0) 
, avg_ms_per_wait = wait_time_ms / 
nullif(waiting_tasks_count,0) 
FROM usr_sys.dm_os_wait_stats wt 
WHERE wait_time_ms > 0 
ORDER BY wait_time_s;



Using the metrics returned in the preceding code, you can calculate
the difference between always-ascending wait times and counts to
determine the counts between intervals. You can customize the
schedule for this data to be captured in tables, building your own
internal wait stats reporting table.

The sys.dm_os_wait_stats DMV is reset—and all accumulated
metrics are lost—upon restart of the SQL Server service, but you can
also clear them manually. Understandably, this would clear the
statistics for the whole SQL Server instance. Here is a sample script
of how you can capture wait statistics at any interval:
Click here to view code image

DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR);

You can also view statistics for a query currently running in the DMV
sys.dm_os_waiting_tasks, which contains more data than simply the
wait_type; it also shows the blocking resource address in the
resource_description field. This data is also available in
sys.dm_exec_requests.

 For a complete breakdown of the information that can be
contained in the resource_description field, see
http://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sys-dm-os-waiting-tasks-
transact-sql.

The query storage also tracks aggregated wait statistics for queries
that it tracks. The waits tracked by the Query Store are not as
detailed as the DMVs, but they do give you a quick idea of what a
query is waiting on.

 For more information on reviewing waits in the Query Store,
see Chapter 14.

Understand wait resources

http://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql


What if you observe a query wait occurring live, and want to figure out
what data the query is actually waiting on?

SQL Server 2019 delivered some new tools to explore the
archaeology involved in identifying the root of waits. While an
exhaustive look at the different wait resource types—some more
cryptic than others—is best documented in Microsoft’s online
resources, let’s review the tools provided.

The undocumented DBCC PAGE command (and its accompanying
Trace Flag 3604) were used for years to review the information
contained in a page, based on a specific page number. Whether
trying to see the data at the source of waits or trying to peek at
corrupted pages reported by DBCC CHECKDB, the DBCC PAGE command
didn’t return any visible data without first enabling Trace Flag 3604.
Now, for some cases, we have the pair of new functions,
sys.dm_db_page_info and sys.fn_PageResCracker. Both can be used
only when the sys.dm_exec_requests.wait_resource value begins
with PAGE. So, the new tools leave out other common wait_resource
types like KEY.

The DMVs in SQL Server 2019 and SQL Server 2022 are preferable
to using DBCC PAGE because they are fully documented and
supported. They can be combined with sys.dm_exec_requests—the
hub DMV for all things active in SQL Server—to return potentially
useful information about the object in contention when PAGE blocking
is present:
Click here to view code image

SELECT r.request_id, pi.database_id, pi.file_id, pi.page_id, 
pi.object_id, 
pi.page_type_desc, pi.index_id, pi.page_level, rows_in_page = 
pi.slot_count 
FROM sys.dm_exec_requests AS r 
CROSS APPLY sys.fn_PageResCracker (r.page_resource) AS prc 
CROSS APPLY sys.dm_db_page_info(r.database_id, prc.file_id, 
prc.page_id, 'DETAILED') AS 
pi;



Benign wait types
Many of the waits in SQL Server do not affect the performance of
user workload. These waits are commonly referred to as benign waits
and are frequently excluded from queries analyzing wait stats. The
following code contains a starter list of wait types that you can mostly
ignore when querying the sys.dm_os_wait_stats DMV for aggregate
wait statistics. You can append the following sample list WHERE clause.
Click here to view code image

SELECT * FROM sys.dm_os_wait_stats 
WHERE 
    wt.wait_type NOT LIKE '%SLEEP%' --can be safely ignored, 
sleeping 
AND wt.wait_type NOT LIKE 'BROKER%' -- internal process 
AND wt.wait_type NOT LIKE '%XTP_WAIT%' -- for memory-
optimized tables 
AND wt.wait_type NOT LIKE '%SQLTRACE%' -- internal process 
AND wt.wait_type NOT LIKE 'QDS%' -- asynchronous Query Store 
data 
AND wt.wait_type NOT IN ( -- common benign wait types 
'CHECKPOINT_QUEUE' 
,'CLR_AUTO_EVENT','CLR_MANUAL_EVENT' ,'CLR_SEMAPHORE' 
,'DBMIRROR_DBM_MUTEX','DBMIRROR_EVENTS_QUEUE','DBMIRRORING_CM
D' 
,'DIRTY_PAGE_POLL' 
,'DISPATCHER_QUEUE_SEMAPHORE' 
,'FT_IFTS_SCHEDULER_IDLE_WAIT','FT_IFTSHC_MUTEX' 
,'HADR_FILESTREAM_IOMGR_IOCOMPLETION' 
,'KSOURCE_WAKEUP' 
,'LOGMGR_QUEUE' 
,'ONDEMAND_TASK_QUEUE' 
,'REQUEST_FOR_DEADLOCK_SEARCH' 
,'XE_DISPATCHER_WAIT','XE_TIMER_EVENT' 
--Ignorable HADR waits 
, 'HADR_WORK_QUEUE' 
,'HADR_TIMER_TASK' 
,'HADR_CLUSAPI_CALL');

Through your own research into your workload, and in future versions
of SQL Server, as more wait types are added, you can grow this list



so that important and actionable wait types rise to the top of your
queries. A prevalence of these wait types shouldn’t be a concern;
they’re unlikely to be generated by or negatively affect user requests.

Wait types to be aware of
This section shouldn’t be the start and end of your understanding of
or research into wait types. Many of them have multiple avenues to
explore in your SQL Server instance, or at the very least, names that
are misleading to the DBA considering their origin. There are some,
or groups of some, that you should understand, because they
indicate a condition worth investigating. Many wait types are always
present in all applications but become problematic when they appear
in large frequency and/or with large cumulative waits. Large here is of
course relative to your workload and your server.

Different instance workloads will have a different profile of wait types.
Just because a wait type is at the top of the aggregate
sys.dm_os_wait_stats list, it doesn’t mean that is the main or only
performance problem with a SQL Server instance. It is likely that all
SQL Server instances, even finely tuned instances, will show these
wait types near the top of the aggregate waits list. You should track
and trend these wait stats, perhaps using the script example in the
previous section.

Important waits include the following, provided in alphabetical order:

ASYNC_NETWORK_IO. This wait type is associated with the
retrieval of data to a client (including SQL Server Management
Studio and Azure Data Studio), and the wait while the remote
client receives and finally acknowledges the data received. This
wait almost certainly has very little to do with network speed,
network interfaces, switches, or firewalls. Any client, including
your workstation or even SSMS running locally on the server,
can incur small amounts of ASYNC_NETWORK_IO as data is
retrieved to be processed. Transactional and snapshot
replication distribution will incur ASYNC_NETWORK_IO. You will see
a large amount of ASYNC_NETWORK_IO generated by reporting



applications such as Tableau, SSRS, SQL Server Profiler, and
Microsoft Office products. The next time a rudimentary Access
database application tries to load the entire contents of the
Sales.OrderLines table, you’ll likely see ASYNC_NETWORK_IO.

Reducing ASYNC_NETWORK_IO, like many of the waits we discuss
in this chapter, has little to do with hardware purchases or
upgrades; rather, it’s more to do with poorly designed queries
and applications. The solution, therefore, would be an
application change. Try suggesting to developers or client
applications incurring large amounts of ASYNC_NETWORK_IO that
they eliminate redundant queries, use server-side filtering as
opposed to client-side filtering, use server-side data paging as
opposed to client-side data paging, or use client-side caching.

CXPACKET. A common and often-overreacted-to wait type,
CXPACKET is a parallelism wait. In a vacuum, execution plans that
are created with parallelism run faster. But at scale, with many
execution plans running in parallel, the server’s resources might
take longer to process the requests. This wait is measured in
part as CXPACKET waits.

When the CXPACKET wait is the predominant wait type
experienced over time by your SQL Server, you should consider
turning both the Maximum Degree of Parallelism (MAXDOP) and
Cost Threshold for Parallelism (CTFP) dials when performance
tuning. Make these changes in small, measured gestures, and
don’t overreact to performance problems with a small number of
queries. Use the Query Store to benchmark and trend the
performance of high-value and high-cost queries as you change
configuration settings.
If large queries are already a problem for performance and
multiple large queries regularly run simultaneously, raising the
CTFP might not solve the problem. In addition to the obvious
solutions of query tuning and index changes, including the
creation of columnstore indexes, use MAXDOP as well to limit
parallelization for very large queries.



Until SQL Server 2016, MAXDOP was either a setting at the server
level, a setting enforced at the query level, or a setting enforced
to sessions selectively via Resource Governor (more on this
toward the end of this chapter in the section “Protect important
workloads with Resource Governor”). Since SQL Server 2016,
the MAXDOP setting has been available as a database-scoped
configuration. You can also use the MAXDOP query hint in any
statement to override the database or server-level MAXDOP
setting.

Inside OUT
What about the new CXCONSUMER wait type?

First introduced in SQL Server 2017 CU3 (and included in
SQL Server 2016 with Service Pack 2), the CXCONSUMER wait
type eats into the previous activity that would incur CXPACKET
waits. So, since SQL Server 2017 CU3, and including SQL
Server 2022, you’ll see a mix of both wait types.

Before the introduction of CXCONSUMER, CXPACKET was incurred
by both threads that consume and produce data as part of an
execution plan. However, the producer threads were most
problematic, most affected by the maximum degree of
parallelism (MAXDOP) and cost threshold for parallelism, and
most affected by out-of-date statistics. You have more control
over the problematic producer threads. These are still
reported by CXPACKET. The consumer threads are now
reported by CXCONSUMER.

On the other hand, the consumer threads in parallelism aren’t
easily influenceable by query tuners, so reporting these as
CXCONSUMER waits helps you focus on the more correctable
waits reported by CXPACKET. In some cases, optimizing your
parallelism settings may reduce the incurrence of this wait
stat.



IO_COMPLETION. This wait type is associated with
synchronous read and write operations that are not related to
row data pages, such as reading log blocks or virtual log file
(VLF) information from the transaction log, or reading or writing
merge join operator results, spools, and buffers to disk. It is
difficult to associate this wait type with a single activity or event,
but a spike in IO_COMPLETION could be an indication that these
same events are now waiting on the I/O system to complete.

LCK_M_*. Lock waits have to do with blocking and concurrency
(or lack thereof). (Chapter 14 looks at isolation levels and
concurrency.) When a request is writing and another request in
READ COMMITTED or higher isolation is trying to lock that same
row data, one of the 60+ different LCK_M_* wait types will be the
reported wait type of the blocked request. For example,
LCK_M_IS means that the thread wants to acquire an Intent
Shared lock, but some other thread has it locked in an
incompatible manner.

In the aggregate, this doesn’t mean you should reduce the
isolation level of your transactions. Whereas READ UNCOMMITTED
is not a good solution, read committed snapshot isolation (RCSI)
and snapshot isolation are good solutions; see Chapter 14 for
more details. Rather, you should optimize execution plans for
efficient access, for example, by reducing scans as well as
avoiding long-running multistep transactions. Also, avoid index
rebuild operations without the ONLINE option. (See the “Rebuild
indexes” section earlier in this chapter for more information.)
The wait_resource provided in sys.dm_exec_requests, or
resource_description in sys.dm_os_waiting_tasks, provide a
map to the exact location of the lock contention inside the
database.

 For a complete breakdown of the information that can be
contained in the resource_description field in your version of
SQL Server, visit https://learn.microsoft.com/sql/relational-
databases/system-dynamic-management-views/sys-dm-os-
waiting-tasks-transact-sql.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-os-waiting-tasks-transact-sql


MEMORYCLERK_XE. The MEMORYCLERK_XE wait type could
spike if you have allowed Extended Events session targets to
consume too much memory. We discuss Extended Events later
in this chapter, but you should watch out for the maximum buffer
size allowed to the ring_buffer session target, among other in-
memory targets.

OLEDB. This self-explanatory wait type describes waits
associated with long-running external communication via the
OLE DB provider, which is commonly used by SQL Server
Integration Services (SSIS) packages, Microsoft Office
applications (including querying Excel files), linked servers using
the OLE DB provider, and third-party tools. It could also be
generated by internal commands like DBCC CHECKDB. When you
observe this wait occurring in SQL Server, in most cases, it’s
driven by long-running linked server queries.

Inside OUT
What design changes could avoid OLEDB wait types?

You reduce OLEDB wait types by reducing execution time for
queries executing via the OLE DB provider, or by better
integrating data flows by avoiding flat files, data manipulation
via Access or Excel, or the use of linked servers. For
connections to non–SQL Server database platforms, instead
of flat file extract/imports to send data, consider PolyBase to
connect directly and write T-SQL queries on Oracle data
sources, for example.

PAGELATCH_* and PAGEIOLATCH_*. These two wait types
are presented together not because they are similar in nature—
they are not—but because they are often confused. To be clear,
PAGELATCH has to do with contention over pages in memory,



whereas PAGEIOLATCH relates to contention over pages in the I/O
system (on the drive).

PAGELATCH_* contention deals with pages in memory, which can
rise because of the overuse of temporary objects in memory,
potentially with rapid access to the same temporary objects.
This can also be experienced when reading in data from an
index in memory or reading from a heap in memory.
A rise in PAGEIOLATCH_* could be due to the performance of the
storage system (keeping in mind that the performance of drive
systems does not always respond linearly to increases in
activity). Aside from throwing (a lot of!) money at faster drives, a
more economical solution is to modify queries and/or indexes
and reduce the footprint of memory-intensive operations,
especially operations involving index and table scans.
PAGEIOLATCH_* contention has to do with a far more limiting and
troubling performance condition: the overuse of reading from the
slowest subsystem of all, the physical drives. PAGEIOLATCH_SH
deals with reading data from a drive into memory so that the
data can be accessed. Keep in mind that this doesn’t
necessarily translate to a request’s row count, especially if index
or table scans are required in the execution plan.
PAGEIOLATCH_EX and PAGEIOLATCH_UP are waits associated with
reading data from a drive into memory so that the data can be
written to.

Inside OUT
How can SQL Server help alleviate high durations for the
PAGELATCH_* category of wait types?

If long PAGELATCH_* waits are encountered in tempdb system
tables, a feature of SQL Server 2019 and newer may improve
performance: the new memory-optimized tempdb metadata
server option. This moves system tables containing tempdb
metadata into non-durable memory-optimized tables,



eliminating latches on tables that become “hot spots” because
of rapid inserts and updates. SQL Server 2022 adds new
improvements to address this contention. For more on this
topic, see the topic “Storage options for tempdb” in Chapter 3.

SQL Server 2019 also introduced an index option to
specifically address one of the common causes of
PAGELATCH_EX waits. These can be related to inserts that are
happening rapidly and/or page splits related to inserts. The
index option OPTIMIZE_FOR_SEQUENTIAL_KEY is specifically for
tables with clustered keys on IDENTITY or SEQUENCE that have
high write volumes, creating “hot spots” for sequential inserts.
If you observe high amounts of PAGELATCH_EX, it may be
because of contention for individual pages in memory due to
sequential inserts. This index option in SQL Server 2019
improves performance for tables that have a sequential key.

RESOURCE_SEMAPHORE. This wait type is accumulated
when a request is waiting on memory to be allocated before it
can start. Although this could be an indication of memory
pressure caused by insufficient memory available to process the
queries being executed, it is more likely caused by poor query
design and poor indexing, resulting in inefficient execution plans.
Aside from throwing money at more system memory, a more
economical solution is to tune queries and reduce the footprint
of memory-intensive operations. The memory grant feedback
features that are part of Intelligent Query Processing help
address these waits by improving memory grants for
subsequent executions of a query.

SOS_SCHEDULER_YIELD. Another flavor of CPU pressure,
and in some ways the opposite of the CXPACKET wait type, is the
SOS_SCHEDULER_YIELD wait type. The SOS_SCHEDULER_YIELD is an
indicator of CPU pressure, indicating that SQL Server had to
share time with, or yield to, other CPU tasks, which can be
normal and expected on busy servers. Whereas CXPACKET is
SQL Server complaining about too many threads in parallel,



SOS_SCHEDULER_YIELD is the acknowledgement that there were
more runnable tasks for the available threads. In either case,
first take a strategy of reducing CPU-intensive queries and
rescheduling or optimizing CPU-intense maintenance
operations. This is more economical than simply adding CPU
capacity.

WAIT_XTP_RECOVERY. This wait type can occur when a
database with memory-optimized tables is in recovery at startup
and is expected. As with all wait types on performance-sensitive
production SQL Server instances, you should baseline and
measure it, but be aware this is not usually a sign of any
problem.

WRITELOG. The WRITELOG wait type is likely to appear on any
SQL Server instance, including availability group primary and
secondary replicas, when there is heavy write activity. The
WRITELOG wait is time spent flushing the transaction log to a drive
and is due to physical I/O subsystem performance. On systems
with heavy writes, this wait type is expected.

You could consider re-creating the heavy-write tables as
memory-optimized tables to increase the performance of writes.
Memory-optimized tables optionally allow for delayed durability,
which would resolve a bottleneck writing to the transaction log
by using a memory buffer. For more information, see Chapter
14.

XE_FILE_TARGET_TVF and XE_LIVE_TARGET_TVF. These
waits are associated with writing Extended Events sessions to
their targets. A sudden spike in these waits would indicate that
too much is being captured by an Extended Events session.
Usually these aren’t a problem, because the asynchronous
nature of Extended Events has a much lower impact than
traces.

Monitor with the SQL Assessment API



The SQL Assessment API is a code-delivered method for
programmatically evaluating SQL Server instance and database
configuration. First introduced with SQL Server Management Objects
(SMO) and the SqlServer PowerShell module in 2019, calls to the
API can be used to evaluate alignment with best practices, and then
can be scheduled to monitor regularly for variance.

You can use this API to assess SQL Servers starting with SQL Server
2012, for SQL Server on Windows and Linux. The assessment is
performed by comparing SQL Server configuration to rules, stored as
JSON files. Microsoft has provided a standard array of rules.

 Review the default JSON configuration file at
https://learn.microsoft.com/sql/tools/sql-assessment-api/sql-
assessment-api-overview.

Use this standard JSON file as a template to assess your own best
practices if you like. The assessment configuration files are organized
into the following:

Probes. These usually contain a T-SQL query—for example, to
return data from DMOs (discussed earlier in this chapter). You
can also write probes against your own user tables to query for
code-driven states or statuses that can be provided by
applications, ETL packages, or custom error-handling.

Checks. These compare desired values with the actual values
returned by probes. They include logical conditions and
thresholds. Here, like with any SQL Server monitoring tool, you
might want to change numeric thresholds to suit your SQL
environment.

Inside OUT
What do you need to know about SMO?

https://learn.microsoft.com/sql/tools/sql-assessment-api/sql-assessment-api-overview


SMO is a framework for developers to interface with SQL
Server programmatically, bypassing T-SQL and PowerShell
commands. While custom development of SMO applications
is far beyond the scope of this book, the use of SMO to
interact with the new SQL Assessment API is relatively easy
and should not require assistance from developers.

SMO used to be installed via the SQL Server Feature Pack, in
the SharedManagementObjects.msi file. Starting with SQL
Server 2017, the NuGet package is how the binaries are
distributed. More details follow.

Get started with the SQL Assessment API
To begin evaluating default or custom rules against your SQL Server,
you must verify the presence of .NET Framework 4.0 and the latest
versions of SMO and the SqlServer PowerShell module.

If you want to try this out on a server with an installation of SQL
Server 2022 and the latest PowerShell SqlServer module, this
sample PowerShell script should work:
Click here to view code image

$InstanceName='sql2022' #This should be the name of your 
instance 
Get-SqlInstance -ServerInstance $InstanceName | Invoke-
SqlAssessment | Out-GridView

For servers with installations of SQL Server, SMO should already be
present on the Windows Server. For your local administration
machine or a centralized server from which you’ll monitor your SQL
Server environment, you’ll need to install SMO and the latest
PowerShell SqlServer module.

While a developer might use Visual Studio’s Package Manager, you
do not need to install Visual Studio to install the SMO NuGet
package. Instead, you can use the cross-platform nuget.exe



command line utility. You can also install and use the command line
interface tool dotnet.exe if desired.

 More information about the various options is available at
https://learn.microsoft.com/nuget/install-nuget-client-tools.

After you download nuget.exe, follow these steps:

1. Open a PowerShell window with Administrator permissions and
navigate to the folder where you saved nuget.exe. Note that
when calling an executable from a PowerShell window, you need
to preface the executable with ./ (dot slash), which is a security
mechanism carried over from UNIX systems. The command to
download and install SMO via nuget.exe should take just a few
seconds to complete:

Click here to view code image

nuget install Microsoft.SqlServer.SqlManagementObjects

Optionally, specify an installation location for the installation:

Click here to view code image

nuget install Microsoft.SqlServer.SqlManagementObjects -
OutputDirectory "c:\nuget\ 
packages"

SMO is maintained and distributed via a NuGet package at
https://nuget.org/packages/Microsoft.SqlServer.SqlManagement
Objects.

In the installation directory, you’ll find several new folders. These
version numbers are the latest at the time of writing and will
likely be higher by the time you read this book.

System.Data.SqlClient.4.6.0

Microsoft.SqlServer.SqlManagementObjects.150.18147.0

https://learn.microsoft.com/nuget/install-nuget-client-tools
https://nuget.org/packages/Microsoft.SqlServer.SqlManagementObjects


2. With SMO in place, the second step to using the SQL
Assessment API is to install the SqlServer PowerShell module.
If you don’t already have the latest version of this module
installed, launch a PowerShell console as an administrator,
launch Visual Studio Code as an administrator, or use your
favorite PowerShell scripting environment. The following
command will download and install the latest version, even if you
have a previous version installed:

Click here to view code image

Install-Module -Name SqlServer -AllowClobber -Force

The AllowClobber parameter instructs Install-Module to
overwrite cmdlet aliases already in place. Without AllowClobber,
the installation will fail if it finds that the new module contains
commands with the same name as existing commands.

 For more information on installing and using the SqlServer
PowerShell module, including how to install without Internet
connectivity, see Chapter 9.

3. With SMO and the SqlServer PowerShell module installed, you
are ready to compare SQL Server health with the default rule set
by a PowerShell command—for example, as we demonstrated
at the start of this section:

Click here to view code image

Get-SqlInstance -ServerInstance . | Invoke-SqlAssessment 
| Out-GridView

Here, the period is shorthand for localhost, so this command
executes an assessment against the API of the local default
instance of SQL Server. To run the assessment against a remote
SQL Server instance using Windows Authentication:

Click here to view code image



Get-SqlInstance -ServerInstance servername | Invoke-
SqlAssessment | ` 
Out-GridView

Or, for a named instance:

Click here to view code image

Get-SqlInstance -ServerInstance servername\instancename | 
` 
Invoke-SqlAssessment | Out-GridView

Out-GridView (which is part of the default Windows PowerShell
cmdlets) pops open a new window to make it easier to review
multiple findings than reading what could be many pages of
results in a scrolling PowerShell console. You can output the
data any way you like using common PowerShell cmdlets.

 For more sample syntax on assessing SQL Server instances via
the Invoke-SqlAssessment cmdlet, visit
https://learn.microsoft.com/powershell/module/sqlserver/invoke-
sqlassessment.

The output of Invoke-SqlAssessment includes a helpful link to
Microsoft documentation on every finding, the severity of each
finding, the name of the check that resulted in a finding, an ID for the
check for more granular review, and a helpful message. Again, all of
this is provided by Microsoft’s default ruleset, on which you can base
your own custom checks and probes with custom severity and
messages.

To use your own customized configuration file, you can use the -
Configuration parameter:
Click here to view code image

Get-SqlInstance -ServerInstance servername | Invoke-
SqlAssessment ` 
-Configuration "C:\toolbox\sqlassessment_api_config.json" | 
Out-GridView

https://learn.microsoft.com/powershell/module/sqlserver/invoke-sqlassessment


Use Extended Events
The Extended Events feature is the best way to “look live” at SQL
Server activity, replacing deprecated traces. Even though the default
Extended Event sessions are not yet complete replacements for the
default system trace (we give an example a bit later), consider
Extended Events for all new activity related to troubleshooting and
diagnostic data collection. The messaging around Extended Events is
that it is the replacement for traces for a decade.

Note
The XEvent UI in SSMS is easier than ever to use, so if you
haven’t switched to using Extended Events to do what you used
to use traces for, the time is now!

We’ll assume you don’t have a lot of experience creating your own
Extended Events sessions. Let’s become familiar with some of the
most basic terminology for Extended Events:

Sessions. A set of data collection instructions that can be
started and stopped; the new equivalent of a “trace.”

Events. Items selected from an event library. Events are what
you may remember “tracing” with SQL Server Profiler. These are
predetermined, detectable operations during runtime. Events
you’ll most commonly want to look for include
sql_statement_completed and sql_batch_completed—for
example, for catching an application’s T-SQL code.

Examples: sql_batch_starting, login, error_reported,
sort_warning, table_scan

Actions. The headers of the columns of Extended Events data
that describe an event, such as when the event happened, who
and what called the event, its duration, the number of writes and
reads, CPU time, and so on. In this way, actions are additional



data captured when an event is recorded. In SSMS, Global
Fields is the name for actions, which allow additional information
to be captured for any event—for example, database_name or
database_id.

Examples: sql_text, batch_text, timestamp, session_id,
client_hostname

Predicates. Filter conditions created on actions to limit the data
captured. You can filter on any action or field returned by an
event you have added to the session.

Examples: database_id > 4, database_name =
'WideWorldImporters', is_system = 0

Targets. Where the data should be sent. You can watch detailed
and “live” Extended Events data captured asynchronously in
memory for any session. A session, however, can also have
multiple targets, such as a ring_buffer (an in-memory buffer),
an event_file (an .xel file on the server), or a histogram (an in-
memory counter with grouping by actions). A session can have
only one of each target.

 For more information about the different targets see the section
“Understand the variety of Extended Events targets” later in this
chapter.

SQL Server installs with three Extended Events sessions ready to
view. Two of these, system_health and telemetry_xevents, start by
default; the third, AlwaysOn_Health, starts when needed. These
sessions provide a basic coverage for system health, though they are
not an exact replacement for the system default trace. (The default
trace captures query activity happening against the server for
troubleshooting purposes.) Do not stop or delete these sessions,
which should start automatically.

Note



If the system_health, telemetry_xevents, and/or
AlwaysOn_Health sessions are accidentally dropped from the
server, you can find the scripts to re-create them for your
instance in this file: instancepath\MSSQL\Install\u_tables.sql.
Here’s an example: E:\Program Files\Microsoft SQL
Server\MSSQL16.MSSQLSERVER\MSSQL\Install\u_tables.sql.

You’ll see the well-documented definitions of the two Extended Event
sessions toward the bottom of the file. If you just want to see the
script that created the definitions for the built-in Extended Events
sessions, you can script them via SSMS by right-clicking the session,
selecting Script Session As in the shortcut menu, choosing Create
To, and specifying a destination for the script.

Note
Used to using SQL Server Profiler? The XEvent Profiler delivers
an improved “tracing” experience that mimics the legacy SQL
Server Profiler trace templates. Extended Events sessions
provide a modern, asynchronous, and far more versatile
replacement for SQL Server traces, which are, in fact,
deprecated. For troubleshooting, debugging, performance
tuning, and event gathering, Extended Events provide a faster
and more configurable solution than traces.

View Extended Events data
The XEvent Profiler in SSMS is the perfect place to view Extended
Events data. Since SQL Server Management Studio 17.3, the XEvent
Profiler tool has been built in. You’ll find the XEvent Profiler in the
SSMS Object Explorer window, in the SQL Server Agent menu.
Figure 8-1 shows an example of the XE Profiler TSQL session.





Figure 8-1 The XE Profiler T-SQL live events display in SSMS,
similar to the deprecated Profiler T-SQL trace template.

Note
Though not a full replacement for SSMS, Azure Data Studio
also has capabilities for managing Extended Event sessions,
via the SQL Server Profiler extension that can be quickly
downloaded and added. Search for the “SQL Server Profiler”
extension or add the “Admin Pack for SQL Server” extension
via the Extensions Marketplace in Azure Data Studio.

An Extended Events session can generate simultaneous output to
multiple destinations, only one of which closely resembles the .trc
files of old.

You can create other targets for a session on the Data Storage page
of the New Session dialog box in SSMS. To view data collected by
the target, expand the session, right-click the package, and select
View Target Data in the shortcut menu. (See Figure 8-2.)

Figure 8-2 A side-by-side look at the difference between Watch
Live Data on an Extended Events session and View
Target Data on an Extended Events session target.

When viewing target data, you can right-click to re-sort, copy the data
to the clipboard, and export most of the target data to .csv files for



analysis in other software.

Unlike Watch Live Data, View Target Data does not refresh
automatically. However, for some targets, you can configure SSMS to
poll the target automatically by right-clicking the View Target Data
window, selecting Refresh Interval in the shortcut menu, and
choosing a refresh interval (between 5 seconds and 1 hour).

Note
Currently, there is no built-in way in SSMS to write Extended
Events session data directly to a SQL Server table. However,
the Watch Live Data interface provides easy point-and-click
analysis, grouping, and filtering of live session data. We review
the target types next. Take some time to explore the other
available target types; they can easily and quickly reproduce
your analysis of trace data written to SQL Server tables.

The section that follows presents a breakdown of the possible
targets. Many of these do some of the heavy lifting that you might
have done previously by writing or exporting SQL trace data to a
table and then performing your own aggregations, counts, or data
analysis. Remember: You don’t need to pick just one target type to
collect data for your session.

Understand the variety of Extended Events
targets
As mentioned, you can always watch detailed and “live” Extended
Events data captured asynchronously in memory for any session
through SSMS. You do this by right-clicking a session and selecting
Watch Live Data from the shortcut menu. You’ll see asynchronously
delivered detailed data, and you can customize the columns you see,
apply filters on the data, and even create groups and on-the-fly
aggregations, all by right-clicking inside the Live Data window.



The Live Data window, however, isn’t a target. The data isn’t saved
anywhere outside the SSMS window, and you can’t look back at data
you missed before launching Watch Live Data. You can create a
session without a target, and Watch Live Data is all you’ll get, but
often that is all you need for a quick observation.

Here is a summary of the Extended Event targets available to be
created. Remember, you can create more than one target per
session.

Event File target (.xel). Writes the event data to a physical file
on a drive asynchronously. You can then open and analyze it
later, much like deprecated trace files, or merge it with other .xel
files to assist analysis. (In SSMS, select the File menu, select
Open, and then select Merge Extended Events Files.)

If you are using Azure SQL Database or Managed Instance and
you would like to persist Extended Event data, you can only use
the Event File target to Azure Blob Storage. You also need to
create a credential using a shared access signature (SAS).

 The instructions for connecting your Azure SQL Database and
Blob Storage for Extended Events can be found at
https://learn.microsoft.com/azure/azure-sql/database/xevent-
code-event-file.

When you view the event file data in SSMS (right-click the event
file and select View Target Data), the data does not refresh live.
Data continues to be written to the file behind the scenes while
the session is running. So, to view the latest data, you must
close the .xel file and open it again.
By default, .xel files are written to the instancepath\MSSQL\Log
folder.

Histogram target. Counts the number of times an event has
occurred and bucketizes an action, storing the data in memory.
For example, you can capture a histogram of
sql_statement_completed broken down by the number of

https://learn.microsoft.com/azure/azure-sql/database/xevent-code-event-file


observed events by client-hostname action, or by the duration
field.

When configuring the histogram type target, you must choose a
number of buckets (or slots, in the T-SQL syntax) that is greater
than the number of unique values you expect for the action or
field. If you’re bucketizing by a numeric value such as duration,
be sure to provide a number of buckets larger than the largest
duration you could capture over time. If the histogram runs out
of buckets for new values for your action or field, it will not
capture data for them.
You can provide any number of histogram buckets, but the
histogram target will round the number up to the nearest power
of 2. Thus, if you provide a value of 10 buckets, you’ll see 16
buckets.

Pair matching or Pairing target. Used to match events, such
as the start and end of a SQL Server batch execution, and find
occasions when an event in a pair occurs without the other, such
as sql_statement_starting and sql_statement_completed.
Select a start and an end from the list of actions you’ve selected.

Ring_buffer target. Provides a fast, in-memory first in, first out
(FIFO) asynchronous memory buffer to collect rapidly occurring
events. Stored in a memory buffer, the data is never written to a
drive, allowing for robust data collection without performance
overhead. The customizable dataset is provided in XML format
and must be queried. Because this data is in-memory, you
should be careful how high you configure the Maximum Buffer
Memory size, and never set the size to 0 (unlimited).

Service Broker target. Used to send messages to a target
service of a customizable message type.

Although the aforementioned targets are high-performing
asynchronous targets, there are two synchronous targets:

Event Tracing for Windows (ETW) target. Used to gather SQL
Server data, to be combined with Windows event log data, for



troubleshooting and debugging Windows applications.

Event counter target. Counts the number of events in an
Extended Events session. You use this to provide data for
trending and later aggregate analysis. The resulting dataset has
one row per event with a count. This data is stored in memory,
so although it’s synchronous, you shouldn’t expect any
noticeable performance impact.

Note
Be aware when using synchronous targets that the resource
demand of synchronous targets might be more noticeable.

Further, there are two session options that can affect the performance
impact of an Extended Event session. The defaults are reasonably
safe and are unlikely to result in noticeable performance overhead, so
they don’t typically need to be changed. You might, however, want to
change them if the event you’re trying to observe is rare, temporary,
and outweighs your performance overhead concerns.

EVENT_RETENTION_MODE. Determines whether, under
pressure, the Extended Event session can miss a captured
event. The default, ALLOW_SINGLE_EVENT_LOSS, here can let
target(s) miss a single event when memory buffers used to
stream the data to the target(s) are full.

You instead specify ALLOW_MULTIPLE_EVENT_LOSS, which further
minimizes the potential for performance impact on the monitored
server by allowing more events to be missed.
Or you could specify NO_EVENT_LOSS, which does not allow
events to be missed, even if memory buffers are full. All events
are retained and presented to the target. While not the same as
using a synchronous target, it can result in the same effect:
Performance of the SQL Server could suffer under the weight of
the Extended Event session. Using this option is not
recommended.



MAX_DISPATCH_LATENCY. Determines the upper limit for
when events are sent from the memory buffer to the target. By
default, events are buffered in memory for up to 30 seconds
before being sent to the targets. You could change this value to
1 to force data out of memory buffers faster, reducing the benefit
of the memory buffers. A value of INFINITE or 0 allows for the
retention of events until memory buffers are full or until the
session closes.

Let’s look at querying Extended Events session data in T-SQL with a
couple of practical common examples.

Use Extended Events to capture deadlocks
We’ve talked about viewing data in SSMS, so let’s review querying
Extended Events data via T-SQL. Let’s query one of the default
Extended Events sessions, system_health, for deadlocks.

Back before SQL Server 2008, it was not possible to see a deadlock.
You had to see it coming—to enable one or more trace flags before
the deadlock, which allowed deadlocks to be captured to the SQL
Server Error Log. With the system_health Extended Events session,
a recent history of event data is captured, included deadlock graphs.
This data is captured to both a ring_buffer target with a rolling 4-MB
buffer, and to an .xel file with a total of 20 MB in rollover files. Either
target will contain the most recent occurrences of the
xml_deadlock_report event, and although the ring_buffer is faster
to read from, the .xel file by default contains more history. Further, the
.xel file isn’t subject to the limitations of the 4-MB ring_buffer target
or the potential for missed rows.

The T-SQL code sample that follows demonstrates the retrieval of the
.xel file target as XML:
Click here to view code image

DECLARE @XELFile nvarchar(256), @XELFiles nvarchar(256) 
           , @XELPath nvarchar(256); 
--Get the folder path where the system_health .xel files are 



SELECT     @XELFile =       CAST(t.target_data as XML) 
          .value('EventFileTarget[1]/File[1]/@name', 
'NVARCHAR(256)') 
FROM sys.dm_xe_session_targets t 
     INNER JOIN sys.dm_xe_sessions s 
      ON s.address = t.event_session_address 
WHERE s.name = 'system_health' AND t.target_name = 
'event_file'; 
--Provide wildcard path search for all currently retained 
.xel files 
SELECT @XELPath = 
    LEFT(@XELFile, Len(@XELFile)-
CHARINDEX('\',REVERSE(@XELFile))) 
SELECT @XELFiles = @XELPath + '\system_health_*.xel'; 
--Query the .xel files for deadlock reports 
SELECT DeadlockGraph = CAST(event_data AS XML) 
     , DeadlockID = Row_Number() OVER(ORDER BY file_name, 
file_offset) 
FROM sys.fn_xe_file_target_read_file(@XELFiles, null, null, 
null) AS F 
WHERE event_data like '<event name="xml_deadlock_report%';

Inside OUT
How can you test your deadlock capture strategy?

Here’s a quick, two-connection script to produce a deadlock.
To use it, first open two query connections in SSMS to a
testing database. You should then be able to use the default
system_health Extended Events session to view the details of
the deadlock. If your server has not recorded any deadlocks,
this query will not have results.

Run this script in connection 1:
Click here to view code image

CREATE TABLE dbo.dead (col1 INT); 
INSERT INTO dbo.dead SELECT 1; 
CREATE TABLE dbo.lock (col1 INT); 



INSERT INTO dbo.lock SELECT 1; 
BEGIN TRAN t1; 
UPDATE dbo.dead WITH (TABLOCK) SET col1 = 2;

Run this script in connection 2:
Click here to view code image

BEGIN TRAN t2; 
UPDATE dbo.lock WITH (TABLOCK) SET col1 = 3; 
UPDATE dbo.dead WITH (TABLOCK) SET col1 = 3; 
COMMIT TRAN t2;

Now, back in connection 1:
Click here to view code image

UPDATE dbo.lock WITH (TABLOCK) SET col1 = 4; 
COMMIT TRAN t1;

Within a moment, one of your sessions is closed as the victim
of a deadlock.

This example returns one row per captured xml_deadlock_report
event and includes an XML document, which in SSMS Grid results
will appear as a blue hyperlink. Select the hyperlink to open the XML
document, which will contain complete details of all elements of the
deadlock. If you want to see a deadlock graph, save this file as an
.xdl file, and then open it in SSMS.

Use Extended Events to detect autogrowth events
The SQL Server default trace captures historical database data and
log file autogrowth events, but the default Extended Events sessions
shipped with SQL Server do not. The Extended Events that capture
autogrowth events are database_file_size_change and
databases_log_file_size_changed. Both events capture autogrowths
and manual file growths run by ALTER DATABASE … MODIFY FILE
statements, and include an event field called is_automatic to



differentiate them. Additionally, you can identify the query statement
sql_text that prompted the autogrowth event.

The following is a sample T-SQL script to create a startup session
that captures autogrowth events to an .xel event file (which is written
to F:\Data—you should change this to an appropriate directory on
your system) and also a histogram target that counts the number of
autogrowth instances per database:
Click here to view code image

CREATE EVENT SESSION [autogrowths] ON SERVER 
ADD EVENT sqlserver.database_file_size_change( 
 ACTION(package0.collect_system_time,sqlserver.database_id 
,sqlserver.database_name,sqlserver.sql_text)), 
ADD EVENT sqlserver.databases_log_file_size_changed( 
 ACTION(package0.collect_system_time,sqlserver.database_id 
,sqlserver.database_name,sqlserver.sql_text)) 
ADD TARGET package0.event_file( 
--.xel file target 
SET filename=N'F:\DATA\autogrowths.xel'), 
ADD TARGET package0.histogram( 
--Histogram target, counting events per database_name 
SET 
filtering_event_name=N'sqlserver.database_file_size_change' 
,source=N'database_name',source_type=(0)) 
--Start session at server startup 
WITH (STARTUP_STATE=ON); 
GO 
--Start the session now 
ALTER EVENT SESSION [autogrowths] 
ON SERVER STATE = START;

 Refer to the section “Understand and find autogrowth events”
earlier in this chapter for more information, including how to
prevent autogrowth events.

Use Extended Events to detect page splits
As discussed, detecting page splits can be useful. You might choose
to monitor page splits when load testing a table design with its



intended workload, or when finding insert statements that cause the
most fragmentation.

The following sample T-SQL script creates a startup session that
captures autogrowth events to an .xel event file, and also a histogram
target that counts the number of page splits per database:
Click here to view code image

CREATE EVENT SESSION [page_splits] ON SERVER 
ADD EVENT sqlserver.page_split( 
 ACTION(sqlserver.database_name,sqlserver.sql_text)) 
ADD TARGET package0.event_file( 
SET filename=N'page_splits', max_file_size=(100)), 
ADD TARGET package0.histogram( 
SET filtering_event_name=N'sqlserver.page_split' 
,source=N'database_id',source_type=(0)) 
--Start session at server startup 
WITH (STARTUP_STATE=ON); 
GO 
--Start the session now 
 ALTER EVENT SESSION [page_splits] ON SERVER STATE = START;

 Refer to the section “Track page splits” earlier in this chapter
for more information, including how to prevent page splits.

Secure Extended Events
You can also think of Extended Events as a diagnostic tool for
developers. Given knowledge of your own data classification and
regulatory requirements, you should consider granting the necessary
permissions to developers, even if temporarily.

There are certain sensitive events that you cannot capture with a
trace or Extended Event session. For example, the T-SQL statement
CREATE LOGIN for a SQL-authenticated login will not capture the value
of the password.

To access Extended Events in SQL Server, a developer needs the
ALTER ANY EVENT SESSION permission. This grants that person
access to create Extended Events sessions by using T-SQL



commands, but not to view server metadata in the New Extended
Events Session Wizard in SSMS. For that, you need one further
commonly granted developer permission: VIEW SERVER STATE.

In Azure SQL Database, Extended Events have the same capability,
but for developers to view Extended Events sessions, you must grant
them an ownership-level permission, CONTROL DATABASE.
However, we do not recommend this for developers or non-
administrators in production environments.

 For more about object permissions, see Chapter 12,
“Administer instance and database security and permissions.”

Capture performance metrics with
DMOs and data collectors
For years, server administrators have used the Windows
Performance Monitor (perfmon.exe) application to visually track and
collect performance information about server resources, application
memory usage, disk response times, and so on. In addition to the live
Performance Monitor graph, you can also configure Data Collector
Sets in Performance Monitor to gather the same metrics over time.

SQL Server has many metrics made visible through DMVs as well.
This book has neither the scope nor the space to investigate and
explain every available performance metric, or even every useful one.
Instead, this section reviews the tools and covers a sampling of
important performance metrics.

These metrics exist at the OS or instance level, so this chapter does
not review granular data for individual databases, workloads, or
queries. However, identifying performance with isolated workloads in
near-production systems is possible. Like aggregate wait statistics,
there is significant value in trending these Performance Monitor
metrics on server workloads, monitoring peak behavior metrics, and
for immediate troubleshooting and problem diagnosis.



Query performance metrics with DMVs
Beyond the Windows Performance Monitor and Linux metrics, this
chapter has already mentioned a DMV that exposes most of the
performance metrics within SQL Server:
sys.dm_os_performance_counters. It behaves the same in Windows
and Linux, thanks to the magic of the SQL Platform Abstraction Layer
(SQLPAL), which helps SQL Server look and act much the same way
on both Windows and Linux.

There are some advantages to this DMV in that you can combine it
with other DMVs that report on system resource activity (check out
sys.dm_os_sys_info, for example), and you can fine-tune the query
for ease of monitoring and custom data collecting. However,
sys.dm_os_ performance_counters does not currently have access to
metrics outside the SQL Server instance categories—even the most
basic operating system metrics, like % Processor Time.

The following code sample uses sys.dm_os_performance_counters to
return the operating system’s total memory, the instance’s current
target server memory, total server memory, and page life expectancy:
Click here to view code image

SELECT Time_Observed = SYSDATETIMEOFFSET() 
, OS_Memory_GB = MAX(convert(decimal(19,3), 
os.physical_memory_kb/1024./1024.)) 
, OS_Available_Memory_GB = max(convert(decimal(19,3), 
sm.available_physical_memory_kb/1024./1024.)) 
, SQL_Target_Server_Mem_GB = max(CASE counter_name 
WHEN 'Target Server Memory (KB)' THEN convert(decimal(19,3), 
cntr_value/1024./1024.) 
END) 
, SQL_Total_Server_Mem_GB = max(CASE counter_name 
WHEN 'Total Server Memory (KB)' THEN convert(decimal(19,3), 
cntr_value/1024./1024.) 
END) 
, PLE_s = MAX(CASE counter_name WHEN 'Page life expectancy' 
THEN cntr_value END) 
FROM sys.dm_os_performance_counters as pc 



CROSS JOIN sys.dm_os_sys_info as os 
CROSS JOIN sys.dm_os_sys_memory as sm;

Note
In servers with multiple SQL Server instances,
sys.dm_os_performance_counters displays only metrics for the
instance on which it is run. You cannot access performance
metrics for other instances on the same server via this DMV.

Some queries against sys.dm_os_performance_counters are not as
straightforward. For example, although Performance Monitor returns
the Buffer Cache Hit Ratio as a single value, querying this same
memory metric via the DMV requires creating the ratio from two
metrics. This code sample divides two metrics to provide the Buffer
Cache Hit Ratio:
Click here to view code image

SELECT Time_Observed = SYSDATETIMEOFFSET(), 
Buffer_Cache_Hit_Ratio = convertDECIMAL (9,1)t, 100 * 
(SELECT cntr_value = convert(decimal (9,1), cntr_value) 
FROM sys.dm_os_performance_counters as pc 
WHERE pc.COUNTER_NAME = 'Buffer cache hit ratio' 
AND pc.OBJECT_NAME like '%:Buffer Manager%') 
/ 
(SELECT cntr_value = convert(decimal (9,1), cntr_value) 
FROM sys.dm_os_performance_counters as pc 
WHERE pc.COUNTER_NAME = 'Buffer cache hit ratio base' 
AND pc.OBJECT_NAME like '%:Buffer Manager%'));

Finally, some counters returned by sys.dm_os_performance_counters
are continually incrementing integers. Let’s return to our earlier
example of finding page splits, where we demonstrated how to find
the accumulating value. The counter name Page Splits/sec is
misleading when accessed via the DMV, because it is an
incrementing number. To calculate the rate of page splits per second,
you need two samples to calculate the difference between the first
and second values. This strategy is appropriate only for single-value



counters for the entire server or instance. For counters that return
one value per database, you would need to use a temporary table to
calculate the rate for each database between the two samples. You
could also capture these values to a table at regular intervals to
enable reporting over time.
Click here to view code image

DECLARE @page_splits_Start_ms bigint, @page_splits_Start 
bigint 
, @page_splits_End_ms bigint, @page_splits_End bigint; 
SELECT @page_splits_Start_ms = ms_ticks 
, @page_splits_Start = cntr_value 
FROM sys.dm_os_sys_info CROSS APPLY 
sys.dm_os_performance_counters 
WHERE counter_name ='Page Splits/sec' 
AND object_name LIKE '%SQL%Access Methods%'; --Find the 
object that contains page splits 
WAITFOR DELAY '00:00:05'; --Duration between samples 5s 
 
SELECT @page_splits_End_ms = MAX(ms_ticks), 
@page_splits_End = MAX(cntr_value) 
FROM sys.dm_os_sys_info CROSS APPLY 
sys.dm_os_performance_counters 
WHERE counter_name ='Page Splits/sec' 
AND object_name LIKE '%SQL%Access Methods%'; --Find the 
object that contains page splits 
SELECT Time_Observed = SYSDATETIMEOFFSET(), 
Page_Splits_per_s = convert(decimal(19,3), 
(@page_splits_End - @page_splits_Start)*1. 
/ NULLIF(@page_splits_End_ms - @page_splits_Start_ms,0));

You can gain access to some OS metrics via the DMV
sys.dm_os_ring_buffers, including metrics on CPU utilization and
memory. This DMV returns thousands of XML documents, generated
every second, loaded with information on SQL exceptions, memory,
schedulers, connectivity, and more. It is worth noting that the
sys.dm_os_ring_buffers DMV is one of several OS-level views that
are documented but not supported.



 For more information, visit
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sql-server-operating-system-
related-dynamic-management-views-transact-sql.

In the code sample that follows, we pull the SQL Server instance’s
CPU utilization and the server idle CPU percentage for the past few
hours. The remaining CPU percentage can be chalked up to other
applications or services running on the server, including other SQL
Server instances.
Click here to view code image

DECLARE @ts_now bigint = (SELECT 
cpu_ticks/(cpu_ticks/ms_ticks) FROM sys.dm_os_sys_info 
WITH (NOLOCK)); 
 
SELECT TOP(256) SQLProcessUtilization AS [SQL Server Process 
CPU Utilization], 
SystemIdle AS [System Idle Process], 
100 - SystemIdle - SQLProcessUtilization AS [Other Process 
CPU Utilization], 
DATEADD(ms, -1 * (@ts_now - [timestamp]), GETDATE()) AS 
[Event Time] 
FROM (SELECT record.value('(./Record/@id)[1]', 'int') AS 
record_id, 
record.value('(./Record/SchedulerMonitorEvent/SystemHealth/Sy
stemIdle)[1]', 'int') 
AS [SystemIdle], 
record.value('(./Record/SchedulerMonitorEvent/SystemHealth/Pr
ocessUtilization)[1]', 
'int') 
AS [SQLProcessUtilization], [timestamp] 
FROM (SELECT [timestamp], CONVERT(xml, record) AS [record] 
FROM sys.dm_os_ring_buffers WITH (NOLOCK) 
WHERE ring_buffer_type = N'RING_BUFFER_SCHEDULER_MONITOR' 
AND record LIKE N'%<SystemHealth>%') AS x) AS y 
ORDER BY record_id DESC;

Now you should have a grasp on using most of the DMVs for
gathering performance metrics to capture various types of data
streams coming out of SQL Server.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sql-server-operating-system-related-dynamic-management-views-transact-sql


Inside OUT
Does the ring buffer incur overhead with all this data it is
capturing to memory?

There is some background overhead for ring-buffer data
collection, but compared to other data collection methods, it is
far more efficient. SQL Server instances always have this
diagnostic activity present, constantly and by design, so the
ring buffer won’t be at fault for sudden or even gradual
performance degradation.

Only appropriate on resource-limited servers and/or instances
with extremely high frequency transaction activity, it’s possible
to disable the ring buffer by using trace flags. This can result
in a small performance gain, but you should test and measure
it against the loss of diagnostic data on which your own
administrative queries or third-party products rely.

 For more information on using trace flags to disable ring-buffer
data collection, visit
https://support.microsoft.com/help/920093.

Capture performance metrics with Performance
Monitor
To get a complete, graphical picture of server resource utilization, it’s
necessary to use a server resource tool. Performance Monitor is
more than just a pretty graph; it is a suite of data collection tools that
can persist outside your user profile.

To open Performance Monitor, type performance in the Windows
Start menu and select the Performance Monitor icon, or press the
Windows+R key combination and type perfmon. You can configure
the live Performance Monitor graph, available in the Monitoring Tools

https://support.microsoft.com/help/920093


folder, to show a live picture of server performance. To do so, right-
click the (mostly empty) chart to access properties, add counters,
clear the graph, and so on.

Choosing Properties in that same shortcut menu opens the
Performance Monitor Properties dialog box. Under General, you
can configure the sample rate and duration of the graph. You can also
display up to 1,000 sample points on the graph live. This can be
1,000 1-second sample points for a total of 16 minutes and 40
seconds, or more time if you continue to decrease the sample
frequency. For example, you can display 5,000 5-second sample
points, for more than 83 minutes of duration in the graph.

A Data Collector Set allows you to collect data from one or more
Performance Monitor counters, and to run that collection non-
interactively. This data is stored in log files and is how administrators
most commonly use Performance Monitor. You can access the
collected Performance Monitor data by navigating to the Reports
folder; the User Defined folder contains a new report with the graph
created by the Data Collector. Figure 8-3 shows that more than 15
days of data performance was collected in the Data Collector, which
we’re viewing in the Memory folder, selecting the most recent report
that was generated when we stopped the Memory Data Collector Set.



Figure 8-3 The Windows Performance Monitor application.

Monitor key performance metrics
This section contains some Performance Monitor metrics to look at
when assessing the health and performance of your SQL Server.
Although we don’t have the space in this book to provide a deep dive
into each metric, its causes, and its indicators, you should take time
to investigate and research metrics on your server that appear
outside with the guidelines provided here.

We don’t provide many hard numbers in this section—things like
“Metric X should always be lower than Y.” You should track trends,
measure metrics at peak activity, and investigate how metrics
respond to server, query, and configuration changes. What might be
normal for an instance with a read-heavy workload might be
problematic for an instance with a high-volume write workload, and
vice versa.

The following subsections review common performance monitoring
metrics, including where to find them in Windows Performance
Monitor and in SQL Server DMOs if available. When one of these
sections contains a DMV entry, it means the corresponding metric is
available in Windows and Linux. When not available via DMVs, you
can find these same OS-level metrics in Linux using tools detailed in
the next section, “Monitor key performance metrics in Linux.”

Average Disk seconds per Read or Write
Performance Monitor: PhysicalDisk:Avg. Disk sec/Read and
PhysicalDisk:Avg. Disk sec/Write

DMO: sys.dm_io_virtual_file_stats offers similar metrics for each
data and log file. Typically, this data is used in conjunction with the
Performance Monitor data to confirm or deny behavior.

View this metric on each volume. The _Total metric doesn’t have any
value here; you should look at individual volumes in which SQL



Server files are present. This metric has the clearest guidance of any
with respect to what is acceptable or not for a server.

Try to measure this value during your busiest workload, and also
during backups. You want to see the average disk seconds per read
and write operation (considering that a single query could have
thousands or millions of operations) below 20 milliseconds, or .02
seconds. Below 10 milliseconds is optimal and very achievable with
modern storage systems.

 This is the rare case for which we have hard and fast numbers
specified by Microsoft to rely on. For more information, visit
the “Monitoring Disk Usage” blog post at
https://social.technet.microsoft.com/wiki/contents/articles/3214
.monitoring-disk-usage.aspx.

Seeing this value spike to a very high value (such as .1 second or
100 milliseconds) isn’t a major cause for concern, but if you see these
metrics sustaining an average higher than .02 seconds during peak
activity, it is a fairly clear indication that the physical I/O subsystem is
being stressed beyond its capacity. Low, healthy measurements for
this number don’t provide any insight into the quality or efficiency of
queries and execution plans, only the response from the disk
subsystem. The Avg. Disk sec/Transfer counter is simply a
combination of both read and write activity, unrelated to Avg. Disk
Transfers/sec.

Page Life Expectancy (PLE)
Performance Monitor: MSSQL$InstanceName:Buffer
Manager/Page Life Expectancy (s)

DMV: sys.dm_os_performance_counters 
WHERE object_name like '%Buffer Manager%' 
AND counter_name = 'Page life expectancy'

Page Life Expectancy (PLE) is a measure of time (in seconds) that
indicates the age of data in memory. PLE is one of the most direct

https://social.technet.microsoft.com/wiki/contents/articles/3214.monitoring-disk-usage.aspx


indicators of memory pressure, though it doesn’t provide a complete
picture of memory utilization in SQL Server. In general, you want
pages of data in memory to grow to a ripe old age; when they do, it
means there is ample memory available to SQL Server to store data
to serve reads without going back to the storage layer.

A dated, oft-quoted metric of 300 seconds isn’t applicable to many
SQL Server instances. While 300 seconds might be appropriate for a
server with 4 GB of memory, it’s far too low for a server with 64 GB of
memory. Instead, you should monitor this value over time. Does PLE
bottom out and stay there during certain operations or scheduled
tasks? If so, your SQL Server performance might benefit from more
memory during those operations. Does PLE grow steadily throughout
production hours? If so, the data in memory is likely to be sufficient
for the observed workload.

Page Reads
Performance Monitor: MSSQL$InstanceName:Buffer
Manager/Page reads/sec

DMV: sys.dm_os_performance_counters 
WHERE object_name like '%Buffer Manager%' 
AND counter_name = 'Page reads/sec'

This is an average of the number of page read operations completed
recently. The title is a bit misleading—these aren’t page reads out of
the buffer; rather, they are out of physical pages on the drive, which is
slower than data pages coming out of memory.

You should make the effort to lower this number by optimizing queries
and indexing, improving efficiency of cache storage, and, of course,
as a last resort, increasing the amount of server memory. Although
every workload is different, a value less than 90 is a broad, overly
simple guideline. High numbers indicate inefficient query and index
design in read-write workloads or memory constraints in read-heavy
workloads.



Memory Pages
Performance Monitor: Memory:Pages/sec

DMV: Not available.

Similar to Buffer Manager\Page Reads/sec, this is a way to measure
data coming from a drive as opposed to coming out of memory. This
metric is a recent average of the number of pages pulled from a drive
into memory, which will be high after SQL Server startup. Although
every workload is different, a value of less than 50 is a broad
guideline. Sustained high or climbing levels during typical production
usage indicate inefficient query and index design in read-write
workloads, or memory constraints in read-heavy workloads. Spikes
during database backup and restore operations, bulk copies, and
data extracts are expected.

Batch Requests
Performance Monitor: MSSQL$lnstanceName:SQL Statistics\Batch
Requests/sec

DMV: sys.dm_os_performance_counters WHERE object_name like
'%SQL Statistics%' AND counter_name = 'Batch Requests/sec'

This is a measure of aggregate SQL Server user activity, indicating
the recent average of the number of batch requests. Any command
issued to the SQL Server contains at least one batch request. Higher
sustained numbers are good; they mean your SQL Server instance is
sustaining more traffic. Should this number trend downward during
peak business hours, it means your SQL Server instance is being
outstripped by increasing user activity.

Page Faults
Performance Monitor: Memory\Page Faults/sec

DMV: Not available.



A memory page fault occurs when an application seeks a data page
in memory, only to find it isn’t there because of memory churn. A soft
page fault indicates the page was moved or otherwise unavailable; a
hard page fault indicates the data page was not in memory and must
be retrieved from the drive. The Page Faults/sec metric captures
both.

Page faults are a symptom, the cause being memory churn, so you
might see an accompanying drop in Page Life Expectancy (PLE).
Spikes in page faults, or an upward trend, indicate the amount of
server memory was insufficient to serve requests from all
applications, not just SQL Server.

Available Memory
Performance Monitor: Memory\Available Bytes or Memory\Available
KBytes or Memory\Available MBytes

DMV: SELECT available_physical_memory_kb FROM
sys.dm_os_sys_memory

Available memory is operating system memory currently unallocated
to any application. Server memory above and beyond the SQL Server
instance(s) total MAX_SERVER_MEMORY setting, minus memory in use by
other SQL Server features and services or other applications, is
available. This will roughly match what shows as available memory in
the Windows Task Manager.

Total Server Memory
Performance Monitor: MSSQL$InstanceName:Memory
Manager\Total Server Memory (KB)

DMV: sys.dm_os_performance_counters 
WHERE object_name like '%Memory Manager%' 
AND counter_name = 'Total Server Memory (KB)'



This is the actual amount of memory that SQL Server is using. It is
often contrasted with the next metric (Target Server Memory). This
number might be far larger than what Windows Task Manager shows
allocated to the SQL Server Windows NT 64 Bit background
application, which shows only a portion of the memory that
sqlserver.exe controls. The Total Server Memory metric is correct.

Target Server Memory
Performance Monitor: MSSQL$InstanceName:Memory
Manager\Target Server Memory (KB)

DMV: sys.dm_os_performance_counters 
WHERE object_name like '%Memory Manager%' 
AND counter_name = 'Target Server Memory (KB)'

This is the amount of memory to which SQL Server wants to have
access and is currently working toward consuming. If the difference
between Target Server Memory and Total Server Memory is larger
than the value for Available Memory, SQL Server wants more
memory than the Windows Server can currently acquire. SQL Server
will eventually consume all memory available to it under the Max
Server Memory setting, but it might take time.

Monitor key performance metrics in Linux
While monitoring SQL Server on Linux is identical to SQL Server on
Windows in most ways, there are some exceptions, especially when
the monitoring source is coming from outside the SQLPAL.

As stated, you’ll find that the DMOs perform the same for SQL Server
instances on Windows and in Linux. It’s in the OS layer that the
differences in metrics available, and especially the tools used to
collect them, are stark. This section reviews a sampling of tools you
can use for Linux-specific OS monitoring, keeping in mind that there
is a wealth of monitoring solutions on various Linux distributions.



 For more about SQL Server on Linux, see Chapter 5, “Install
and configure SQL Server on Linux.”

View performance counters in Linux
The dynamic management view sys.dm_os_performance_counters
behaves the same and delivers identical output on Windows and
Linux. For example, the Performance Monitor metrics in the previous
section listed as available in the DMV are also available in SQL
Server on Linux.

The top command, built into Linux and with near-identical output on
all distributions, launches a live full-console display of CPU and
memory utilization and process metrics, not dissimilar from Windows
Task Manager. The screen is data rich and starkly black and white,
however, so consider the more graphical command htop. Though not
present by default on all Linux distributions, it can be quickly
downloaded and easily installed. This command’s output (see Figure
8-4) shows much of the same useful data with a more pleasant
format and with color highlights.



Figure 8-4 The htop command’s live, updating look at the Linux
server’s CPU, memory, and process utilization.

Another built-in Linux tool is vmstat, which includes extended
information on process memory, like runnable/sleeping processes,
memory availability, swap memory use, memory I/O activity, system
interrupts, and CPU utilization percentages. While vmstat returns a
snapshot of the data, the syntax vmstat n appends fresh data to the
console once every n seconds.

For querying items in SQL Server on Linux not available in
sys.dm_os_performance_counters, such as Avg Disk sec/read and
Avg Disk sec/write for each volume, different Linux tools are needed.

The iostat tool is available to install via the syststat performance
monitoring tools, using the package manager on your operating
system. Source code for iostat is available at
https://github.com/sysstat/sysstat.

For example:

user@instance:~$ iostat -x

Using the -x parameter to return extended statistics yields basic host
information, a current CPU activity utilization breakdown, and a
variety of live measurements for devices, including logical disk
volumes. The measures r_await and w_await are the average
durations in milliseconds for read and write requests.

Other alternative packages include dtrace and nmon, the latter of
which includes a simple bash-based GUI.

Monitor key performance metrics in Azure portal
The Azure portal provides a significant amount of intelligence to
cloud-based SQL operations with built-in dashboarding. This section
doesn’t delve too deeply into those continuously improving standard
features, but it does spend a little time talking about the sophisticated

https://github.com/sysstat/sysstat


custom dashboarding and monitoring via Kusto and Azure Log
Analytics.

View data in Azure Monitor
The Azure platform’s built-in metrics tool, Azure Monitor—accessible
via the Azure portal—automatically tracks several basic key
performance and usage metrics in any Azure SQL Database. Azure
Monitor Logs is one half of the data platform that supports Azure
Monitor. The other is Azure Monitor Metrics, which stores numeric
data in a time-series database. Some of these metrics are configured
for you as part of the service (like metrics) while others require you to
configure them (for example, SQL Diagnostics).

You query this data via the Azure Monitor Metrics pane, where you
can drill down to an Azure resource and choose a metric to generate
visualizations. Azure Monitor supports pinning generated
visualizations to Azure portal dashboards, allowing you to create and
monitor key database metrics at a glance.

When using Azure Monitor Metrics for an Azure SQL Database, for
example, you can add metrics for DTU usage, or for percentages of
the measures that make up a DTU. In the example in Figure 8-5, the
Azure Monitor Metrics pane displays both DTU used and the average
Log IO percentage on the same graph.



Figure 8-5 The Azure Monitor Metrics pane for an Azure SQL
Database.

You can do more complicated charting via Azure Monitor by adding
more metrics, which allows for visualization of multiple dimensions of
interrelated data simultaneously, such as service request count per
hour versus database CPU or DTU utilization.

You use filtering or splitting to further break down metrics with more
than one value—for example, disk metrics. You can either filter on
specific LUNs when viewing Data Disk Read Bytes/sec, for example,
or you can split the data into different graph series, one for each LUN.
If this sounds familiar, filtering and splitting using the Azure portal is
not dissimilar from the same in Windows Performance Monitor. For



example, this is similar to the selection of volumes when adding the
Physical Disk\Avg. Disk sec/Read counter.

Leverage Azure Monitor logs
Azure Monitor is built on the Azure Log Analytics platform, using the
same data storage and query mechanisms. Azure Log Analytics is
itself a separate platform built to aggregate and query big data of
varying schemas in near-real time. Azure Monitor log data is stored in
a Log Analytics workspace, but is distinctly under the Azure Monitor
product name, which also includes Application Insights.

Many Microsoft Azure resource types natively support syncing
varying diagnostic and metric information to Azure Log Analytics.
Azure SQL Database natively supports the export of information to
Log Analytics via the Diagnostic Settings pane for the respective
database in the Azure portal. Diagnostic settings support streaming
basic metrics, as well as varying types of logs to log analytics.

Contrary to Azure Monitor, Log Analytics supports the ingesting of
information from on-premises servers as well via the Azure Log
Analytics agent. You might be familiar with the System Center
Operations Manager (SCOM) monitoring tool, the Microsoft
Monitoring Agent (MMA). The Azure Monitor agent is the evolution
and replacement of the MMA and enables you to attach to an Azure
Monitor or send data to a Log Analytics workspace.

Once your Log Analytics workspace is receiving data, you can query
the workspace via the Logs pane in the Log Analytics workspace
resource using the Kusto Query Language (KQL).

The following sample query gathers all DTU consumption metrics for
Azure SQL Databases sending their logs to the Log Analytics
workspace. It displays the 80th percentile of DTU consumption per
time grain—in this case every 60 minutes. The intent is to normalize
spikes of DTU usage and help to visualize sustained increase in DTU
percentage that may be indicative of inefficient queries or a
degradation between deployments.



Click here to view code image

AzureMetrics 
| where MetricName == 'dtu_consumption_percent' 
| summarize percentile(Average, 80) by bin(TimeGenerated, 1h) 
| render timechart

 For more on KQL, see https://learn.microsoft.com/azure/data-
explorer/kusto/query/.

Figure 8-6 visualizes the results of this query, which will work with any
Log Analytics workspaces that have SQL databases sending log
data.

Figure 8-6 A Log Analytics query using Kusto and its charted
result of average DTU utilization over time.

Note
As with Azure Monitor, results of Log Analytics queries can be
pinned to a Microsoft Azure portal dashboard by using the Pin
to Dashboard button in the header bar.

As mentioned, the preceding query extrapolates the 80th percentile of
average DTU usage as a percent of quota, denoted by
'dtu_consumption_percent', in 1-hour increments. While useful,
variances in usage patterns of the databases can lead to numerous

https://learn.microsoft.com/azure/data-explorer/kusto/query/


peaks and valleys in the data rendered. This can make it hard to
visually spot when the analyzed data is indicating a regression in
performance—that is, a spike in DTU consumption.

As an alternative, the following query, visualized in Figure 8-7, applies
a finite impulse response (series_fir()) to produce a 12-hour
moving average of the analyzed data. This type of function is often
used in signal processing, which a log stream resembles. This
second example is a minor demonstration of the power and ease of
drawing meaningful metrics out of the log data stream coming from
Azure SQL resources, a more sophisticated look that should be more
useful and readable at larger time scales.
Click here to view code image

AzureMetrics 
| where MetricName == 'dtu_consumption_percent' 
| make-series 80thPercentile=percentile(Average, 80) 
 on TimeGenerated in range(ago(7d), now(), 60m) 
| extend 80thPercentile=series_fir(80thPercentile, repeat(1, 
12), true, true) 
| mv-expand 80thPercentile, TimeGenerated 
| project todouble(80thPercentile), todatetime(TimeGenerated) 
| render timechart with (xcolumn=TimeGenerated)

Figure 8-7 A Log Analytics query graph shows the output of a
Kusto Query Language query.



 For more on series_fir(), see
https://learn.microsoft.com/azure/data-
explorer/kusto/query/series-firfunction.

Create Microsoft Log Analytics solutions
Perhaps the most important takeaway from Log Analytics is the ability
to add or create solution packages. These can encapsulate queries,
dashboards, and drill down reports of information.

Added via the Azure Marketplace, the Azure SQL Analytics solution
and SQL Health Check solution attach to a Log Analytics workspace
and can provide near-immediate feedback across your environment,
scaling to the hundreds of thousands of databases if necessary.

Figure 8-8 is a sample live display from a production Azure SQL
Analytics solution backed by a Log Analytics workspace. It shows at-
a-glance information from production Azure SQL databases regarding
database tuning recommendations, resource utilization, wait types
and duration, as well as health check outcomes for metrics like
timeouts and deadlocks.

https://learn.microsoft.com/azure/data-explorer/kusto/query/series-firfunction


Figure 8-8 Output from the Azure SQL Analytics solution
available from the Microsoft Azure Marketplace.

Protect important workloads with
Resource Governor
Resource Governor, an Enterprise edition feature, is the only feature
you can use to identify connections as they connect, and to limit the
resources they can consume.

You can identify connections from virtually any connection property—
basically, anything you can get from a system function, including the
login name (SUSER_SNAME() or ORIGINAL_LOGIN()), hostname
(HOST_NAME()), application name (APP_NAME()), and time functions
(SYSDATETIME()).

 You can learn more about building a classifier function at
https://learn.microsoft.com/sql/relational-databases/resource-
governor/resource-governor-classifier-function.

After you’ve identified and classified the connection properties, you
can limit properties at the individual session level or limit the
resources of a resource pool. You can override the MAXDOP setting
for these sessions, lower their priority, or cap the CPU, memory, or
drive I/O that individual sessions can consume.

For example, you can limit all read-heavy queries coming from an
SSRS server, or long-running reports coming from a third-party
reporting application, or dashboard/search queries based on their
application name or login. Then, you can limit these queries as a set,
capping them to 25 percent of the process, disk I/O, or SQL Server
memory. SQL Server will enforce these limitations and potentially
slow down the identified queries; meanwhile, important read-write
workloads continue to operate with the remaining 75 percent of the
server’s resources.

https://learn.microsoft.com/sql/relational-databases/resource-governor/resource-governor-classifier-function


Be aware that using Resource Governor to limit long-running SELECT
statements, for example, does not alleviate concurrency issues
caused by locking. In fact, limiting long-running queries could
alleviate memory or CPU contention but exacerbate existing locking
problems.

 See Chapter 14 for strategies to overcome concurrency
issues, keeping in mind that using the READ UNCOMMITTED
isolation level is a risky, clumsy strategy to solving
concurrency issues in your applications.

When enabled, Resource Governor is transparent to connecting
applications. No code changes are required in the queries to
implement Resource Governor, only a working knowledge of the
connection properties you will use to identify queries, such as those
returned by APP_NAME(), HOST_NAME(), or SUSER_SNAME().

Caution
The value returned by APP_NAME(), or that appears in the
sys.dm_exec_sessions.program_name column, is specified in the
application connection string. Filtering by this value should not
be used as a security method, as connection strings can be
changed to specify any string. If you’re a paranoid DBA, it may
also be something to watch for, if savvy users or tricky
developers realize they can change their application connection
strings and get more resources for their queries!

By default, sessions are split between two workload groups: workload
group 1, named internal for system queries internal to the Database
Engine, and workload group 2, named default for all other user
queries. You can find the current groups in the DMV
sys.resource_governor_workload_groups. While these groups still
appear in SQL Server editions other than Enterprise (or Developer or
Evaluation), Resource Governor is an Enterprise-only feature.



Configure the Resource Governor classifier
function
Before configuring Resource Governor to classify workloads arriving
at your SQL Server, you must create a classifier function in the
master database that operates at the creation of every new session.
You can write the classifier function however you like, but keep in
mind that it will be run for each new connection, so it should be as
efficient and simple as possible.

The classifier function must return a sysname data type value. (The
sysname built-in user-defined data type is equivalent to nvarchar(128)
NOT NULL.) The classifier function return value must be the name of a
Resource Governor workload group to which a new connection is to
be assigned. Though sysname defaults to a NOT NULL data type, the
function can return a NULL value, meaning that the session is
assigned to the default group.

A workload group is simply a container of sessions. Remember, when
configuring Resource Governor defensively (as is most common), it is
the default workload group that you want to protect; it contains “all
other” sessions, including high–business value connections that
perform application-critical functions, writes, and so on.

The sample code that follows defines a classifier function that returns
GovGroupReports for all queries coming from two known-fictional
reporting servers. You can see in the comments other sample
connection identifying functions, with many more options possible.
Click here to view code image

CREATE FUNCTION dbo.fnCLASSIFIER() RETURNS sysname 
WITH SCHEMABINDING AS 
BEGIN 
-- Note that any request that you do not assign a @grp_name 
value for returns NULL, 
-- and is classified into the 'default' group. 
DECLARE @grp_name sysname 
IF ( 
--Use built-in functions for connection string properties 



 HOST_NAME() IN ('reportserver1','reportserver2') 
--OR APP_NAME() IN ('some application') --further samples you 
can use 
--AND SUSER_SNAME() IN ('whateveruser') --further samples you 
can use 
) 
 BEGIN 
     SET @grp_name = 'GovGroupReports'; 
    END 
RETURN @grp_name 
END;

Be mindful when querying other user resources, such as tables in a
user database; this can cause a noticeable delay in connection
creation. If you must have the classifier function query a table, store
the table in the master database, and keep the table small and the
query efficient.

After creating the function, which can have any name, you must
register it as the classifier function for this instance’s Resource
Governor feature. The function is still not active yet for new logins;
you must set up workload groups and resource pools first, then
enable your changes.

Configure Resource Governor resource pools and
workload groups
Configuring resource pools (limitations that many sessions share)
and workload groups (limitations for individual sessions) is the next
step. You should take an iterative, gradual approach to configuring
the Resource Governor, and avoid making large changes or large
initial limitations to the affected groups.

If you have a preproduction environment to test the impact of
Resource Governor on workloads with realistic production scale, you
should consider performance load testing to make sure the chosen
settings will not cause application issues due to throttling resources.



The sample code that follows can be an instructional template to
creating an initial pool and group. If you seek to divide your sessions
up further, multiple groups can belong to the same pool, and multiple
pools can be limited differently. Commented-out examples of other
common uses for Resource Governor are included. In this example,
we create a pool that limits all covered sessions to 50 percent of the
instance’s memory, and a group that limits any single query to 30
percent of the instance’s memory, and forces the sessions into MAXDOP
= 1, overriding any server, database, or query-level setting:
Click here to view code image

CREATE RESOURCE POOL GovPoolMAXDOP1; 
CREATE WORKLOAD GROUP GovGroupReports; 
GO 
ALTER RESOURCE POOL GovPoolMAXDOP1 
WITH (-- MIN_CPU_PERCENT = value 
      --,MAX_CPU_PERCENT = value 
      --,MIN_MEMORY_PERCENT = value 
 MAX_MEMORY_PERCENT = 50 
); 
GO 
ALTER WORKLOAD GROUP GovGroupReports 
WITH ( 
       --IMPORTANCE = { LOW | MEDIUM | HIGH } 
       --,REQUEST_MAX_CPU_TIME_SEC = value 
       --,REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value 
       --,GROUP_MAX_REQUESTS = value 
          REQUEST_MAX_MEMORY_GRANT_PERCENT = 30 
          , MAX_DOP = 1 
) 
USING GovPoolMAXDOP1;

 For complete documentation of the possible ways to limit
groups and pools, visit https://learn.microsoft.com/sql/t-
sql/statements/alter-workload-group-transact-sql and
https://learn.microsoft.com/sql/t-sql/statements/alter-resource-
pool-transact-sql.

With the workload groups and resource pools in place, you are ready
to tell Resource Governor to start using your changes:

https://learn.microsoft.com/sql/t-sql/statements/alter-workload-group-transact-sql
https://learn.microsoft.com/sql/t-sql/statements/alter-resource-pool-transact-sql


Click here to view code image

-- Register the classifier function with Resource Governor 
ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION= 
dbo.fnCLASSIFIER);

After you have configured the classifier function, groups, and pools,
you can enable Resource Governor by using the following query,
placing its functionality into memory. New sessions will begin being
sorted by the classifier function and new sessions will appear in their
groups. You should also issue the RECONFIGURE command to apply
changes made:
Click here to view code image

-- Start or reconfigure Resource Governor 
ALTER RESOURCE GOVERNOR RECONFIGURE;

If anything goes awry, you can disable Resource Governor with the
following command, and re-enable it with the same command as
above.
Click here to view code image

--Disable Resource Governor 
ALTER RESOURCE GOVERNOR DISABLE;

After you disable Resource Governor, existing sessions will continue
to operate under the Resource Governor’s rules, but new queries will
not be sorted into your workload groups, only into the default.
Sessions will behave with the default settings when disabled.

After you configure it and turn it on, you can query the status of
Resource Governor and the name of the classifier function by using
the following sample script:
Click here to view code image

SELECT rgc.is_enabled, o.name 
FROM sys.resource_governor_configuration AS rgc 
LEFT OUTER JOIN master.sys.objects AS o 
ON rgc.classifier_function_id = o.object_id 



         INNER JOIN master.sys.schemas AS s 
         ON o.schema_id = s.schema_id;

Monitor resource pools and workload groups
The group_id columns in both sys.dm_exec_requests and
sys.dm_exec_sessions define the Resource Governor group of which
the request or session is a part. Groups are members of pools.

You can query the groups and pools via the
sys.resource_governor_workload_groups and
sys.resource_governor_resource_pools DMVs. Use the following
sample query to observe the number of sessions that have been
sorted into groups, noting that group_id = 1 is the internal group,
group_id = 2 is the default group, and other groups are defined by
you, the administrator:
Click here to view code image

SELECT 
 rgg.group_id, rgp.pool_id 
, Pool_Name = rgp.name, Group_Name = rgg.name 
, session_count= ISNULL(count(s.session_id) ,0) 
FROM sys.dm_resource_governor_workload_groups AS rgg 
LEFT OUTER JOIN sys.dm_resource_governor_resource_pools AS 
rgp 
ON rgg.pool_id = rgp.pool_id 
LEFT OUTER JOIN sys.dm_exec_sessions AS s 
ON s.group_id = rgg.group_id 
GROUP BY rgg.group_id, rgp.pool_id, rgg.name, rgp.name 
ORDER BY rgg.name, rgp.name;

While only Enterprise edition lets you modify the Resource Governor,
all editions have the same code, so executing this query on another
editions (even Express) will return an internal pool.

 You can reference a (dated) troubleshooting guide for a list of
error numbers and their meanings that might be raised by
Resource Governor, at https://learn.microsoft.com/previous-
versions/sql/sql-server-2008-r2/cc627395(v=sql.105).

https://learn.microsoft.com/previous-versions/sql/sql-server-2008-r2/cc627395(v=sql.105)


Unfortunately, there does not appear to be a more up-to-date
version of this reference material.

Understand the SQL Server servicing
model
Database administrators and CIOs alike must adjust their normal
comfort levels with new SQL Server editions. No longer can IT
leadership say, “Wait until the first service pack,” before moving,
because as of SQL Server 2017, there are no more service packs,
only cumulative updates!

This section outlines the current processes for SQL Server on-
premises versions. Note that Azure SQL Database and Managed
Instance keeps your database engine up to date very soon after new
versions are deployed.

Inside OUT
How do you patch SSRS?

Starting with SQL Server 2017, SSRS is no longer patched
with SQL Server CUs. Instead, you upgrade SSRS by
downloading and running the same SSRS installer again.
Note that your patching procedures for SQL Server need to
include this second and separate step to keep all related SQL
Server software up to date.

Updated servicing model
Microsoft has adopted a new model for its product life cycles. In the
past, its service model included service packs (SPs), cumulative
updates (CUs), and general distribution releases (GDRs). However,



beginning with SQL Server 2017 and continuing with SQL Server
2022, the following changes are in effect:

SPs are longer be released.

CUs are released approximately every month for the first 12
months of general release, and then every two months for the
remaining four years of the five-year duration of the mainstream
support period. In October 2018, this cadence was increased
from quarterly to every two months for SQL Server 2017 and all
future releases.

Critical updates via GDR patches (which contain critical security-
only fixes) do not have their own path for updates between CUs.

Note
For example, on February 14, 2023, Microsoft released an
important security update for all supported versions of SQL
Server to patch a remote code execution vulnerability. The
authors of this book strongly recommend that you apply this
update as soon as possible. For more information on the
February 2023 GDR release for each version of SQL Server,
visit https://aka.ms/sqlbuilds.

Slipstream media is no longer provided for SQL Server (after
SQL 2017 CU 11) for those who still used slipstream media for
new instance installs. Instead, Microsoft recommends leveraging
the existing SQL Server Setup, which provides automatic
download and installation of the latest CUs or downloading CUs
manually for offline installations.

 For more information on offline installations of SQL Server on
Windows Servers, see Chapter 4.

Microsoft has maintained in recent years that there is no need to wait
for an SP, because the general availability (GA) release has been
extensively tested by both internal Microsoft QA and external preview
customers. For those dealing with stubborn or reactionary clients or

https://aka.ms/sqlbuilds


leadership, a possible alternative under the new model could be to
target an arbitrary CU, such as CU 2.

Inside OUT
Do you need to patch SQL Server on Linux and container
images after creation?

No, Linux mssql-server packages and the “latest” tagged
container images are always updated, and install with the
latest CU baked in. This is the default behavior. You can
optionally install a non-current version.

You can review past SQL Server on Linux versions here:
https://learn.microsoft.com/sql/linux/sql-server-linux-release-
notes-2022.

You can review container images available at Docker Hub, at
https://hub.docker.com/_/microsoft-mssql-server. (Note the
underscore in the URL.)

Plan for the product support life cycle
As we were writing this book, SQL Server 2012 reached the end of
extended support. Unless paying a hefty ransom for continuing
support of these products is an option for you, databases on these
old versions must be migrated as soon as possible. Similarly,
Windows Server 2012 and 2012 R2 are reaching their end-of-support
dates, in October 2023. No more security patches, even critical, will
be released publicly, putting their use in violation of any sensible
policy for secure software policy and a red flag on any security audit.

In your planning for long-term use of a particular version of SQL
Server, you should keep in mind the following life cycle:

https://learn.microsoft.com/sql/linux/sql-server-linux-release-notes-2022
https://hub.docker.com/_/microsoft-mssql-server


0 to 5 years: mainstream support period. Security and
functional issues are addressed through CUs. Security issues
only might also be addressed through GDRs.

6 to 10 years: extended support. Only critical functional issues
will be addressed. Security issues might still be addressed
through GDRs.

11 to 16 years: premium assurance. The extended support
level can be lengthened with optional payments or by migrating
your workload to an Azure service. Either way, you will be
paying for the privilege of maintaining an old version of SQL
Server.



Chapter 9

Automate SQL Server
administration

Foundations of SQL Server automated administration
Maintain SQL Server
Use SQL Server maintenance plans
Strategies for administering multiple SQL Servers
Use PowerShell to automate SQL Server administration

In the previous chapter, you learned about various tasks needed to
maintain and monitor SQL Server. Managing these tasks can be time
consuming and overwhelming, especially if you try to do them
manually.

This chapter reviews common ways of automating Microsoft SQL
Server instance administration, starting with an exploration of the
tools that enable them.

Note
If you are unfamiliar with automating common administration
tasks, this is an opportunity to grow and become a more
seasoned DBA.



This chapter varies little for SQL Server instances on Windows and
Linux except in the case of PowerShell. In some cases, you might
have to run these commands from a Windows server. Where there
are exceptions for Linux, we point them out.

Little in this chapter applies to Microsoft Azure SQL Database
because many of the administration tasks are already automated,
including most performance tuning and backup tasks. No initial
configuration is needed. If you need more control, many of the
features available in Azure SQL Database are being released through
Azure SQL Managed Instance. As the Azure SQL platform as a
service (PaaS) offering has matured, it has become a powerful cloud-
based and complementary platform to SQL Server, neither fully
replacing nor overlapping with the feature set or purpose of on-
premises SQL Server instances.

Technically, the Azure elastic jobs feature is the automation
framework for Azure SQL Database. However, it has been in preview
for years. The Microsoft eventual road map for a generally available
elastic jobs announcement or alternative solution is not public. Elastic
jobs are nevertheless deployed in many Azure production
environments. Read more about the current status of this preview
feature at https://learn.microsoft.com/azure/azure-sql/database/job-
automation-overview. If you are not comfortable with preview features
handling automation tasks for your Azure SQL Database, consider:

Azure Data Factory for data movement and T-SQL commands

Azure Automation for PowerShell

Azure Logic Apps for low-code workflows with triggers

 For more information about automation in Azure SQL database
platforms, see Chapter 17, “Provision Azure SQL Database,” and
Chapter 18, “Provision Azure SQL Managed Instance.”

Sample scripts in this chapter, and all scripts for this book, are all
available for download at

https://learn.microsoft.com/azure/azure-sql/database/job-automation-overview


https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

Foundations of SQL Server automated
administration
Since automation implies a mostly hands-off approach to repeatable
tasks, DBAs need to understand two foundational automation tools:

Database Mail. Allows SQL Server to send emails to notify you
of the outcome of SQL Server Agent jobs, server performance
and error alerts, or custom notifications with Transact-SQL (T-
SQL) calls to the dbo.sp_send_dbmail stored procedure (located
in the msdb database).

Note
There are many ways (and products to buy) to be notified of
an error or job failure in your SQL Server instance. Database
mail is a built-in, easy, foundational notification feature to
accomplish many notification tasks, as well as a platform for
developing custom email-based reporting and notifications.

SQL Server Agent. The automation engine available in all
editions of SQL Server except for Express. You can use SQL
Server Agent to automate most maintenance tasks in SQL
Server. It’s also available in Azure SQL Managed Instance, but
not in Azure SQL Database. Let’s review these two key tools,
both of which are fully supported on Windows and Linux.

Database Mail
Database Mail uses Simple Mail Transfer Protocol (SMTP) to send
email. Email is handled asynchronously outside the SQL Server
process, isolating both the process and any potential performance
impact to the SQL Server instance. By design, this process is run

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


outside SQL Server using a separate executable DatabaseMail.exe,
which is started asynchronously using Service Broker.

Set up Database Mail
To begin sending automated emails, you must configure Database
Mail. Then, configure SQL Server Agent to use the Database Mail
profile you create.

In SQL SSMS, start the Database Mail Configuration Wizard by
locating it in the Management folder of the server node you are
configuring and selecting Configure Database Mail. You’ll need to
set up a profile and then an associated account.

The wizard turns on the Database Mail feature in the Surface Area
facet of the SQL Server instance. You need to do this only once.
Database Mail is among a select few Surface Area facets that you
should turn on for most SQL Server instances. To view surface area
configuration settings in SSMS, open Object Explorer, connect to the
SQL Server, right-click the server, and select Facets on the shortcut
menu. (The Facets window sometimes takes a moment to load.)
Then, in the dialog box that opens, change the value in the list box to
Surface Area Configuration. Choose Database Mail and set the
property value to True.

A Database Mail profile can be public or private. In the case of a
private profile, only sysadmins and specific associated server
principals are given access (users or roles in databases). A public
profile allows any principal that is a member of the built-in database
role DatabaseMailUsersRole in the msdb database.

Ideally, all Database Mail profiles are private. That way, by default
only members of the sysadmin role are allowed access, and only
those credentials that will be used to send emails will be given
access. If you would like to grant additional database principals to
access private database mail profiles, you can use the stored
procedure msdb.dbo.sysmail_add_principalprofile_sp. This is
crucial in a multitenant environment, or an environment that allows



access to external developers or vendors, but even in internal
environments, it could provide protection against malicious use to
send emails.

When creating a Database Mail profile, you have the option to specify
whether the profile will be the default—even if there is only one
Database Mail profile created. If you choose a Database Mail profile
to be the default, it will be used as the global profile for outgoing mail
and will be used to send mail if a profile is not specified with the
dbo.sp_send_dbmail stored procedure.

You can configure a Database Mail profile to use almost any SMTP
configuration, including nonstandard ports and Secure Sockets Layer
(SSL). You also can configure it with Windows Authentication
(common for SMTP servers in the same domain), basic
authentication (common for web authentication), or no authentication
(common for anonymous relay in the local network, usually with an IP
allow list).

 For more on SSL and TLS, refer to Chapter 13, “Protect data
through classification, encryption, and auditing.”

You can configure Database Mail to use any SMTP server that it can
reach, including web-based SMTP servers. You can even use
Outlook web mail or another web-based email account if you’re
configuring for testing purposes or have no other viable internal
SMTP options. An internal SMTP server with Windows Authentication
using a service account is preferred, though, because it gives you
more control over your own environment.

Inside OUT
What if you have multifactor authentication (MFA) set up
for Outlook web mail?

To send emails using SMTP for Outlook while you have MFA
enabled, you will need to set up an app password. For step-



by-step instructions, see
https://support.microsoft.com/account-billing/using-app-
passwords-with-apps-that-don-t-support-two-step-verification-
5896ed9b-4263-e681-128a-a6f2979a7944.

Note
For Azure infrastructure-as-a-service (IaaS) environments
without an internal SMTP presence, Twilio SendGrid is a
common and supported SMTP solution. For more information,
visit https://docs.sendgrid.com/for-
developers/partners/microsoft-azure-2021.

After you configure your account’s SMTP settings (you’ll need to test
them later), the Database Mail account will have several options that
you can adjust:

Account Retry Attempts. Defaults to 1. You should probably
leave this as is to avoid excessive retries that could lock out an
account or trigger spam detection.

Account Retry Delay (seconds). Defaults to 60. Again, you
should leave this as is, for the same reasons as for Account
Retry Attempts.

Maximum File Size (Bytes). Defaults to roughly 1 MB. You
should change this only if necessary.

Prohibited Attachment File Extensions. Specifies which file
extensions cannot be sent. It is commonly set if third-party or
multitenant development occurs on the SQL Server instance.
This is a comma-delimited list that, by default, is “exe,dll,vbs,js.”

Database Mail Executable Minimum Lifetime (seconds).
Defaults to 600 Seconds (10 minutes), which is a counter that
starts after an email message is sent. If no other messages are
sent in that time frame, the Database Mail executable stops. If

https://support.microsoft.com/account-billing/using-app-passwords-with-apps-that-don-t-support-two-step-verification-5896ed9b-4263-e681-128a-a6f2979a7944
https://docs.sendgrid.com/for-developers/partners/microsoft-azure-2021


stopped, the Database Mail process is started again any time a
new email is sent. You’ll see messages indicating “Database
Mail process is started” and “Database Mail process is shutting
down” in the Database Mail log when this happens.

Logging Level. Defaults to Extended, which includes basic
start/stop and error messages that should be kept in the
Database Mail log. Change this to Verbose if you are
troubleshooting Database Mail and need more information, or to
Normal to suppress informational messages and see errors
only.

After you’ve set up a Database Mail profile and account, you can
send a test email via SSMS. Right-click Database Mail and select
Send Test E-Mail on the shortcut menu that opens. Or you can send
a plain-and-simple test email via T-SQL by using the following code:
Click here to view code image

exec msdb.dbo.sp_send_dbmail 
@recipients ='yournamehere@domain.com', 
@subject ='test';

This code does not specify a @profile parameter, so the command
will use the default profile for the current user, the default private
profile if it exists, or the global (default public) profile. If you do not
have a default Database Mail profile set up, you will get the following
error:
Click here to view code image

Msg 14636, Level 16, State 1, Procedure 
msdb.dbo.sp_send_dbmail, Line 112 [Batch Start 
Line 0] 
No global profile is configured. Specify a profile name in 
the @profile_name parameter.

This is all that is necessary for developers and applications to send
emails using Database Mail.



 In case you have issues with setting up or sending emails, we
cover troubleshooting later in this chapter in the “Troubleshoot
Database Mail” section.

To allow SQL Server Agent to send emails based on job outcomes
and alerts, you need to create an operator in SQL Server Agent, and
then configure SQL Server Agent’s alert system to use a Database
Mail profile. We look at SQL Server Agent and its initial configuration
in depth later in this chapter.

Inside OUT
What about Database Mail on Linux?

SQL Server on Linux requires the Database Mail profile to be
set using mssql-conf or an environment variable. We
recommend using mssql-conf with the following command
(where default is the name of the profile you created):

Click here to view code image

sudo /opt/mssql/bin/mssql-conf set 
sqlagent.databasemailprofile default

For step-by-step instructions, visit
https://learn.microsoft.com/sql/linux/sql-server-linux-db-mail-
sql-agent.

Allow anonymous relay for anonymous
authentication
If you’re using anonymous authentication internally with Microsoft
Exchange, verify that the internal SMTP anonymous relay has a
dedicated receive connector that allows for anonymous relay. By
design, a receive connector just for anonymous relay should allow

https://learn.microsoft.com/sql/linux/sql-server-linux-db-mail-sql-agent


only a small list of internal hosts—your SQL Server instance(s)
among them.

Maintain email history in the msdb database
The email messages attempted and sent by Database Mail are
recorded and queued in a table in the msdb database named
dbo.sysmail_mailitems. As you might suspect, data in the msdb
tables for Database Mail will grow, potentially to an unmanageable
size. This can cause queries to the msdb’s Database Mail tables to
run for a long time. There is no automated process in place to
maintain a retention policy for these tables, though there is a stored
procedure to delete older messages, as well as a lengthy reference
article in place to guide you through creating a set of archive tables
and a SQL Server Agent job to maintain data over time. You can find
both of these at https://learn.microsoft.com/sql/relational-
databases/database-mail/create-a-sql-server-agent-job-to-archive-
database-mail-messages-and-event-logs.

Troubleshoot Database Mail
We’ve already mentioned the Database Mail log. Now let’s go over
the other diagnostics available for Database Mail.

 Find out more about reading the Database Mail log at
https://learn.microsoft.com/sql/relational-databases/database-
mail/database-mail-log-and-audits.

Read email logs in the msdb database
If the SMTP Server or the Database Mail process becomes
unavailable, the messages are queued in a table in the msdb
database named dbo.sysmail_mailitems. This msdb database
contains metadata tables for the Database Mail feature, including
dbo.sysmail_allitems, which tracks all outbound email activity. Look
for items for which the sent_status doesn’t equal sent for signs of
messages that weren’t successfully sent; for example:

https://learn.microsoft.com/sql/relational-databases/database-mail/create-a-sql-server-agent-job-to-archive-database-mail-messages-and-event-logs
https://learn.microsoft.com/sql/relational-databases/database-mail/database-mail-log-and-audits


Click here to view code image

--Find recent unsent emails 
SELECT m.send_request_date, m.recipients, m.copy_recipients, 
m.blind_copy_recipients 
, m.[subject], m.send_request_user, m.sent_status 
FROM msdb.dbo.sysmail_allitems AS m 
WHERE 
-- Only show recent day(s) 
m.send_request_date > dateadd(day, -3, sysdatetime()) 
-- Possible values are sent (successful), unsent (in 
process), 
-- retrying (failed but retrying), failed (no longer 
retrying) 
AND m.sent_status <> 'sent' 
ORDER BY m.send_request_date DESC;

There is also a view provided in msdb, dbo.sysmail_unsentitems,
that filters on (sent_status = 'unsent' OR sent_status =
'retrying'). There are four possible values for sent_status in
dbo.sysmail_allitems: sent, unsent, retrying, and failed.

 You can find more information about these and other sysmail
views, including failed items and sent items, at
https://learn.microsoft.com/sql/relational-databases/system-
catalog-views/sysmail-allitems-transact-sql.

Inside OUT
How do you monitor SQL Server Reporting Services
report subscription emails?

SQL Server Reporting Services (SSRS) uses an entirely
different process, SMTP configuration, and authentication to
send report subscriptions via email. To monitor these, the
default location for log messages in the log files starting with
SSRS in SQL Server 2016 is the following subfolder:

https://learn.microsoft.com/sql/relational-databases/system-catalog-views/sysmail-allitems-transact-sql


%programfiles%\Microsoft SQL Server Reporting
Services\SSRS\LogFiles\

Enable Service Broker on the msdb database
After restoring the msdb database or setting up Database Mail for the
first time, the Service Broker feature might not be turned on for the
msdb database. You can check the is_broker_enabled field in the
system catalog view sys.databases; if it is 0, this is the case, and you
must remedy it. Otherwise, if you try to send email and the Service
Broker is disabled, you will receive the following self-explanatory error
message:
Click here to view code image

Msg 14650, Level 16, State 1, Procedure 
msdb.dbo.sp_send_dbmail, Line 73 [Batch Start 
Line 18] Service Broker message delivery is not enabled in 
this database. Use the ALTER 
DATABASE statement to enable Service Broker message delivery.

To turn on Service Broker for the msdb database, you must stop the
SQL Server Agent service and close any connections active to the
msdb database before running the following code:
Click here to view code image

ALTER DATABASE msdb SET ENABLE_BROKER;

Identify SMTP server authentication
Authentication with the SMTP server is likely the problem if you
observe errors in the Database Mail log after attempting to send
email, such as:
Click here to view code image

Cannot send mails to mail server. (Mailbox unavailable. The 
server response was: 5.7.1 



Unable to relay...

or:
Click here to view code image

Cannot send mails to mail server. (Mailbox unavailable. The 
server response was: 5.7.1 
Service unavailable...

SQL Server Agent
SQL Server Agent is the native automation platform for internal task
automation, maintenance, log and file retention, and even backups.
SQL Server Agent is like Windows Task Scheduler (and cron on
Linux), but it has several advantages for automating SQL Server
tasks, including integration with SQL Server security, authentication,
logging, and native T-SQL programming.

On Windows, SQL Server Agent can accomplish many of the same
tasks as Windows Task Scheduler, including running operating
system (CmdExec) and PowerShell commands. (CmdExec and
PowerShell tasks are not available on Linux.) Metadata,
configuration, and history data for the SQL Server Agent are kept in
the msdb database.

Inside OUT
How do you enable SQL Server Agent?

On Windows Server, SQL Server Agent is a service that is
managed through SQL Server Configuration Manager.

On Linux, SQL Server Agent is managed using the mssql-
conf command line utility. You can read more in Chapter 5,
“Install and configure SQL Server on Linux.”



Configure SQL Server Agent jobs
A job contains a series of steps. Each job step is of a type that allows
for different actions to take place, such as the aforementioned T-SQL,
CmdExec, or PowerShell tasks.

A job can be automatically started based on a number of conditions,
including the following:

A predefined schedule or schedules

In response to an alert

As a result of running the dbo.sp_start_job stored procedure in
the msdb database

When SQL Server Agent starts

When the host computer is idle

You can script jobs in their entirety through SSMS, providing script-
level recoverability, migration to other servers, and source control
possibility for SQL Server Agent jobs. Jobs are backed up and
restored via the msdb database or scripted for backup and migration.

In SSMS, in Object Explorer, expand SQL Server Agent, then
expand the Jobs folder. Next, right-click any job, select Properties,
and navigate to the Steps page. Here you will see that job steps do
not necessarily need to run linearly. You can set a job to default to
start at any job step. Additionally, when starting a job, you can
manually change the start step for the job.

Each job step reports back whether it succeeded or failed, and you
can configure it to move to another step or fail based on the job step
outcome. These step completion actions are defined on the
Advanced page of the Job Step Properties dialog box. However, for
future ease of management, we recommend that you create job steps
that are designed and run in a consistent pattern. Using a standard
process will help others more easily understand and support these
SQL Server Agent jobs. This embraces another key aspect of



database automation: creating processes that can be easily
managed.

You can assign jobs to categories. In fact, many system-generated
jobs (such as replication) are assigned to categories. You can access
settings to create your own categories in SSMS by right-clicking the
Jobs folder under SQL Server Agent and selecting Manage
Categories on the shortcut menu.

In T-SQL, you can run this script to add a new category:
Click here to view code image

EXEC msdb.dbo.sp_add_category @class=N'JOB', @type=N'LOCAL', 
@name=N'Health Check';

This should aid your efforts to report on, maintain, redeploy, and
migrate jobs in the future.

Understand job step security
A critical step that many developers and administrators skip is the
use of credentials and proxies in SQL Server Agent job steps. SQL
Server Agent jobs, by default, run steps in the security context of the
SQL Agent service account. This may be acceptable for some local
usage such as indexing, but using a proxy to run a job step instead of
the SQL Server Agent service account or another named user is the
most secure approach. Proxies make it possible for administrators to
set job steps to run under a specific credential rather than giving the
SQL Server Agent service account access to everything that each job
needs.

Proxies are used for all job step types except one. It is not possible to
run a T-SQL script job step using a proxy. A T-SQL step will run in the
security context of the owner of the job if the owner is not a sysadmin.
If the owner of the job is a member of the sysadmin server role, the
job will run as the SQL Server Agent service account.

For all other job step types, there is a proxy. You can select the job
step to run as a proxy on the Job Step Properties page. SQL Server



Agent checks for access to the subsystem each time the job step is
run to verify that the security has not changed.

A subsystem can be one of the following items:

Operating system (CmdExec)

Replication agent (Snapshot, Log Reader, Distribution, Merge,
or Queue Reader)

Analysis Services query or Analysis Services command

SSIS package execution

PowerShell script

Microsoft ActiveX script (discontinued as of SQL Server 2016;
replaced with PowerShell script)

You can associate each proxy with one or more subsystems, but to
reduce your attack surface, you should create many proxies for
different job step security requirements and subsystems.

Without a proxy specified, jobs must be owned by a member of the
sysadmin role to run job steps other than the T-SQL step type. This is
because the T-SQL step type allows you to specify an account under
Run as so that the code will run under a different user’s permissions.
These job steps will then run as the SQL Server Agent service
account. This isn’t ideal, for two reasons:

The SQL Server Agent service account should not have local
administrator privileges on the server. This reduces the risk to
the operating system (OS) from potential misuse for SQL Server
Agent jobs. Service accounts are discussed in Chapter 4, “Install
and configure SQL Server instances and features,” and Chapter
12, “Administer instance and database security and
permissions.”

The SQL Server Agent service account must be a member of
the sysadmin server role, so it has far too many privileges inside



SQL Server than necessary to safely run SQL Agent jobs.

The owner of the job must also have permission to use any
subsystem that the job’s steps use. This is important because job
steps often need to access other servers, and proxies give you the
ability to assign pinpoint rights to those other resources. You will not
be able to create or modify a job step for a subsystem if the job owner
is not listed as a principal who has access to the proxy. Sysadmins
automatically have access to all proxies.

Proxies map to credentials on the SQL Server; you’ll find a subfolder
for credentials in the Security folder on the Server level in Object
Explorer in SSMS. Each proxy is linked to a credential in SQL Server.
The credential stores the account’s username and password, which
means that if it changes, the proxy and SQL Server Agent job steps
that depend on it will not be able to authenticate and will fail.
Therefore, you should use service accounts, not individuals’ named
accounts, in credentials that will be used by proxies. Credential
account passwords shouldn’t be widely known, and the accounts
should not regularly be used interactively by administrators to avoid
accidentally becoming locked out.

Note
You should keep a script for recovering locked service accounts
in a safe place.

You can create a credential for a local Windows account or a domain
account. You also can create credentials for accounts on Extensible
Key Management (EKM) modules, including the Azure Key Vault
service. The Windows account of the credential must have Log on as
a batch job permission on the server. As a local administrator, you
can grant this permission in the Local Security Policy dialog box.

 You can read more about Azure Key Vault and EKM modules
in Chapter 13.



Secure permissions to interact with jobs
To set up a SQL Server Agent job in SSMS, your login must be a
member of the sysadmin server role or one of the SQL Server Agent
database roles in the msdb database. The SQLAgentOperatorRole,
SQLAgentReaderRole, and SQLAgentUserRole have permission to
create jobs, start jobs, view jobs, view a job’s history, and edit job
properties, though mostly only for jobs they own.

 For granular details on the limitations and overlapping of each
role, visit https://learn.microsoft.com/sql/ssms/agent/sql-
server-agent-fixed-database-roles.

The SQLAgentUserRole is the least privileged of the three roles, but
the other two roles are members of the SQLAgentUserRole. Typically,
membership to these roles is limited to service accounts and third-
party developers. Grant permission on proxies to custom database
roles, individuals, or service accounts. Do not grant permissions
directly to the SQLAgentUserRole database role, including the ability
to use proxies.

Schedule and monitor jobs
A job can be run based on one or more schedules assigned to it. You
give schedules a name upon creation and can assign them to
multiple jobs. This can be especially useful for uncommon or esoteric
job schedules, or to centralize management of jobs that should run
simultaneously. To view and select schedules from other jobs, select
the Pick button on the Schedules tab of the Job Properties dialog
box. You will see only the job schedules to which you have access.

There are four schedule types:

Start automatically when SQL Server Agent starts

Start whenever the CPUs become idle

Recurring

https://learn.microsoft.com/sql/ssms/agent/sql-server-agent-fixed-database-roles


One time (for running a schedule manually—for instance, during
testing or a one-off index rebuild)

Jobs run asynchronously when they are started manually or by SQL
Server Agent. A dialog box with a spinning progress icon appears,
but you can close it, and the job will continue to run until completion.
You can monitor the progress of jobs in SSMS by viewing the Job
Activity Monitor, and you can observe the job’s current request in
sys.dm_exec_requests.

Note
Using the SQL Server Agent extension, you can also view and
manage SQL Agent jobs in Azure Data Studio. For more
information, visit https://learn.microsoft.com/sql/azure-data-
studio/sql-server-agent-extension.

You can use T-SQL to query the status of jobs with the
undocumented stored procedure
master.dbo.xp_sqlagent_enum_jobs, which you can join to
msdb.dbo.sysjobs, as shown here:
Click here to view code image

--Jobs still running 
DECLARE @xp_sqlagent_enum_jobs TABLE ( 
id int not null IDENTITY(1,1) PRIMARY KEY, 
Job_ID uniqueidentifier not null, 
Last_Run_Date int not null, 
Last_Run_Time int not null, 
Next_Run_Date int not null, 
Next_Run_Time int not null, 
Next_Run_Schedule_ID int not null, 
Requested_To_Run int not null, 
Request_Source int not null, 
Request_Source_ID varchar(100) null, 
Running int not null, 
Current_Step int not null, 
Current_Retry_Attempt int not null, 
[State] int not null); 

https://learn.microsoft.com/sql/azure-data-studio/sql-server-agent-extension


 
INSERT INTO @xp_sqlagent_enum_jobs 
EXEC master.dbo.xp_sqlagent_enum_jobs 1, ''; 
 
SELECT j.name 
, state_desc = CASE ej.state 
WHEN 0 THEN 'not idle or suspended' 
WHEN 1 THEN 'Executing' 
WHEN 2 THEN 'Waiting for thread' 
WHEN 3 THEN 'Between retries' 
WHEN 4 THEN 'Idle' 
WHEN 5 THEN 'Suspended' 
WHEN 7 THEN 'Performing completion actions' 
END 
, * 
 FROM msdb.dbo.sysjobs j 
 LEFT OUTER JOIN @xp_sqlagent_enum_jobs ej 
 ON j.job_id = ej.Job_ID 
ORDER BY j.name;

Configure and view job history
Every time a job is run, a record is maintained in the msdb database
in the dbo.sysjobhistory table. To review the job’s history, right-click
it in SSMS and select Job History on the shortcut menu. History is
stored for each job step. You can expand a given job to view the
output for each step, including any errors.

With jobs that run frequently (for example, transaction log backup
jobs), a large amount of job history will be created and stored in
msdb. It is initially defaulted to two very low and likely unrealistic row
caps: 1,000 rows of history for all jobs, and 100 rows of history at
most for one job. If a job runs once per hour, it loses visibility into
history after just four days—likely an unrealistic window for
troubleshooting and diagnostic information.

In SSMS, in Object Explorer, right-click SQL Server Agent, select
Properties, and select the History page. As shown in Figure 9-1, this
page is not intuitive. The first option, Limit size of job history log, is
a rolling job history retention setting. You might find it a good start to



simply add a 0 to each value, increasing the maximum log history
size in rows from the default of 1,000 to 10,000 or more, and also
increase the maximum job history per job in rows from the default of
100 to 1,000 or more. These settings would store just over 41 days of
history for a job that runs hourly, if this were the only job on the
server. You might find these numbers also insufficient on a SQL
Server instance with many frequently running jobs, so you should
increase these settings until you have a comfortable job run history
retention.

Figure 9-1 The two options to retain SQL Agent job history.

The job history log can be useful, but it has two limitations of which
you should be aware:

The message text in the Job History viewer is truncated after
1,024 characters. To view the full results of the output, you must
query the dbo.sysjobhistory table. The message column in that
table is considerably larger at 8,000 characters.

The history of SQL Server Integration Services (SSIS) package
execution in the SQL Server Agent job history is extremely
limited—reduced to details around the fact that the package
started, completed, and/or errored, without additional details.
More verbose detail appears in the thorough history available in
the SSISDB. To access and view this history, open the



Integration Services Catalogs menu in SSMS and select the
project or packages that failed.

Inside OUT
Where should you deploy SSIS packages?

Using the Project Deployment model for SSIS packages
provides superior built-in logging and trending when running a
package.

The Project Deployment model and the SSISDB database,
both originally released in SQL Server 2012, combined with
further integration with SQL Server Agent, make for a far
superior option for SSIS development than the old Package
Deployment model.

You can still deploy legacy Package Deployment model
packages to msdb, but we do not recommend this for new
development.

You can also configure additional logging for each job step to capture
the full step output and, more commonly, the error text. The following
options are available on the Advanced page of the Job Step
Properties dialog box:

Output file. You can send step output to an Output file and
Append output to existing file. Be wary of keeping the
Append output to existing file option turned on long term—the
output file can grow to a significant size in a short amount of
time. If your history file becomes too large, this may cause the
SQL Server Agent to crash.

Log to table. This writes to the dbo.sysjobstepslogs table in
the msdb database. This table has an nvarchar(max) data type
for the Log field, allowing for more output data to be captured per



step if needed. Be careful of this option, as well—the table can
grow to a significant size in a short amount of time. You should
schedule the stored procedure sp_delete_jobsteplog to remove
old records from the table over time.

Include step output in history. This adds a row to the job
history log to include the output of the job step. This should
contain valuable information, and, unlike with the other two
options, job history is automatically maintained over time by
SQL Server Agent.

Administer SQL Server Agent operators
An operator is an alias in SQL Server Agent that allows you to set up
a name and email address(es) to receive messages. Usually, an
operator should not be pointed to an individual (although you can
create a semicolon-delimited list of email address); instead, it should
be pointed to a distribution group (even if that group initially contains
only one person). In most situations, you will create an operator to
notify SQL Server first responders in your environment. You should
maintain your environment’s list of DBA personnel in distribution lists,
and not inside the operator lists of each SQL Server instance.

Note
The pager email name is deprecated along with the on-duty
schedule, so don’t use these. Alerting using Net Send is also
deprecated and has been removed from the user interface.

To set up an operator, in SSMS, in Object Explorer, expand the SQL
Server Agent folder, right-click Operator, and select New Operator
on the shortcut menu.

Note
If you have a big team and an on-call rotation, you could set up
a scheduled process in a SQL Server Agent job to update an



“on call rotation” distribution list email address to resource(s)
currently “on call.” Use the sp_update_operator stored
procedure to update the email address for an operator on a
schedule.

Configure alerts
Alerts are created to set conditions and, when met, prompt email
notifications or the kickoff of SQL Server Agent jobs in response.
Alerts are versatile and can look for SQL Server events in the Error
Log for performance conditions that you would view in the
Performance Monitor application or for Windows Management
Instrumentation (WMI) queries.

As recommended in the “Set up SQL Agent” section of Chapter 4,
you should set up alerts for high-severity SQL Server errors.
However, do not overcommit your personal inbox with alerts, and do
not set an inbox rule to Mark As Read and file away emails from SQL
Server. By careful selection of emails, you can assure yourself and
your team that emails from SQL Server will be actionable concerns
that rarely arrive.

With a large number of SQL Server instances under your purview,
email alerts for even severe issues can become too numerous and
frequent. This is especially true if you receive individual alerts from
each server! Look into gathering and queuing actionable errors in a
system that provides for aggregation, dashboarding, and team
assignment. There are third-party log-collection and log-management
software applications that perform the task of log aggregation and
centralized alerting.

You might also configure the Delay between responses setting for
each alert to prevent an unchecked flooding of emails arriving from a
repeating error. Consider a delay of up to 5 minutes between
responses, as your environment and Service-Level Agreement (SLA)
deem appropriate.



You can specify only a single error message or severity per alert.
Consider scripting the mass creation of a standard batch of alerts, to
be created consistently on all your SQL Server instances. We include
a script in the accompanying downloads for this book as an example
that includes the alerts we will examine in just a moment.

First, we review the three types of alerts you can set up:

SQL Server event alert

Performance condition alert

WMI event alert

Note
On Linux, you can only set up a SQL Server event alert, but as
we’ll show, it is possible to query performance counters using a
dynamic management view.

SQL Server event
You should set up alerts on actual error messages that are important
enough for you to receive emails. SQL Server generates a lot of
informational-only events, such as successful backup messages, for
which you would not want to receive messages.

You can set up alerts based on the actual error number (samples
follow shortly) or any error of a certain severity (1 to 25). You can
optionally filter the alert to a single database or for a specific
message text.

It is common practice to set up alerts for severity 16 through 19 and
21 through 25 because these tend to be actionable errors. Severities
21 and above are severe and unrecoverable errors.

The most common severity 20 errors are nuisance authentication-
related and transient (the user tried, experienced an error, tried again,



and succeeded). An alert for severity 20 might send out many
unactionable alerts to the SQL Server DBA team. You will still see
severity 20 issues in the SQL Server Error Log and should make note
of them as they appear, especially if they do so in large numbers,
given that this can be a sign of greater authentication or domain
issues or malicious intrusion attempts. The goal of alerts is to send
out actionable errors or performance conditions worth investigating.

Note
Every SQL Server error message includes a severity, but that
doesn’t mean you want to be alerted to them. For example,
basic syntax, CHECK constraint, and FOREIGN KEY constraint
errors that you might make while writing queries in SSMS or
Azure Data Studio will surface as severity 15 or 16 errors, which
aren’t worth alerting.

You might also want to configure alerts to send out error messages
for the following SQL Server error numbers that are not already
covered in severities 16 through 19 and 21 through 25. These errors
are rare, but immediately actionable:

825 (severity 10). A dreaded “read-retry” error, which occurs
when a file read succeeds after failing n number of times. This is
often a harbinger of a database-integrity failure and should
prompt immediate action.

854, 855, 856 (severity 10). Uncorrectable hardware memory
corruption detected via the operating system’s memory
diagnostics. This may indicate a potentially immediate threat to
system stability due to memory.

3624 (severity 20). An internal SQL Server error called an
assertion failure. This is typically a software bug, though it could
indicate internal data corruption. Errors at this severity are often
addressed via a SQL Server cumulative update or patch.



Performance conditions
On Windows, you can set up performance condition alerts for any
performance counter in the SQLServer category—the same set of
alerts you would see in Windows Performance Monitor with the prefix
SQLServer or MSSQL$instancename. For example, if you want to
receive an email when the SQL Server’s page life expectancy (PLE)
drops below a certain value, you select it in the same way you would
in Performance Monitor: Choose the Buffer Manager object, the
Page Life Expectancy counter, the Falls Below comparison
operator, and a comparison value. In the case of PLE, this is
measured in seconds.

Inside OUT
How do you query performance counters using DMVs?

As discussed in Chapter 8, “Maintain and monitor SQL
Server,” you can query most performance counters from
SQLServer or MSSQL$instancename objects via the
sys.dm_os_performance_counters dynamic management view
(DMV) on both Windows and Linux. There is one caveat,
however: In some cases, the calculation is not as
straightforward. For example, consider the Buffer Cache Hit
Ratio (BCHR) metric, one piece of the puzzle when looking at
memory utilization. Calculating the actual BCHR as it appears
in Performance Monitor requires division of two simultaneous
counter values:

Click here to view code image

DECLARE @object_name SYSNAME = CASE 
    WHEN CHARINDEX('\', @@SERVERNAME) = 0 
    THEN 'SQLServer' 
    ELSE 'MSSQL$' + SUBSTRING(@@SERVERNAME, 
CHARINDEX('\', @@SERVERNAME) + 1, 100) 
    END + ':Buffer Manager' 
SELECT [BufferCacheHitRatio] = (bchr * 1.0 / bchrb) * 



100.0 
FROM ( 
    SELECT bchr = cntr_value 
    FROM sys.dm_os_performance_counters 
    WHERE counter_name = 'Buffer cache hit ratio' 
    AND object_name = @object_name 
    ) AS r 
CROSS APPLY ( 
    SELECT bchrb = cntr_value 
    FROM sys.dm_os_performance_counters 
    WHERE counter_name = 'Buffer cache hit ratio base' 
    AND object_name = @object_name 
    ) AS rb;

Note
SQL Server samples the data periodically, so there might be a
few seconds’ delay between when you receive the alert and
when the threshold was reached.

WMI event alert conditions
The third option for SQL Server Agent alerts allows for custom WMI
queries to be run (for SQL Server on Windows only). WMI queries
can gather alerts on a variety of Data Definition Language (DDL)
events in SQL Server, such as CREATE, ALTER, and DROP. While WMI
queries follow the basic syntax of T-SQL queries, the FROM of the WMI
query will be a WMI object, not an object in a SQL Server database.

 You can see an example of a WMI event alert at
https://learn.microsoft.com/sql/relational-databases/wmi-
provider-server-events/sample-creating-a-sql-server-agent-
alert-with-the-wmi-provider.

 You can reference the WMI provider classes and properties at
https://learn.microsoft.com/sql/relational-databases/wmi-

https://learn.microsoft.com/sql/relational-databases/wmi-provider-server-events/sample-creating-a-sql-server-agent-alert-with-the-wmi-provider
https://learn.microsoft.com/sql/relational-databases/wmi-provider-server-events/wmi-provider-for-server-events-classes-and-properties


provider-server-events/wmi-provider-for-server-events-
classes-and-properties.

This type of alert is not as straightforward as the other types. In
general, you might find better results, more flexibility, and less
complexity by using Extended Events, SQL Server Agent jobs, SQL
Server Audit, and/or third-party monitoring tools than by using WMI
alert queries.

 You can read more about Extended Events in Chapter 8.

Setting up an email recipient for a WMI event alert does not send
over any useful or actionable information in the email aside from the
alert’s name. This does little more than let you know that a WMI event
occurred (observed asynchronously, so there might be some delay).

To view the information regarding the event—for example, the T-SQL
command associated with the event—you must enable token
replacement. To do so, open the SQL Server Agent Properties
dialog box. Then, at the bottom of the Alert System page, select the
Token Replacement check box. This allows for the tokenization
(replacement at runtime) of WMI commands in a T-SQL job step.

 For more on the tokens that you can use in a T-SQL job step,
visit https://learn.microsoft.com/sql/ssms/agent/use-tokens-in-
job-steps.

We have prepared a sample WMI event alert to capture the CREATE
DATABASE DDL event in the accompanying downloads for this book.

SQL Server Agent job considerations when using
availability groups
If you are running SQL Server Agent jobs in an availability group
environment, you will still need to configure maintenance plans on
each SQL Server instance. You must cover databases that are
writeable when the instance is the primary replica, databases not
included in availability groups, as well as the system databases

https://learn.microsoft.com/sql/relational-databases/wmi-provider-server-events/wmi-provider-for-server-events-classes-and-properties
https://learn.microsoft.com/sql/ssms/agent/use-tokens-in-job-steps


master and msdb. You should ensure that your maintenance plans,
regardless of platform, are consistently updated on all replicas and
also are aware of their local replica role so that maintenance plans do
not need to be turned on, turned off, or reconfigured when a failover
occurs.

The SQL Server Agent must be enabled, and your SQL Server Agent
jobs must exist on all replicas of the availability group and be replica-
aware. (The script should know if it is running on the primary replica
for a database.) You will need multiple versions of any custom
maintenance task in order to separate scripts for databases in each
availability group, and one more for databases not in an availability
group (including any system databases that you intend to maintain
with custom scripts).

To avoid having SQL Server Agent jobs generate an error when their
local replica is not the primary replica for a database, you can add a
T-SQL step to the start of the job to detect and raise a failure. The
goal of the first step is to prevent subsequent job steps from running
and failing against secondary replica databases, which will not be
writeable. Name the first step “Am I Primary?” or something similar,
and then add the following script:
Click here to view code image

--add as step 1 on every AG-aware job 
IF NOT EXISTS ( 
SELECT @@SERVERNAME, * 
   FROM sys.dm_hadr_availability_replica_states rs 
   INNER JOIN sys.availability_databases_cluster dc 
   on rs.group_id = dc.group_id 
   WHERE is_local = 1 
   and role_desc = 'PRIMARY' 
--Any databases in the same Availability Group 
   and dc.database_name in (N'databasename1', 
N'databasename2')) 
BEGIN 
   print 'local SQL instance is not primary, skipping'; 
   throw 50000, 'Do not continue', 1; 
END;



This code causes step 1 to fail when it is not run on a primary replica
for the specified database(s). If you run the preceding code
referencing a database that is not in an availability group, the script
will also cause step 1 to fail. In the Advanced settings of the “Am I
Primary?” job step, the On Success Action setting should be Go to
The Next Step, as usual, but the On Failure Action setting should
be Quit the Job Reporting Success, which would not register as a
job failure. Instead of a green check mark or a red X next to the job,
SQL Server Job History displays a yellow triangle. This prevents
subsequent job steps from running and failing against secondary
replica databases, which will not be writeable.

Note
The previous script is not appropriate for maintenance plan
jobs. Any change to the maintenance plan will re-create the job
and overwrite the new “Am I Primary?” task you added. Instead,
take advantage of the availability group–aware backup priority
settings in the Back Up Database task. We look at this in more
detail in the next section.

 For more about availability groups, see Chapter 11,
“Implement high availability and disaster recovery.”

Maintain SQL Server
This section reviews what you should be doing as a day-to-day
database administrator of a SQL Server instance, how to accomplish
these tasks, and the built-in tools that SQL Server provides to help
you. SQL Server editions above Express edition (because Express
has no SQL Server Agent) ship fully featured and ready for you to
configure to perform basic maintenance.

Note



This section provides ways to accomplish all major
maintenance objectives using tools built into SQL Server.
However, that doesn’t mean you shouldn’t use third-party tools.

For the most part, the tasks in this section are built into Azure SQL
Database and Azure SQL Managed Instance. In some cases,
maintenance tasks are completely automated (especially in the case
of disaster recovery) or partially automated (in the case of index
maintenance). This section focuses on SQL Server instances
because the fast evolution of Azure SQL reduces the hands-on
maintenance required by DBAs on the PaaS platform.

 For more information on Azure SQL Database and Azure SQL
Managed Instance, see Chapter 17 and Chapter 18.

Basic care and feeding of SQL Server
You can carry out the regular proactive maintenance of a SQL Server
instance by using one or more of the following strategies:

SQL Server maintenance plans, including the option to use a
Maintenance Plan Wizard

Custom scripting using DMVs and T-SQL or PowerShell
commands

Third-party tools

Each has advantages and disadvantages, and each requires different
compromises between ease of setup, customizability, cost, and
maintainability.

You can run these strategies via SQL Server Agent jobs. You can
configure each one to provide customized activity logging, retention,
and the ability to view history in different ways.

Regardless of the strategy or strategies you adopt, whether with built-
in or third-party tools, you should accomplish the following as a bare



minimum on a regular schedule, tailored to meet your SLA and
recovery objectives agreed with your organization:

Back up system and user databases.

Full backups for all databases.

Transaction log backups for databases not in the simple
recovery model.

To save space and reduce time to recover using
transaction log restores, differential backups between less
frequent full backups. Differential backups can also be
used for databases in the simple recovery model.

Implement a retention policy for database backups, if backups
are stored locally, by deleting backups after a business-
approved amount of time. In the case of tape backups, have a
rotation policy instead.

Implement a retention policy for various SQL Server event logs
and history.

SSMS maintenance plan log text files can be deleted after
a certain amount of time using the Maintenance Cleanup
task.

Prune the history of backup and restore operations in
msdb.

Prune the Database Mail log.

SQL Server Error Log files are already maintained by SQL
Server to a configurable number of log files. (The default is
six, which should be increased.)

SQL Server Agent job history is also maintained
automatically by settings in the SQL Server Agent
properties.



Maintain index and heap health in SQL Server.

There are different strategies to reduce fragmentation in
clustered and nonclustered indexes.

Columnstore indexes also require maintenance via
REORGANIZE steps, especially if there is update or delete
activity in the table, and fragmentation is measured
differently.

Monitor heap structures (tables without a clustered index)
for excessive forwarding pointers.

Update statistics.

This should accompany INDEX REORGANIZE steps, but not
INDEX REBUILD steps. Remember that the INDEX REBUILD
command also updates index statistics.

Check database integrity via DBCC CHECKDB.

Maintain copies of backed up data in secure off-premises
facilities.

Storage area network (SAN) replication or another file-level
backup system can accomplish this, as can integration with
Azure Storage for easy cloud-based backup.

Remember that your data-loss tolerance isn’t defined by
how often you take backups, but by how often those
backups get securely off-premises and tested!

What will vary is how often these tasks need to run on each server
and database, and what type of backups you need. This section of
the chapter walks you through the process of creating tools to
manage the previous tasks by writing T-SQL scripts scheduled using
SQL Server Agent, using the Maintenance Plan Designer, and using
the Maintenance Plan Wizard.



Even though we don’t make recommendations regarding third-party
tools, we do want to note that many third-party tools do not provide
an end-to-end solution for maintaining secure offsite backups (the
final item in the previous list), which typically involves coordination
with the storage administrators and/or cloud hosting such as Azure
Storage. SQL Server Managed Backup to Azure is a full-featured
SQL Server backup solution (though not free, it is relatively
inexpensive). It is the Microsoft-recommended backup solution for
SQL Server instances running on Azure virtual machines (VMs).

If you want to maintain direct control of backing up off-premises, you
can use BACKUP ... TO URL statements to write backups directly to
Azure Storage, often to complement local backup storage. (Scripting
this yourself is free, of course, but Azure Storage is not.) To meet
your Recovery Time Objective (RTO) goals, or in the event of an
external network failure, you should also maintain local backups
within your network for a time. Remember to take regulatory data-
retention guidelines into account.

 For more details about backups, schedules, T-SQL command
parameters, and backup strategy, refer to Chapter 10,
“Develop, deploy, and manage data recovery.”

Use SQL Server maintenance plans
SQL Server maintenance plans are a free, low-cost, low-complexity,
visually built option to implement SQL Server maintenance and
disaster recovery. The drag-and-drop tasks built into the maintenance
plan design surface have some distinct shortcomings that we’ll
review. You will see differences when creating maintenance plans in
SSMS from version to version of SQL Server.

Note
Maintenance plans are not supported for SQL Server on Linux,
but that doesn’t prevent you from targeting a Linux instance
from SQL Server on Windows.



The Maintenance Plan Wizard is a step-by-step tour through most of
the steps necessary for SQL Server. This wizard guides you through
an easy process of creating a maintenance plan with most of the
basics, which you can then review with the maintenance plan design
surface in SSMS. To begin with a fresh slate, open the Management
folder in Object Explorer, right-click on Maintenance Plans, and
select New Maintenance Plan. This prepopulates objects for you in
the designer, with which we recommend you become familiar.

The Maintenance Plan designer has three main elements: the
subplans list, the design surface, and the maintenance plan tasks
toolbox. When you open a maintenance plan, the first two elements
will be obvious, but the toolbox might not be docked. To display the
toolbox and pin it to the side of SSMS, open the View menu and
select Toolbox or press Ctrl+Alt+X.

If you have any experience with SSIS, the interface of a maintenance
plan will feel very familiar. Behind the scenes, maintenance plans
create and store SSIS packages internally.

The tasks in a maintenance plan and the choices in the Maintenance
Plan Wizard translate directly to the options you’re already familiar
with in SQL Server Agent jobs or the options for backups and index
maintenance T-SQL commands. For example, the Run As option on
the first screen of the wizard and in the Subplan properties of the
designer provides a list of proxies, just as a SQL Server Agent job
step does. Instead of using the SQL Server Agent service account,
ideally you should choose an SSIS proxy (under the Management
node) that has access to the SSIS Package Execution subsystem.

Note
You may see an explanation screen as the first screen of many
wizards in SSMS, and you can choose not to show these
explanations in the future.



Cover databases with the maintenance plan
When you select the maintenance tasks that you want the wizard to
configure, you’ll be able to select the databases you want to run the
tasks against. The options are:

All databases

System databases

All user databases

Specify a list of databases

You also have the option to ignore databases for which the status is
not online, which we also recommend.

To isolate the configuration, maintenance, and logging from one
another, it is common to create two maintenance plans: one for
system databases (master, model, and msdb) and at least one for all
user databases, depending on business requirements. The system
plan just handles system database backups, and the user plan
handles everything else. This ensures that if there are any issues with
ongoing changes to the maintenance plan for user databases, crucial
system database backups are unaffected.

Inside OUT
Will a SQL Server maintenance plan automatically detect
a new database created on SQL Server?

Yes, a maintenance plan can accomplish this if you configure
it correctly. This could be invaluable when applications are
configured to procedurally create new databases, such as
SharePoint.

You should try to configure maintenance plan tasks to use
either the All Databases or All User Databases setting



(assuming you have another task that covers system
databases). When you select either of these, new databases
are automatically included in the maintenance plan. This
makes your job as an administrator easier. If you choose a
specific fixed list of databases using the These Databases
option and list, new databases will be ignored, and you will
need to remember to add the databases to the maintenance
plan.

If you have a database that you don’t use anymore, and you
no longer want to cover it with a maintenance plan, consider
taking the database offline. Then use the option in many
maintenance plan tasks to ignore databases where the status
is not online.

There is one caveat regarding transaction log backup tasks
using either of the two All options for databases. After you
create a new database in the full recovery model, the backup
task that creates transaction log backups in the maintenance
plan will attempt to take a transaction log backup, and will fail.
This is because a database must first have a full database
backup taken before a transaction log backup will succeed.
When you create a new database, take a manual full backup,
or your maintenance plan will show errors until a full backup is
performed. Other databases’ transaction log backups will
continue to run as usual, even if one or more databases fail.

Maintenance plan tasks
On the first page of the Maintenance Plan Wizard, you have the
option to run each task with separate schedules or with a single
schedule for the entire plan. We recommend you choose the
Separate Schedules For Each Task option, or if you’re building the
maintenance plan in the designer, break activities into multiple
subplans, each with its own schedules. This is because some tasks
such as index maintenance or database-integrity checks can take a
long time to run, and you do not want your backups in serial with



those, and then delayed and inconsistently occurring. To work the
maintenance plan into your after-hours windows, you will want more
scheduling flexibility than a single start time for all tasks to run
serially.

The Select Maintenance Tasks page of the Maintenance Plan
Wizard features a list of all built-in maintenance tasks. In the
graphical designer, you have one additional tool to run custom T-SQL
scripts named the Execute T-SQL Statement Task. You can use this
to run your custom maintenance scripting or other administrative
scripts. We review this later in this section.

Note
The Maintenance Plan Wizard can create only one copy of each
available task. To create two different tasks of the types we’ll be
looking at in a moment—for example, one for system databases
and one for user databases—you will need to use the
Maintenance Plan designer in SSMS.

The following sections present the available tasks that you can select
from, along with descriptions of what they do.

Check Database Integrity task
The Check Database Integrity task runs DBCC CHECKDB to check for
database corruption—a necessary task that you should run
periodically. You should run DBCC CHECKDB at least as often as your
backup retention plan. For example, if you keep local backups around
for one month, you should perform a successful DBCC CHECKDB no
fewer than one time per month—and more often, if possible. On large
databases, this task could take hours.

 For more about data corruption and checking database
integrity, see Chapter 8.



The options available in the maintenance plan task match the
common parameters you would use in the DBCC CHECKDB command.
The Physical Only check box uses the PHYSICAL_ONLY parameter of
DBCC CHECKDB, which limits DBCC CHECKDB to checking physical
structures, torn pages, checksum failures, and common hardware
failures. It is less comprehensive as a result. However, using
PHYSICAL_ONLY can take significantly less time to complete while still
detecting the signs of common storage hardware failure.

Note
A common practice when using the PHYSICAL_ONLY option of
DBCC CHECKDB or the Check Database Integrity maintenance
plan task is to maintain a system in which production databases
are restored on a matching nonproduction system, and running
a time-consuming full integrity check (without the PHYSICAL_ONLY
parameter) to catch any corruption issues. However, there is no
substitute for running a full DBCC CHECKDB on your production
system.

Shrink Database task
There is no sound reason to ever perform a Shrink Database task on
a schedule. A Shrink Database task removes free space from a file
and returns it to the OS, causing the file to experience an autogrowth
event the next time data is written to it. Do not ever include the Shrink
Database task in the maintenance plan.

Inside OUT
When should you shrink your database?

If you have deleted a significant portion of data from your
database, you can perform a one-off shrink of the database to
reclaim drive space, provided that the immediate next step is



to rebuild all indexes in that database. A shrink database (or
shrink file) task heavily fragments the database, and
rebuilding the indexes will remove this fragmentation.

Reorganize Index task
A Reorganize Index task runs an ALTER INDEX ... REORGANIZE
statement, which reduces index fragmentation but does not update
statistics. By default, this task does not reorganize all indexes. If you
need to reorganize all indexes on a scheduled basis, you will need to
remove the default values on this task. On large databases, this could
take hours, but will have less overhead, less query disruption, and
finish faster than a Rebuild Index task (discussed next).

Because Reorganize Index is an online operation and reads only one
8-KB data page at a time, it will not take long-term table locks and
might block other user queries for only a very short amount of time.
Online index operations will consume server resources and generate
large amounts of logged transactions.

If you use this task in your maintenance plan, remember to add an
Update Statistics task to run immediately after it.

 The “Rebuild Index task” section covers a method to maintain
indexes that are above a certain fragmentation percentage.

Rebuild Index task
More thorough than a Reorganize Index step at removing index
fragmentation, this task runs an ALTER INDEX ... REBUILD statement
and does update statistics. The options available in the Rebuild
Index dialog box correspond to the options for the ALTER INDEX ...
REBUILD syntax.

Note



At the time of this writing, maintenance plans currently do not
support RESUMABLE index rebuilds, which might be necessary for
you on very large tables. See Chapter 8 for more information on
ALTER INDEX ... REORGANIZE and REBUILD.

With Enterprise edition, you can perform a Rebuild Index step as an
online operation, which is not likely to block other user queries like an
offline rebuild does. Not all indexes and data types can have an
online rebuild performed, so the Maintenance Plan dialog box for the
Rebuild Index task will ask you what you want to happen.

Rebuilding indexes without the ONLINE option will block other user
queries attempting to use that index, and will consume additional
server resources. On large tables, this could take hours to finish, and
even more without the ONLINE option due to the overhead of
managing blocking.

Inside OUT
Do you need to maintain memory-optimized table
indexes?

Memory-optimized table indexes do not accumulate
fragmentation on-disk and do not need regular maintenance
for fragmentation. However, you should routinely monitor the
number of distinct values in hash index keys, and adjust the
number of buckets in a hash index over time with the ALTER
TABLE ... ALTER INDEX ... REBUILD syntax.

Memory-optimized tables are ignored by maintenance plans in
SSMS.

Maintain indexes above a certain fragmentation
percentage



You can intelligently limit index maintenance to certain thresholds,
starting with the options to select between Fast (LIMITED), Sampled,
and Detailed. This corresponds to the parameters provided to the
structural statistics dynamic management function (DMF),
sys.dm_db_index_physical_stats.

Note
This task does not operate on columnstore indexes. See
Chapter 15, “Understand and design indexes,” for more
information on maintaining columnstore indexes.

You can configure the Reorganize Index and Rebuild Index tasks to
maintain only indexes filtered by percentage of fragmentation and
page count, both from sys.dm_db_index_physical_stats, and/or
actual index usage (based on the sys.dm_db_index_usage_stats
DMF). The fragmentation threshold is 15 percent by default in the
Reorganize Index task, and 30 percent in the Rebuild Index task, but
these values are only a guideline.

Other options added to the Reorganize Index and Rebuild Index
tasks match the options for the ALTER INDEX … REORGANIZE, and
REBUILD T-SQL commands, covered in detail in Chapter 8.

Update Statistics task
The Update Statistics task runs an UPDATE STATISTICS statement,
rebuilding index statistics, which we discuss in Chapter 15. Do not
follow an Index Rebuild task with an Update Statistics task for the
same objects, because this is redundant work. Updating statistics is
an online operation, so it will not block other user queries, but it will
consume server resources unnecessarily. This task should finish
faster than either a REORGANIZE or REBUILD step. On larger databases,
or databases with flash storage, this task can replace more frequent
Rebuild Index or Reorganize Index tasks.



Inside OUT
How does auto_create_stats affect the Update Statistics
task in a maintenance plan?

You should maintain the health of Update Statistics with
regularity, even if not in a maintenance plan. When
auto_update_stats is enabled, statistics are updated
periodically based on usage. Statistics are considered out of
date by the Query Optimizer when a ratio of data
modifications to rows in the table has been reached. The
Query Optimizer checks for and updates the out-of-date
statistic before running a query plan. Therefore,
auto_update_stats has some small runtime overhead, though
the performance benefit of updated statistics usually
outweighs this cost. We also recommend enabling
auto_update_stats_async, which helps minimize this runtime
overhead by updating the statistics after the query is run,
instead of before.

Enable these for all user databases unless the application
specifically requests that it be disabled, such as is the case
with Microsoft SharePoint.

You can also manually identify the date on which any statistics
object was last updated by using the
sys.dm_db_stats_properties DMF. In your databases, you
might see that there are statistics that are quite old. This
means they might not have been accessed in a way that
prompts the auto_update_stats update and have not had an
INDEX REBUILD, which would also update the statistics.

Regularly updating both column and index statistics for a
database, if your maintenance window time allows, will almost
certainly help. By doing so, you can reduce the number of
statistics updates that happen automatically during
transactions in regular business hours.



History Cleanup task
This task deletes older rows in msdb tables that contain database
backup and restore history, prunes the SQL Server Agent log file, and
removes older maintenance plan log records. These are
accomplished by running three stored procedures in the msdb
database: dbo.sp_delete_backuphistory, dbo.sp_purge_jobhistory,
and dbo.sp_maintplan_delete_log, respectively. You should run this
task to prevent excessively old data from being retained, according to
your environmental data-retention requirements. This will save space
and prevent large table sizes from degrading the performance of
maintenance tasks. This step should finish quickly and not disrupt
user queries. This step does not delete backup files or maintenance
plan log files; that is the job of the Maintenance Cleanup task,
discussed next.

Maintenance Cleanup task
The Maintenance Cleanup task deletes files from folders and is
commonly used to delete old database backup files, using the system
stored procedure master.dbo.xp_delete_file. You also can use it to
clean up the .txt files that maintenance plans write their history to in
the SQL Server instance’s Log folder. You can configure the task to
look for and delete any extension by folder directory, and then specify
that subdirectories be included. The date filter uses the Date Modified
file attribute (not the Date Created attribute). While this may not be an
issue in many cases, it can prevent files from being cleaned up if you
are appending data to these files. Combined with the option to create
a subdirectory for each database, this means you can create and
remove backup files in the folder structure for each database.

Note
In the case of maintenance plans, by default, logs are kept in a
table, msdb.dbo.sysmaintplan_log, as well as in text files in the
SQL Server instance default Log folder. Deleting one does not



delete the other. You should maintain a retention policy on both
sources of the maintenance plan run history.

The Maintenance Cleanup task deletes files only from folders, and
thus isn’t an option to enforce a retention policy for backups to URL in
Azure Storage.

Inside OUT
How do you delete old backups in Azure Storage?

You should use the stored procedure sp_delete_backup to
clean up file snapshot–based backups created in Azure
Storage, which are continuous chains of backups starting from
a single full database backup.

To clean up old backups taken to Blob storage using the
BACKUP ... TO URL syntax, you should not try to delete the
base blob of the backup using Microsoft Azure Storage
Explorer or the Azure Storage viewer in SSMS, for example.
Aside from the files, there are pointers to the file-snapshots in
a file-snapshot backup set that must be deleted as well.

Note also that SQL Server Managed Backup to Azure has its
own retention plan, which is currently limited to a maximum of
30 days.

Execute SQL Server Agent Job task
Using this task, you can orchestrate the asynchronous start of
another SQL Server Agent job during the maintenance plan, perhaps
to start another middle-of-the-night process as soon as possible after
maintenance is complete.



Back Up Database (Full, Differential, Transaction
Log) task
With this task, you can take a backup of any kind of the specified
databases. The options in the Maintenance Plan dialog box for the
backup are similar to the SSMS Database Backup dialog box, plus
some minor extra options, including an option to ignore replica priority
in an availability group database.

Note
The standard extensions for backup files are .bak (full), .dif
(differential), and .trn (log), but these are just conventions. You
can provide any file extension (or none at all) for your backup
types, as long as you are consistent across your entire SQL
Server environment with backup file extensions.

The Back Up Database task affords you multiple strategies for
backups, including backing up to disk or to Azure Storage via URL as
well as to the deprecated tape backup support.

Backing up to URL writes files directly to Azure Storage natively,
without the need to install any software or network connections. This
was a fairly limited feature before SQL Server 2016, but now can be
accomplished via a shared access signature (SAS) credential for
secure access to Azure Blob Storage.

 A step-by-step walk-through is available at
https://learn.microsoft.com/sql/relational-databases/tutorial-
use-azure-blob-storage-service-with-sql-server-2016. Note
that this process hasn’t changed much since SQL Server
2016.

You can configure disk backups to append multiple database backups
multiple times to the same file or files, or create a backup file and a
subdirectory for each database per backup. This is generally
recommended both for ease of accessing files and for using tools to

https://learn.microsoft.com/sql/relational-databases/tutorial-use-azure-blob-storage-service-with-sql-server-2016


remove out-of-date files as needed. For backups to disk, we
recommend that each database has a subdirectory in the folder
location to separate the backup files of databases with potentially
different retention plans or recovery strategies. The maintenance plan
backup will automatically create subdirectories for new databases,
and when performing backups, append a timestamp and a unique
string to backup names in the following format:
Click here to view code image

databasename_backup_yyyy_mm_dd_hhmmss_uniquenumber.bak|dif|tr
n

We recommend that you select the options for Verify Backup
Integrity, CHECKSUM, and Compress Backup for all database
types, for all databases.

Note
If you are backing up your databases to a compressed location,
you can still enable database backup compression. While there
may be an additional resource cost of compressing the
backups, this can save time if you are copying all your backups
to a different or central location.

This is supported even for backups to URL. Keep in mind that the
Verify Backup step performs a RESTORE VERIFYONLY statement to
examine the backup file and verify that it was valid, complete, and
should be restorable. Should be is key, because the only way to truly
test whether the backup was valid is to test a restore. The RESTORE
VERIFYONLY does not actually restore the database backup, but could
give you an early heads-up on a potential drive or backup issue, and
is always recommended when time permits. The Verify Backup step
could significantly increase the duration of the backup, scaling with
the size of the database backup, but is time well worth spending in
your regular maintenance window.



Execute T-SQL Statement task (not available in
the wizard)
This task can run T-SQL statements against any SQL Server
connection, with a configurable time-out. A simple text box accepts T-
SQL statements. Because of its simplicity, we recommend that
instead of pasting lengthy commands, you reference a stored
procedure. This would be easier to maintain and potentially keep in
source control by developing the stored procedure in other tools. You
may find it useful to keep this and other stored procedures in a
database specifically dedicated to database administration tasks.

Maintenance plan report options
By default, maintenance plans create a report in two places to record
the history for each time a subplan runs. Logs are kept in a table,
msdb.dbo.sysmaintplan_log, as well as in .txt files in the SQL Server
instance default Log folder. You can also choose the Email Report
option in the Maintenance Plan Wizard, which adds a Notify Operator
task.

Build maintenance plans using the Maintenance
Plan designer in SSMS
Due to the nature of wizards, there are some inherent issues with
configuring a robust maintenance solution that covers all the needs of
your databases with the Maintenance Plan Wizard. Fortunately, the
SSMS Maintenance Plan designer gives you the ability to set up your
task run order and precedence constraints as well as to maintain
multiple subplan schedules within a maintenance plan. Figure 9-2
displays a sample maintenance plan.



Figure 9-2 A sample maintenance plan for user databases has
been created, with multiple subplans, each running on
a different schedule.

In Figure 9-2, a sample maintenance plan for user databases has
been created, with multiple subplans, each running on a different
schedule. Subplan_1 runs every week on Sunday and starts with the
Reorganize Index Task. Subplan_2 runs the Update Statistics Task
every day. Looking at Subplan_1, the first task is a Reorganize Index
Task. Both the Maintenance Cleanup Task and History Output Task
run after the Reorganize Index Task.

When you save the maintenance plan, each of the subplans in the
maintenance plan will become a SQL Server Agent job with the
naming convention maintenance plan name.subplan name.

Note
When you save a maintenance plan, the job(s) it creates might
be owned by your personal login to the SQL Server. Be aware
that if your account becomes disabled or locked out, this will
prevent the SQL Server Agent job from running. To avoid this, it



would be better to have all maintenance plans owned by an
account that is not tied to a specific user.

At the top of the Maintenance Plan designer window is where the
subplans are listed. Initially, there will be just one plan, called
Subplan_1. You should break down the tasks that will be
accomplished in the subplan by the schedules they will follow, and
name them accordingly. You can add subplans and manage their
schedules in the Maintenance Plan designer window. Note that you
should not make changes to the SQL Server Agent jobs after they’ve
been created; otherwise, the next time you edit the maintenance plan,
your changes will most likely be overwritten.

The large gray area beneath the subplan list is the design surface for
maintenance plans—a graphical, drag-and-drop interface. To add
tasks to a subplan, you can drag a task from the toolbox to the design
surface. To serialize the running of multiple tasks, select one, and
then select the green arrow beneath the box, dragging it to the task
that should follow. You can create a long string of sequential activities
or a wide set of parallel-running activities, similar to designing SSIS
packages.

Note
Each Maintenance Plan task has a View T-SQL button that
shows you the exact T-SQL that will be run to perform the
maintenance tasks. You can use this to learn the commands for
maintenance tasks so you can make your own customized
plans, which we talk about in the next section.

When not to use SQL Server maintenance plans
Personal preference, of course, is a fine enough reason not to use
built-in maintenance plans. You can write your own, as long as your
library of scripts or third-party tools accomplishes the necessary



maintenance tasks with consistency, configurability, and good logging
for review.

For SQL Server instances with manageable maintenance windows,
maintenance plans will meet your needs if the schedules are set up
appropriately. You can create a variety of maintenance plans to cover
databases with various levels of importance or availability based on
business requirements (with the caveat of not being able to detect
new databases). For very large databases or databases with 24×7
availability requirements, more granularity for maintenance
operations will likely be necessary.

Not every business has the luxury of having all night and/or all
weekend to perform maintenance outside of business hours. When
you become familiar with the T-SQL commands and their various
options, you can be creative to overcome tight scheduling, crowded
maintenance windows, very large databases, or other maintenance
plan complications.

After reviewing the capabilities of the Back Up Database and Rebuild
Index tasks, you should consider maintenance plans more full-
featured and capable of handling the bulk of maintenance, even on
larger databases with tight schedules. Ultimately, the success of
maintenance plans or custom scripts depends on your understanding
of the various options available for the seven core maintenance tasks
listed earlier in this chapter and elsewhere in this book.

Back up availability groups using a secondary
replica
This section may look out of place here, but rest assured it makes
sense. We have been looking at single-instance SQL Server
maintenance tasks up to now, but automation applies to availability
groups as well. Even maintenance plans can be used successfully
with availability groups.

 You can read more about availability groups in Chapter 2,
“Introduction to database server components,” and Chapter



11.

One of the many useful features in availability groups is the ability to
utilize read-only secondary replicas for remote backups. Performing
backups on a secondary replica, including a geographically separated
replica, introduces complexity but has a big advantage. Backups do
not take locks and will never block a user query, but they will incur
significant CPU, memory, and I/O overhead. Backups can slow
database response, so on servers with large databases and/or busy
24×7 utilization, it might be helpful, and in some cases necessary, to
find alternative strategies to backups. Taking database backups on
secondary replicas is one of the alternatives to move the resource
expense of backups off the primary replica.

Understand backup priority values
In SSMS, in Object Explorer, expand the Always On High
Availability node for the instance of the primary replica, and then the
Availability Groups node. Right-click the availability group you want
to view, select Properties, and look at the Backup Preferences
page. It’s important to understand the priority values and how they
interact with various backup tasks.

The default option is Prefer Secondary, which specifies that backups
occur on the secondary replica first or, if it is not available, on the
primary replica. You then can provide priority values (0 to 100, where
100 is highest) to decide which of the multiple secondary replicas
should be the preferred backup location. The values apply to both full
and transaction log backups.

Other self-explanatory options include Primary, Secondary Only,
and Any Replica, which uses the priority values to decide which
replica is preferred for the backups. When failing over to another
replica, you will need to review and script the changes to the backup
priority. Your planned failover scripts should include the reassignment
of backup priority values.



This Backup Preferences page affects only backup systems or scripts
that are aware of the backup preferences. For example, in SSMS, in
Object Explorer, right-click a database, select Tasks on the shortcut
menu, and then Backup. The dialog box that opens takes a backup
of a database but does not include any availability groups–aware
settings. On the other hand, the Back Up Database task in SQL
Server maintenance plans is aware of availability group backup
priority value settings.

You are limited to taking full copy-only database backups and
transaction log backups on readable secondary replica databases.
When including databases in an availability group, the maintenance
plan Back Up Database task will warn you if you are attempting to
configure a full database backup without a copy-only check or
differential backup, or if you select the For availability databases,
ignore Replica Priority for Backup and Backup on Primary
Settings check box. If this is misconfigured, it is possible to create a
maintenance plan that will run but not create backups of databases in
an availability group.

 For more information on using replica backup priorities, visit
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/active-secondaries-backup-on-secondary-
replicas-always-on-availability-groups and
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/configure-backup-on-availability-replicas-sql-
server.

Use replica backup priority in your backup
schedules
If you attempt to configure a full database backup without copy-only
or a differential backup on a secondary node, you will see the
warning in the Back Up Database task, “This backup type is not
supported on a secondary replica and this task will fail if the task runs
on a secondary replica.” If you select the Ignore Replica Priority
check box, the warning will read, “Note: Ignoring the backup priority

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/active-secondaries-backup-on-secondary-replicas-always-on-availability-groups
https://learn.microsoft.com/sql/database-engine/availability-groups/windows/configure-backup-on-availability-replicas-sql-server


and availability group settings may result in simultaneous parallel
backups if the maintenance plan is cloned on all replicas.”

Maintenance plans should run on a schedule on all availability group
replicas. The priority values for backups can cause a backup not to
be taken on a primary or nonpreferred secondary replica, but the
maintenance plan backup task will start and complete as usual. The
maintenance plans will use the backup priority values and do not
need to be configured when different replicas in the availability group
become primary.

You can still take a manual backup of any type of the databases and
bypass the availability group backup preferences. In fact, your
backup strategy might include intentionally taking full backups in
more than one node of a geographically dispersed availability group.

If you are not using SQL Server maintenance plans or scripting to
take backups, be aware that not all third-party backup solutions are
aware of availability group backup preferences or even availability
groups in general. Maintenance plans in SSMS are aware of these
backup preferences, and your custom scripting can be, too, via the
scalar function sys.fn_hadr_backup_is_preferred_replica. This
function returns a 0 or 1, based on whether the current SQL Server
instance is operating as the preferred backup.

Inside OUT
How do you prevent a broken chain when taking backups
on secondary replicas?

Taking backups of the same database on multiple servers
could lead to some parts of a backup recovery chain being
stored on different servers. If your FULL backups were stored
on Server A, and your DIFF and LOG backups were stored on
Server B, you would have to combine backups from both
Server A and Server B to do a point-in-time restore. While that
is possible, it may cost precious time in the case of disaster



recovery. The solution to this is rather obvious: Always ensure
that backups are copied securely to the same location, from
one datacenter or secured site to another, which is likely
where your availability group replicas are.

Just as you would copy your backups of a standalone SQL
Server instance to another location, you must copy your
backups of availability group databases off-premises, ideally
to each other. You can accomplish this with two strategies.

Copy the backups taken on the secondary node to the primary
regularly, and make sure you maintain a chain of transaction
log backups together with their root full and/or differential
backups, regardless of where the backups were taken. You
should keep a complete chain intact in multiple locations.

Strategies for administering multiple
SQL Servers
There are options for creating orchestration in SQL Server to allow for
a multiplication and standardization of SQL Server DBA effort across
multiple servers. The potential to set up SQL Server Agent jobs that
are run simultaneously on multiple servers is powerful, especially for
custom-developed scripts to gather and report information back to a
central SQL Server.

 You should be aware of the Registered Servers and Central
Management Server SSMS features discussed in Chapter 1,
“Get started with SQL Server tools.”

Master/Target servers for SQL Agent jobs
Master/Target (MSX/TSX) servers are built into SQL Server Agent to
help DBAs who want to manage identical jobs across multiple SQL
Server instances. This feature has been in the product since SQL



Server 7.0, but many DBAs are unaware of the convenience that it
can deliver. There is no doubt that the feature is useful and works
seamlessly with technologies it could not have foreseen, including
availability groups (more on that later).

You can designate one SQL Server as a Master server (MSX), set up
multiserver jobs on that server, and configure each instance to have
its SQL Server Agent jobs remotely managed into a Target server
(TSX). The MSX cannot be a TSX of itself, so using a separate
production server to orchestrate multiserver administration of SQL
Server Agent jobs is necessary. The MSX should be a production
environment server that does not host performance-sensitive
production workloads.

Other considerations for the MSX include the following:

Of the servers you have available, choose the most recent
version of SQL Server for the MSX. You can communicate with
a TSX within two versions of the MSX. For instance, if you have
a SQL Server 2022 MSX, the TSX can be running SQL Server
2017, SQL Server 2019, or SQL Server 2022.

Each TSX can have only one MSX.

Before changing the name of a TSX, first defect it from the MSX
and then reenlist it. However, we recommend modifying a TSX
name using DNS instead.

Do not use a built-in account for the SQL Server Agent service
account on all servers; instead, use a domain service account,
as recommended earlier in this chapter in the “Understand job
step security” section.

While Azure SQL Managed Instance has many of the features of
SQL Agent, multiserver administration is not supported.

Create an MSX/TSX with SSMS



In SSMS, in Object Explorer, right-click SQL Server Agent, select
Multi Server Administration, and then select Make This A Master
to launch the Master Server Wizard. The wizard first sets up a special
operator just for running multiserver jobs; this operator is created for
you and named MSXOperator. You can specify only one operator to
run multiserver jobs, so think carefully about who should be notified
about these jobs. Specify the email address. As always with
operators, it’s best not to use an individual’s email addresses, but to
use an email distribution group, instead.

Next, the wizard presents locally registered and Central
Management–registered servers so you can select them as targets
for the MSX. Select the target servers from the list or, at the bottom,
select Add Connection and add servers not registered in your list.

When you are finished with the wizard, the labels in Object Explorer
will be different for both master and target SQL Server Agents.
Similarly, on the MSX, under SQL Server Agent in Object Explorer,
you will see two new subfolders under Jobs: Local Jobs and Multi-
Server Jobs.

By default, SSL encryption is used between the servers, but you can
change this through a registry setting. You should not need to change
it, however, because encrypted communication between the servers
is recommended, even on your internal networks. You will need to
install an SSL certificate on the server before using it through the
wizard.

 If you cannot use SSL but need to secure the connection
between a TSX and an MSX, see
https://learn.microsoft.com/sql/ssms/agent/set-encryption-
options-on-target-servers for the exact entries.

Although we do not recommend it, you can disable the encryption of
an MSX/TSX by changing the registry set to not use encryption. The
registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL
Server\instance\SQLServerAgent\MSxEncryptChannelOptions is by
default 2, which means all communication is encrypted. Changing this
to 0 on all servers removes encryption.

https://learn.microsoft.com/sql/ssms/agent/set-encryption-options-on-target-servers


Manage multiserver (MSX/TSX) administration
To manage SQL Server Agent jobs in a multiserver environment, set
up the job the same way you would any other job on the MSX. Then,
navigate to the targets page on the job, which outside of a multiserver
environment has no use. From there, select the Target Multiple
Servers option button; then select the servers on which the job
should run. In the background, code is run to send the jobs to the
TSX.

Any jobs with steps that use proxies will need the proxy accounts to
have access to the TSX, and a proxy by that same name on the TSX.
Otherwise, the job will not find a proxy on the TSX. By default,
matching proxy names from MSX to TSX isn’t allowed, because of
the potential for malicious action. This must be enabled via the
registry on the TSX.

 For more information, visit
https://learn.microsoft.com/sql/ssms/agent/troubleshoot-
multiserver-jobs-that-use-proxies.

On a TSX, jobs appear in the SQL Server Agent, in the Jobs folder,
but you can’t edit them.

Sometimes, synchronizing job definitions to the TSX will not be
queued up and will not post to a server. In this case, issue the
following command, but be aware that this will delete and re-create
any jobs specified for the target server, therefore cancelling those
jobs on the TSX:
Click here to view code image

EXEC msdb.dbo.sp_resync_targetserver '<Target Server Name>';

Most other issues with multiserver jobs are solved by defecting the
TSX and then adding it again.

https://learn.microsoft.com/sql/ssms/agent/troubleshoot-multiserver-jobs-that-use-proxies


Manage multiserver administration in availability
groups
MSX/TSX works with availability groups and can be quite useful for
ensuring that jobs stay synchronized across servers. MSX/TSX data
is stored in system tables in the msdb database, which cannot be part
of an availability group.

While SQL Server 2022 allows you to set up the MSX feature in a
contained availability group, it is not recommended due to the
additional complexity in managing SQL Server Agent jobs. Thus, you
should not have the MSX on a SQL Server instance in the availability
group, because this would limit your ability to failover and use SQL
Server Agent Multiserver Administration. You would lose your ability
to orchestrate jobs across the target servers if one of the nodes in
your availability group was unreachable, compromising your failover
state. Instead, consider other high-availability solutions for the MSX.

Using MSX/TSX for availability group SQL Server Agents doesn’t
change the need to set up the “Am I Primary?” logic in step 1 of any
job that should run only on a SQL Server instance that currently hosts
the primary replica.

 For a code sample, refer to the section “SQL Server Agent job
considerations when using availability groups” earlier in this
chapter.

SQL Server Agent event forwarding
Event forwarding occurs when one central Windows server receives
the SQL Server events of many. The server that is the destination of
many other servers’ forwarded events might handle a heavy
workload, especially network traffic. The destination server should be
a production-environment server that does not host performance-
sensitive production workloads. You can refer to this server as the
alerts management server.



Event forwarding allows the Windows Event Viewer to be a single-
pane view of events on many instances of SQL Server. Further, it
allows for alerts on the alerts management server to prompt a
response to the originating server, via SQL Server Agent alerts.
Forwarded errors arrive in the Windows Application Event Log, not
the SQL Server Error Log. Because of this, the SQL Server Agent
service account needs to be a local Windows administrator.

Typically, this setup is the same server as your MSX/TSX server; in
fact, the features work together. If your MSX and alerts management
server are on separate SQL Server instances, you will not have the
ability to run a job to respond to specific events.

Set up event forwarding
You configure event forwarding in the SQL Server Agent Properties
dialog box. In SSMS, open the SQL Server Agent Properties dialog
box and choose the Advanced page. In the SQL Server Event
Forwarding section, select the Forward Events to a Different
Server check box. In the text box, type the name of the alerts
management server. Be aware that the alerts management server
that receives forwarded events must be the SQL Server default
instance of a server. (In other words, it cannot be a named instance.)

You can also choose whether to send all events or only unhandled
alerts that have not been handled by local alerts on each SQL Server
instance. You can then specify a minimum error severity to be
forwarded. Choose a severity level that matches your needs, keeping
in mind the caveat of nuisance severity errors.

 For information about alerts and error severity, refer to the
section “Foundations of SQL Server automated
administration” earlier in this chapter.

Policy-based management
Policy-based management (PBM) is a powerful tool for enforcing
rules for configuration settings, options for databases and servers,



security principals, table design, even database object naming
conventions. As of this writing, this feature does not yet apply to
Azure SQL Database.

PBM is structured around policies. Policies contain a single condition,
which is a Boolean expression. The condition expression is evaluated
against properties and settings of destination objects, such as the
server itself, a database, a table, or an index.

For example, you might set up a condition around the
AdHocRemoteQueries server-level setting.

SQL Server has a large list of facet properties built into it, such as
AdHocRemoveQueriesEnabled in the Surface Area Configuration facet.
(As discussed in Chapter 4, this facet contains a number of security-
sensitive features, many—but not all—of which we recommend you
disable unless needed.) To check that this Surface Area
Configuration option is always turned off, create an expression that
checks whether AdHocRemoveQueriesEnabled can be evaluated to
Enabled = False.

Policies can contain only one condition, but you can configure many
different expressions, any one of which could initiate the policy. You
can, for example, create a PBM policy called “Configuration Settings,”
a PBM condition called “Settings That Should be Disabled,” and a list
of expressions, each of which evaluates a different Surface Area
Configuration option.

To access a list of PBM facets, right-click the server name in Object
Explorer and select Facets. This opens the SSMS View Facets
dialog box; select Export Current State as Policy to ease the
implementation of many configuration options into policy. You can
apply the resulting settings to the local server as a policy right away,
or export them as .xml, which then can be imported as a new policy.

PBM is built into SSMS, accessible via the Policy Management
subfolder in the Management folder. To export a policy, in SSMS, in
Object Explorer, in the Policy Management folder, right-click a policy,
choose Export Policy, and follow the prompts. To import a policy,



right-click on the Policies folder, choose Import Policy, and follow
the prompts.

Evaluate policies and gather compliance data
After you create a policy, you have multiple options for when to
evaluate it: on demand (manually); on a schedule; and continuously,
which either logs or blocks policy violations.

SQL Server maintains a history of all policy evaluations in a policy
history log, which is available within SSMS. To access it, expand the
Management folder for the instance, right-click Policy Management,
and select View History on the shortcut menu.

In the System Policies subfolder, you’ll find 14 prebuilt policies for
checking the health of availability groups, and two more for the SQL
Server Managed Backup feature, first introduced in SQL Server 2014.
The SQL Server Managed Backup policies begin with SmartAdmin.

For example, after creating a policy, you can configure it with On
Demand Evaluation Mode (see the code examples at the end of this
section), and then test it by enabling the AdHocRemoteQueries setting
in the Surface Area Configuration facet. You can also enable it using
T-SQL with the following command:
Click here to view code image

EXEC sp_configure 'Ad Hoc Distributed Queries', 1; 
GO 
RECONFIGURE; 
GO

A message will immediately appear in the SQL Server Error Log
stating, “Policy ‘Keep AdHocRemoteQueries Disabled’ has been
violated by target ‘SQLSERVER:\SQL\servername\instancename’,”
accompanied by a severity 16 error 34053 message.

The on-demand Evaluate mode gives the administrator an immediate
report of all policy compliance. From the Evaluate Policies window—
which you access by expanding Policy Management, right-clicking



Policies, and choosing Evaluate—you can view any number of
policies. Should any expressions fail, the policy will display a red X
beside it. In this example, evaluating the policy with the
AdHocRemoteQueries facet enabled displays an error message and
provides you with the ability to apply the change to bring the servers
in line with policy.

In the Target Details pane of the Evaluate Policies window, you can
select Details to start an analysis of all expression evaluations in the
condition.

You can have the policies run automatically by either defining a
schedule or having the policy evaluated in response to an action. To
select either of these options, go to Policy Management, expand the
list, and choose Policies. To set up an evaluation method for a
specific policy, right-click the policy and select Properties. Then, in
the Evaluation Mode drop-down near the bottom of the window,
select On Schedule. You will get the option to set up the schedule in
the same window. The scheduled Evaluate mode generates only SQL
Server Error Log activity.

The other option in the drop-down is On Demand. This option makes
it possible for you to create a policy that prevents developers or other
administrations from making DDL changes that violate condition
expressions. Not all facet expressions allow for the On Change:
Prevent Evaluation mode.

This is accomplished by rolling back the transaction that contains the
violating action. As with all rollbacks, this transaction could contain
other statements and could cause a database change deployment to
fail in a manner that could complicate your change process. In many
cases, it may be preferable to have rules automated so that the
developers can quickly see if their changes don’t meet coding
standards. Not only can this save time in the development and QA
process, but it removes the burden of enforcing these changes from
the DBA. Administrators and database developers should be aware
of the potential impact to database deployments. You should limit the
use of the On Change: Prevent Evaluation mode to security-related



or stability-related properties in both production and QA
environments, such as the following:

Server security. @CrossDBOwnershipChainingEnabled

Enforce the evaluation of this to False unless this is part of
application security design.

Server security. @PublicServerRoleIsGrantedPermissions

Enforce the evaluation of this setting to False in any
circumstance.

Login. @PasswordPolicyEnforced

Enforce the evaluation of this setting to True for all logins.

Certificate. @ExpirationDate

Enforce that this date is not within a certain time frame in the
future (six months), in every database (sample code to follow).

Database. @AutoShrink

Enforce the evaluation of this setting to False in all databases.

Database. @AutoClose

Enforce the evaluation of this setting to False in all databases.

Samples
You can script policies to T-SQL for application to multiple servers,
though be wary of applying policies for production systems to
development systems, and vice versa. You can use a T-SQL script to
create the two aforementioned samples. This script is available in the
accompanying downloads for this book.

The first part of the script creates a sample policy to keep the Surface
Area Configuration option AdHocRemoteQueries turned off (it will be
evaluated on demand). The result sets returned by these queries



contain only the integer IDs of new policy objects that have been
created.

The second part of the script verifies whether any non-system
certificates have an expiration in the next six months and, if so, fail
the policy. The policy will also ignore any certificates with ## in the
name. These are built into SQL Server, are for internal use only, are
generated when SQL Server is installed, and cannot be modified.
Also keep in mind that certificates used for transparent data
encryption (TDE) will continue to work just fine after expiration, so
there’s no cause for concern if they show up in this list.

The result sets returned by these queries contain only the integer IDs
of new policy objects that have been created.

Use PowerShell to automate SQL
Server administration
SQL Server has supported close integration with PowerShell for over
a decade. PowerShell is a robust shell scripting language that you
can use to perform many administrative tasks. It was first released in
2006, has been integrated with SQL Server since 2008, and was
made open source and cross-platform in 2016.

The goal of this section is not to list every possible interaction of
PowerShell with SQL Server, Azure, or availability groups, but to
provide instructional, realistic samples that will help you to learn the
PowerShell language and add it to your DBA toolbox. All the scripts in
this section are available in the accompanying downloads for this
book.

 We review several useful PowerShell scripts for Azure SQL
Database interaction in Chapter 17.

IT professionals in all walks of life are learning PowerShell to ease
their administrative tasks with various technologies, not just SQL
Server on Windows and Linux, but Active Directory, Machine



Learning, Azure, Office 365, SharePoint, Exchange, and even Office
products like Microsoft Excel. There is very little in the Microsoft stack
for which PowerShell cannot help. Developers have created third-
party downloadable modules, available for download in the
PowerShell Gallery (https://powershellgallery.com), to further
enhance PowerShell’s ability to interact even with non-Microsoft
platforms such as Amazon Web Services, Slack, Internet of Things
(IoT) devices, Linux, and more.

Inside OUT
How do you make better use of PowerShell?

If you’d like to adopt more PowerShell for administration in
your database, you’ll need more than the samples in this
chapter, though we selected these because we feel they are
good learning examples.

Consider adding the open-source suite of PowerShell
cmdlets, dbatools, which is available to download from the
PowerShell Gallery or directly from https://dbatools.io. This
suite has furthered the development of helpful PowerShell
cmdlets for automating high availability, security migrations,
backups, and more. You can read more in Chrissy LeMaire et
al., Learn dbatools in a Month of Lunches (Manning
Publications, 2022).

There are even scenarios for which PowerShell fills feature gaps in
configuration panels and UI, necessitating some basic literacy for
PowerShell on the part of the modern system administrator, DBA, or
developer. PowerShell is especially useful when building code to
automate the failover of Windows Server failover clusters or for
interacting with DNS. You also can use PowerShell remoting to
manage multiple Windows servers and SQL Server instances from a
single command prompt.

https://powershellgallery.com/
https://dbatools.io/


PowerShell is a full-featured shell where you can still manage the file
system and launch applications you’re familiar with as a Windows or
Linux user—for example, ping, ipconfig, ifconfig, telnet, net
start, regedit, notepad, sqlcmd, and even shutdown.

Note
You should get into the habit of using the PowerShell console
window directly, as well as in Visual Studio Code or Azure Data
Studio with PowerShell extensions.

You can also start a PowerShell console from within SSMS; simply
right-click most folders and select Launch PowerShell on the
shortcut menu.

 Follow the instructions in “Install the PowerShell SQLServer
module” later in this section before using this feature.

You might find the Visual Studio Code or Azure Data Studio
environments more conducive to authoring multiline PowerShell
scripts, especially if you have any prior familiarity with Visual Studio
or Visual Studio Code.

PowerShell basics
Cmdlets for PowerShell follow a pattern of verb-noun. This helps
provide ease and consistency when trying to find cmdlets to run your
desired task.

For database administration tasks, we will become familiar with
cmdlets and using SQL Server Management Objects (SMO).
PowerShell for SQL Server is installed separately from SQL Server
Setup or the SSMS installation and can be installed from the
PowerShell Gallery. While this functionality is available in SSMS 17.0
going forward, you should use the most current release of SSMS
available. At the time of writing this book, SSMS 19.0 is the most



current version. We will demonstrate how to install and check the
current version of the SQLServer module.

For each cmdlet, there is a built-in way to receive a description of the
cmdlet and see all the parameters along with descriptions and
examples (if provided by the author). Let’s try it on Invoke-Sqlcmd, a
cmdlet that runs a T-SQL query using statements supported by the
sqlcmd command.

First, run the cmdlet Update-Help. This command updates the
extensive and helpful local help files for PowerShell and installed
modules.

Note
The Visual Studio Code shortcuts for running scripts are
different from SSMS, and you need to be aware of the following:

In SSMS, pressing F5 runs the entire script if no text is
highlighted, or just the highlighted text if any is selected.
Pressing Ctrl+E does the same by default.

In Visual Studio Code, pressing F5 saves and then runs
the entire script file, regardless of whether any code is
highlighted. Pressing F8 runs only highlighted code.

Install the PowerShell SQLServer module
You must be running at least Windows PowerShell 5.0 on Windows to
download modules from the PowerShell Gallery. On Linux you need
PowerShell 7. (Note that PowerShell 7 also runs on Windows and
macOS.) To determine the version of PowerShell on your system, run
the following code in the PowerShell window:

$PSVersionTable



The PSVersion value contains the current installed version of
PowerShell.

Inside OUT
How do you install Windows PowerShell and PowerShell
7?

The latest version of Windows PowerShell, version 5.1, ships
in every supported version of Windows. Windows 10 and
higher and Windows Server 2016 and higher already have
PowerShell 5.0 or 5.1 installed. To upgrade your version of
PowerShell to 5.1, you should install the latest version of
Windows Management Framework 5.1, which includes
PowerShell.

Visit
https://learn.microsoft.com/powershell/scripting/install/installin
g-windows-powershell for links to the current download by OS
to upgrade your Windows PowerShell. Note that installing this
package will require you to reboot your server or workstation.

To install the newer PowerShell 7 for Windows, Linux, and
macOS, visit https://learn.microsoft.com/powershell. While the
SQLServer PowerShell module will install correctly on
PowerShell 7 on macOS and Linux, some of the cmdlets may
not work as expected due to underlying OS dependencies.

There are many PowerShell modules available that can be useful for
managing SQL Server. However, before installing these modules, you
should confirm that the modules come from a trusted source. You
should also test PowerShell, including modules, in a lower
environment so you can confirm that PowerShell will not negatively
affect your environment. In addition, you may want to discuss the use
of PowerShell and any specific modules with your internal security
team.

https://learn.microsoft.com/powershell/scripting/install/installing-windows-powershell
https://learn.microsoft.com/powershell


To install the latest version of the SQLServer module, use the following
code on an Internet-connected device, running the PowerShell
console or Visual Studio Code in administrator mode:
Click here to view code image

Install-Module -Name SQLServer -Force -AllowClobber

In the preceding script, we used a few handy parameters. Let’s
review them:

-Name. Specifies the unique name of the module you want.

-Force. Prevents you from having to answer Yes to confirm you
want to download.

-AllowClobber. Allows this module to overwrite cmdlet aliases
already in place. Without AllowClobber, the installation will fail if
it finds that the new module contains commands with the same
name as existing commands.

To find the current installed versions of the SQLServer PowerShell
module, as well as other SQL modules (including SQLPS), use the
following:
Click here to view code image

Get-Module -ListAvailable -Name "sql*" | Select-Object Name, 
Version, RootModule

To access the help information for any cmdlet, use the Get-Help
cmdlet. Here are some examples:
Click here to view code image

#Basic Reference 
Get-Help Invoke-SqlCmd 
#See actual examples of code use 
Get-Help Invoke-SqlCmd - Examples 
#All cmdlets that match a wildcard search 
Get-Help -Name "*Backup*database*"



Note that the # character begins a single-line comment in PowerShell
code. Alternatively, you can use <# and #> to enclose and declare a
multiline comment block.

Offline installation
To install the module on a server or workstation that is not Internet-
connected or cannot reach the PowerShell Gallery, go to a
workstation that can reach the PowerShell Gallery and has at least
Windows PowerShell 5.0 or PowerShell 7. Then, use the following
command to download the module, making sure to choose a folder
that exists on your machine.
Click here to view code image

Save-Module -Name SQLServer -LiteralPath "C:\temp\"

Next, copy the entire C:\temp\SqlServer\ folder to the machine that
cannot reach the PowerShell Gallery to a path that is in the list of
PSModule paths. The potential paths for modules list is stored in a
PSModulePath environment variable, which you can view in Windows
System Properties, or more easily with this PowerShell script:
Click here to view code image

$env:PSModulePath.replace(";","`n"")

The default folder for the module downloaded from the gallery would
likely be C:\Program Files\WindowsPowerShell\Modules on Windows,
or /usr/local/share/powershell/Modules on Linux. Verify that this path
is available or choose another PSModule folder, and then copy the
downloaded SQLServer folder there. The following script adds the
SQLServer module, and then shows a list of all available modules on
your workstation:

Import-Module SQLServer 
Get-Module

Note



When writing code for readability, we recommend you use the
actual cmdlet names. With PowerShell, there are many
shorthand and shortcuts possible, but you should try to write
easy-to-read code that is approachable and maintainable for the
next administrator.

Use PowerShell with SQL Server
PowerShell can interact with SQL Server instances all the way back
to SQL Server 2000 (with some limitations in earlier versions). This
book is not a good medium to demonstrate the full capability that
PowerShell can bring to your regular DBA tasks, nor should it try to
detail all the possibilities. Nonetheless, here are some selected,
representative, but simple examples.

Backup-SqlDatabase
Let’s learn about some more basics and syntax of PowerShell via the
Backup-SqlDatabase cmdlet. With this PowerShell cmdlet, you have
access to the same parameters as the T-SQL command BACKUP
DATABASE.

Again, use PowerShell’s built-in help files to see full syntax and
examples, many of which will be familiar to you if you have a good
understanding of the BACKUP DATABASE options.
Click here to view code image

Get-Help Backup-SqlDatabase -Examples

Here is an example of how to back up all databases on a local SQL
Server instance, providing the backup path, and including a subfolder
with the database’s name. If you are using a Windows computer, the
default execution policy is RemoteSigned. If you would like to verify
your execution policy before running the following script, you can run
Get-ExecutionPolicy. If your policy is not set to RemoteSigned, you
can run the following: Set-ExecutionPolicy -ExecutionPolicy



RemoteSigned -Scope LocalMachine. The script also adds the current
date and time to the name of the backup file:
Click here to view code image

#Backup all databases (except for tempdb) 
$instanceName = "localhost" #set instance to back up 
$path = "F:\Backup" 
Get-SqlDatabase -ServerInstance $instanceName | ` 
   Where-Object { $_.Name -ne 'tempdb' } | ` 
    ForEach-Object { 
    Backup-SqlDatabase -DatabaseObject $_ ` 
    -BackupAction "Database" ` 
    -CompressionOption On ` 
    -BackupFile "$($path)\$($_.Name)\$($_.Name)_$(` 
        Get-Date -Format "yyyyMMdd")_$(` 
        Get-Date -Format "HHmmss_FFFF").bak" ` 
    -Script #The -Script generates T-SQL, but does not 
execute 
}

Here are some notes about this script:

Adding the -Script parameter to this and many other cmdlets
outputs only the T-SQL code, split by GO batch separators; it
does not actually perform the operation.

The back tick, or grave accent (`) symbol (below the tilde on
most standard keyboards), is a line extension operator. Adding
the ` character to the end of a line gives you the ability to display
long commands, such as in the previous example, over multiple
lines.

The pipe character (|) is an important concept in PowerShell to
grasp. It passes the output of one cmdlet to the next. In the
previous script, the list of databases is passed as an array from
Get-SQLDatabase to Where-Object, which filters the array and
passes it to ForEach-Object, which loops through each value in
the array.

Remove-Item



Let’s learn some more about common PowerShell syntax parameters.
You can use the Remove-Item cmdlet to write your own retention
policy to delete old files, including backup files, stored locally.
Remember to coordinate the removal of old local backups with your
off-premises strategy that keeps backups safely in a different location.

In this script, we use the Get-ChildItem cmdlet to Recurse through a
subfolder, ignore folders, and select only files that are more than
$RetentionDays old and have a file extension in a list we provide:
Click here to view code image

$path = "F:\Backup\" 
$RetentionDays = 1 
$BackupFileExtensions = ".bak", ".trn", ".dif" 
Get-ChildItem -Path $path -Recurse | ` 
    Where-Object { !$_.PSIsContainer ` 
         -and $_.CreationTime -lt (get-
date).AddDays(-$RetentionDays) ` 
        -and ($_.Extension -In $BackupFileExtensions) ` 
         } | Remove-Item -WhatIf

Here are some notes about this script:

The $RetentionDays parameter is a positive value, but a
negative is added to it as part of the AddDays() method to
subtract the number of retention days from the current date
(specified with get-date).

The Get-ChildItem cmdlet gathers a list of objects from the
provided path, including files and folders. The -Recurse
parameter of Get-ChildItem causes the cmdlet to include
subfolders.

The $_ syntax is used to accept the data from the object before
the previous pipe character (|). In this example, the objects
discovered by Get-ChildItem are passed to the Where-Object,
which filters the objects and passes that data to Remove-Item.

Adding the -WhatIf parameter to this and many other cmdlets
does not actually perform the operation, but provides a verbose



summary of the action, instead. For example, rather than
deleting old backup files, this PowerShell script returns
something similar to the following sample:

Click here to view code image
What if: Performing the operation "Remove File" on target 
"F:\Backup\backup_ 
test_202202010200.bak".

Invoke-Sqlcmd
The Invoke-Sqlcmd cmdlet can run T-SQL commands, including on
remote SQL Server instances and Azure SQL databases. Invoke-
Sqlcmd can run batch file scripts that used to be run by sqlcmd. Use
Invoke-Sqlcmd when no cmdlet exists to return the same data for
which you’re already looking. In this script, we connect to a database
in Azure SQL Database and run a query to see current sessions:
Click here to view code image

$instanceName = "azure-databasename.database.windows.net" 
Invoke-Sqlcmd -Database master -ServerInstance $instanceName 
` 
-Query "select * from sys.dm_exec_sessions" | ` 
Format-Table | Out-File -FilePath "C:\Temp\Sessions.txt" -
Append

Note
If you see the error message “Could not load file or assembly
‘Microsoft.SqlServer.BatchParser’,” find step-by-step
instructions to resolve it at
https://social.technet.microsoft.com/wiki/contents/articles/35832
.sql-server-troubleshooting-could-not-load-file-or-assembly-
microsoft-sqlserver-batchparser.aspx.

Here are some notes about this script:

https://social.technet.microsoft.com/wiki/contents/articles/35832.sql-server-troubleshooting-could-not-load-file-or-assembly-microsoft-sqlserver-batchparser.aspx


The Invoke-SqlCmd cmdlet uses Windows Authentication by
default. Notice that we passed no authentication information at
all. You can also provide the UserName and Password parameters
to the Invoke-SqlCmd to connect via SQL Authentication to SQL
Server instances, though this is not recommended unless you
are on a secure connection. There is also the option to connect
to Azure SQL Database or Azure SQL Managed Instance using
an access token or a service principal.

The | Format-Table cmdlet has a big impact on the readability
of script output. Without Format-Table, the script returns a long
list of column names and row values. The Format-Table output
does not include all columns by default, but returns a wide line
of column headers and row values, similar to how SSMS returns
results in Text mode.

The | Out-File cmdlet dumps the output to a text file instead of
to the PowerShell console, creating the script if needed. The -
Append parameter adds the text to the bottom of an existing file.

The Out-File can be handy for archival purposes, but for
viewing live rowsets—especially SQL Server command results
—try using the Out-GridView cmdlet instead (Windows-only). It
provides a full-featured grid dialog box with re-sortable and
filterable columns, and so on. Out-GridView is used instead in
the following sample:

Click here to view code image
$instanceName = "localhost" 
Invoke-Sqlcmd -Database master -ServerInstance 
$instanceName ` 
-Query "select * from sys.dm_exec_sessions" | ` 
Out-GridView

Inside OUT



What happened to my cursor in Visual Studio Code when
running PowerShell?

Unlike SSMS, running a script in PowerShell moves the
cursor to the PowerShell terminal pane (which is not actually a
Results window, but a live terminal window) by default. This
means you need to move your cursor back up to the script
pane after each run to continue to edit your PowerShell code.

You can change this behavior in Visual Studio Code. Open the
File menu, select Preferences, and choose Settings, or
press Ctrl+, (comma), to open the Visual Studio Code User
Settings dialog box. Then, on the right side, provide the
following code to override the Default Setting option:

Click here to view code image

"powershell.integratedConsole.focusConsoleOnExecute": 
false

If you have installed the PowerShell extension in Azure Data
Studio, you can update this value by going to Settings >
Extensions > PowerShell Configuration, and deselecting
the Integrated Console: Focus Console On Execute check
box.

No restart is necessary. Now the cursor will remain in the
scripting pane after running a PowerShell command.

Use PowerShell with availability groups
You can script the creation and administration of availability groups
and automate them with PowerShell instead of using SSMS
commands or wizards. If you work in an environment in which
creating, managing, or failing over availability groups is a repeated
process, you should invest time in automating and standardizing
these activities with PowerShell.



Following are some code samples to help you along the way, starting
with the very beginning. Suppose a new group of servers has been
created for availability groups, and you need to add the Failover
Clustering feature to each server. This could be time consuming and
click-heavy in a remote desktop session to each server. Instead,
consider the following script in which we quickly deploy the failover
clustering feature and tools on four servers (you can parameterize the
computer names as you require):
Click here to view code image

Invoke-Command -Script {Install-WindowsFeature -Name 
"Failover-Clustering" } ` 
   -ComputerName SQLDEV11, SQLDEV12, SQLDEV14, SQLDEV15 
Invoke-Command -Script {Install-WindowsFeature -Name "RSAT-
Clustering-Mgmt" } ` 
   -ComputerName SQLDEV11, SQLDEV12, SQLDEV14, SQLDEV15 
Invoke-Command -Script {Install-WindowsFeature -Name "RSAT-
Clustering-PowerShell" } ` 
    -ComputerName SQLDEV11, SQLDEV12, SQLDEV14, SQLDEV15

 For more about enabling and configuring availability groups,
see Chapter 11.

Inside OUT
Why is Invoke- not working correctly across remote
machines?

You should verify that the same module and versions are
installed on any machines to which you will be issuing
commands remotely. You can also install the modules via
Invoke-Command, as well:

Click here to view code image

#Local server 
  Install-Module -Name SQLServer -Force -AllowClobber 
    Import-Module -Name SQLServer 



#Remote Server 
Invoke-Command -scriptblock { 
    Install-Module -Name SQLServer -Force -AllowClobber 
     Import-Module -Name SQLServer 
 } -ComputerName "SQLSERVER-1"

Let’s fast-forward to an in-place availability group, with two replicas
set to asynchronous synchronization. A planned failover is coming
up, and you need to automate the script as much as possible. Start
with the sample script in the accompanying downloads, which
accomplishes these goals:

Sets asynchronous replicas to synchronous and waits so we can
perform a planned failover with no data loss

Performs availability group failover

Sets replicas back to asynchronous

Here are a few notes about the script:

We need to do some character trickery to pass in a named
instance in the SMO path for the availability group, providing %5C
for the backslash (\) in the replica name, SQLSERVER-0\SQL2022.
The need here is rare, albeit frustrating.

We see another control structure, Do ... Until. In this case,
we’re waiting until the RollupSynchronizationState of the
availability group has changed from Synchronizing to
Synchronized, indicating that the synchronization has changed
from asynchronous to synchronous.

After the replica is set to synchronous, the failover can occur
without data loss, without being forced. In an emergency, in
which the primary server SQLSERVER-0 is offline, we could
skip the steps where we change the synchronization and
proceed straight to the most important cmdlet in the script:



Switch-SqlAvailabilityGroup. Except in a forced failover, for
which data loss is possible, we must specify the -AllowDataLoss
and -Force parameters.

You must run this entire script from the primary node, as it is
currently written. A hint of how you could customize the script to
be run from anywhere lies in the Invoke-Command cmdlet, where
we connect to the original secondary replica (now the primary
replica) and set the synchronization from asynchronous back to
synchronous.



Chapter 10

Develop, deploy, and
manage data recovery

Prepare for data recovery
Ransomware attacks
Understand different types of backups
Understand backup devices
Create and verify backups
Restore a database
Define a recovery strategy

The first and foremost responsibility of a production DBA is to ensure
that a database can be recovered in the event of a disaster. This
chapter outlines the fundamentals of data recovery and SQL Server
recovery models. Then, it covers backup devices in SQL Server
before discussing the different types of backups. Next, it shows you
how to create and verify database backups, and how to restore
databases from those backups. This chapter ends with a discussion
of defining a recovery strategy based on a fictitious scenario.

Note



As discussed in Chapter 2, “Introduction to database server
components,” a disaster is any unplanned event caused by, but
not limited to, natural disaster, hardware or software failure,
malicious activity, or human error. Quite a few adverse events
and disasters are caused by human error.

This chapter does not provide any guidance for fixing a corrupt
database; Microsoft recommends restoring from a last-known good
database backup if you experience corruption. Instead, as mentioned,
this chapter focuses on database backups and restores. The next
chapter, Chapter 11, “Implement high availability and disaster
recovery,” covers how to achieve high availability and use SQL
Server disaster recovery features to keep your environment running
even in the face of disaster. After reading this chapter and the one
that follows, you will understand how to achieve close to zero data
loss with minimal downtime.

 You can read more about data corruption in Chapter 8,
“Maintain and monitor SQL Server.”

You don’t design a backup strategy; you design a recovery strategy.
You must allow for potential downtime and data loss, within
acceptable limits. These are defined by the business requirements for
getting an environment back up and running after a disaster.

Technical solutions such as those for high availability (HA) and
disaster recovery (DR) are available in Microsoft SQL Server to
support these organizational requirements. In other words, business
requirements define the approach you will take in your organization to
plan for and survive a disaster.

We should also point out that this is only a small but important part of
a larger business continuity plan (BCP). A BCP is designed to enable
ongoing business operations while the DR plan is executed. A BCP
defines the critical business functions and processes that might be
supported by your SQL Server environment and how these functions
will continue after disaster strikes.



 The US federal government provides guidance and tools for
developing a BCP at https://www.ready.gov/business-
continuity-plan.

Note
This chapter makes several references to Chapter 3, “Design
and implement an on-premises database infrastructure”—
particularly in the context of transaction log files, virtual log files
(VLFs), and log sequence numbers (LSNs). If you have not yet
read that chapter, we highly recommend that you do so before
reading any further here.

This chapter includes recovery strategies for hybrid and cloud
environments, but the sections on backup devices, types of backups,
and creating and restoring backups apply to on-premises
environments only. For SQL Server virtual machines in Azure, see
Chapter 16, “Design and implement hybrid and Azure database
infrastructure.”

There is an old saying among seasoned DBAs that a DBA is only as
good as their last backup and will only keep their job if they tested it.
This should serve as a reminder that backups are important, but just
as important (if not more so) is testing those backups.

Prepare for data recovery
Designing a recovery strategy that achieves zero data loss with zero
downtime is incredibly expensive and almost impossible. Ultimately,
recovery is a balance between budget, acceptable downtime, and
acceptable data loss.

Note
Emotions run high when systems are down, so it is incumbent
on all organizations to define possible outcomes at the outset

https://www.ready.gov/business-continuity-plan


and how to deal with them. Meanwhile, runbooks and practice
help keep heads cool when dealing with a stressful outage.

The governance of these requirements is outlined in a Service-Level
Agreement (SLA). An SLA is a business document that specifies
measurable commitments you make to the business related to
availability and recovery objectives in case of a failure. Included in the
SLA is the Recovery Point Objective (RPO) and Recovery Time
Objective (RTO). The RPO expresses the amount of work that may
be lost, in units of time such as minutes, when the service is returned
to normal operation. The RTO expresses the amount of time that the
service may be unavailable in case of a failure or disaster. The SLA
might also include consequences and penalties (financial or
otherwise) if you do not meet these timelines. Although you use
technical solutions to satisfy these requirements, it is important to
remember that your recovery strategy should be the best fit for the
organization’s business needs.

 For more information about achieving HA, read Chapter 11.

A disaster recovery scenario
Let’s paint a picture of a disaster recovery scenario. This scenario
spirals out of control pretty fast, so buckle up.

Imagine it’s 4:57 p.m. on a beautiful, sunny Friday afternoon. Just as
you are about to head home for the weekend, disaster strikes: The
electricity goes out for the entire city block where your office is
located, and the uninterruptible power supply (UPS) in the server
room has been removed for repairs. You haven’t rehearsed this
scenario, because no one ever thought the UPS would be removed
for maintenance for an extended period.

Your transaction log backups run every 15 minutes, because that’s
what the RPO stipulates. Also, you have a batch script in the
Windows Task Scheduler that copies your files remotely, so your logs
have been copied safely offsite. Or have they?



Suddenly you have a sinking feeling in the pit of your stomach about
a warning you saw in your email this morning while you were on the
phone with a colleague, which you accidentally deleted, and which,
thanks to that annoying muscle-memory habit you have of emptying
deleted items whenever you see them, is gone forever.

Your phone squawks to inform you it has 2 percent battery remaining.
Your laptop has some charge, but not much, because you were
planning to charge it when you got home. Still, you crack open your
laptop to check whether you can somehow undelete that email. Oh,
right, your Internet is down.

Your phone rings. It’s the vice president of marketing, who is away
this week at a conference. He wants to check the sales figures for a
report the board is putting together for an important meeting this
evening. The pressure is on! As the VP—who, by the way, doesn’t
care about power failures because the company spent thousands of
dollars on that UPS—asks when he can access those figures, your
phone dies.

You decide to charge your phone off the laptop. That way, you can
also use the tethered cellular connection to log into the DR site. But
the signal in this area is weak, so you must move to the window on
the other side of the office. As you stand up to move, your laptop
decides that it’s time to install operating system updates, because it’s
now after 5 p.m. Eventually, though, the laptop cancels the updates,
because there’s no Internet access.

You move to the new location, where the signal is stronger. After an
agonizing few minutes, your phone finally starts. Finally! You connect
to your offsite datacenter through a Remote Desktop Protocol (RDP)
session. It takes three attempts, though, because you had forgotten
that RDP to this server works only with the administrator user
account.

The SQL Server instance has its own service account, so you must
download and use psexec to run SQL Server Management Studio
(SSMS) as that service account in interactive mode. First, though,
you must change a registry entry to allow that user to use interactive



login. You check the backup folder. The latest log file is from 4:30
p.m. Great.

That means the 4:45 p.m. backup didn’t copy over. Oh, it’s because
the drive is full. That must have been what the email warning was
about.

After clearing out some files that another colleague had put on the
drive temporarily, you write the script you’ve been meaning to write to
restore the database because you didn’t have time to set up log
shipping.

You export the backup directory listing to a text file and begin looking
for the latest full backup, differential backup, and transaction log
backup files. But now you see that the last differential backup doesn’t
make sense, because the size is all wrong.

You remember that one of your developers made a full backup of the
production database on Monday evening, but didn’t use the
COPY_ONLY option, and you don’t have access to that file. The latest
differential file is useless. You must start from Sunday’s full backup
file, and then use Monday afternoon’s differential backup and all
transaction log files since then. That’s more than 400 files to restore.

Eventually, with a bit of luck and text manipulation, you begin running
the restore script. One particular log file takes a very long time. In
your panicked state, you wonder whether it has somehow become
stuck. After a minute or two of clicking around, you realize SQL
Server had to grow the transaction log of the restored database
because it was replaying that annoying index rebuild script that failed
on Tuesday morning and needed to roll back.

Finally, at 6:33 p.m., your offsite database is up and running with the
latest database backups, up to and including the one from 4:30 p.m.
Just then, the lights come back on in the office. The power failure that
affected the block where your office is has been resolved.

You need to do a full DBCC CHECKDB of the production server as soon
as it starts, but it takes hours because the server is five years old and
was installed with ECC RAM (which is useful but causes longer



bootup times). This will push you out of the two-hour RTO that you
and your boss agreed to, so you go with a failover approach.

You update the connection settings in the application to point to the
offsite datacenter. Just then, your phone dies once more, but at least
the office has power to charge everything again. You send the VP an
email to say the reports should be working. Your cellular data bill is
coming out of the expenses for his trip, you tell yourself as you pack
up to go home.

As you walk to the bus stop, it occurs to you that the files you cleared
out to free up drive space probably included the full database backup
created by the developer from Monday night, and that you might have
saved some time by checking them first.

Define acceptable data loss: RPO
When disaster strikes, you might lose a single byte in a single row in
a single 8-KB data page due to memory or drive corruption. How do
you recover from that corruption? Worse, what happens if you lose an
entire volume or drive, the storage array, or even the entire building?

The RPO should answer the question, “How much data are you
prepared to lose?” The RPO is usually measured in seconds or
minutes. Your job is to deliver a technical implementation that meets
this objective, perhaps by ensuring there is less time between the last
known good backup and the moment of the point of failure. To
achieve this, you must consider whether your backups are being
done correctly, regularly, and copied offsite securely and in a timely
manner.

In the nightmarish scenario we just laid out, the organization decided
that losing 15 minutes’ worth of data was acceptable, but ultimately
data changes over 27 minutes were lost. This is because the drive on
the server at the DR site was full, and the most recent backup did not
copy over. To satisfy a 15-minute window, the transaction log backups
would need to be created more frequently, as would the offsite copy.
Ideally, backups are copied offsite immediately after they are taken.



If the organization requires zero data loss, the budget must
significantly increase to ensure that whatever unplanned event
occurs, SQL Server’s memory and transaction log remains online,
and that all backups are working and being securely copied offsite as
soon as possible.

Inside OUT
Why is the RPO measured in time, and not drive usage?

Transactions vary in size, but time is constant.

Chapter 3 looked at how every transaction is assigned an
LSN to keep track of things in the active portion of the
transaction log. Each new LSN is greater than the previous
one. (This is where the word sequence comes into play.)

The RPO refers to the most recent point in time in the
transaction log history to which you will restore the database,
based on the most recently committed LSN at that specific
moment in time, or the latest LSN in the log backup,
whichever satisfies the organization’s RPO.

Define acceptable downtime: RTO
Time is money. Every minute an organization is unable to work has a
cost, and lost productivity adds up quickly. The RTO is the amount of
time by which you need to have everything up and running again after
a disaster. You might orchestrate a failover to your DR site in another
building, or a manual failover using log shipping. The RTO is usually
measured in hours.

In our disaster scenario, the RTO was two hours. Our intrepid but
woefully unprepared and accident-prone DBA barely made it. A few
factors acted against the plan (if it could be called a plan).



For an organization to require zero downtime, the budget is
exponentially increased. This is where a combination of HA and DR
technologies combine to support the requirements.

Note
Different types of adverse events may have different RPOs and
RTOs. A failure of a single drive in the enterprise SAN shouldn’t
come with any data loss or downtime. A power failure in a
branch office might result in downtime, but no data loss. The
loss of an entire facility due to an unforeseen natural disaster
may require the organization to accept both data loss and
downtime.
Different applications may have different RTOs as well. The e-
commerce system might have a dramatically smaller RTO than
the business travel expense tracking system. Regardless,
application leadership should be aware of the RTO and RPO
their budget is buying.

Establish and use a runbook
When panic sets in, you need a clear set of instructions to follow, just
like our deer-in-the-headlights DBA in our fictional scenario. This set
of instructions is called a runbook.

The runbook is one of many documents that make up a DR plan. It is
part of the BCP. It covers the steps necessary for someone (including
your future self) to bring the databases and supporting services back
online after a disaster. In an eventuality in which you or your team
members become incapacitated, the document should be accessible
and understandable to another DBA who has appropriate access, but
doesn’t have intimate knowledge of the environment.

From our example scenario, issues like the RDP user account not
being able to log in to SSMS, downloading the requisite tools,
knowing to skip an out-of-band differential backup, and so on would



not be immediately obvious to many people. Even the most
experienced DBA in a panic will struggle with thinking clearly.

The level of detail in a runbook is defined by the complexity of the
systems that need recovery and the time available to bring them back
again. Your organization might be satisfied with a simple Microsoft
Excel spreadsheet containing configurations for a few business-
critical systems. Or it might need something more in-depth, complete
with screenshots, links to vendor documentation and downloads, and
expected outcomes at each step. In either case, the runbook should
be updated as the system changes and stored in a version control
system (which itself should be backed up properly). It is not
unreasonable to have a paper copy, too, as you may not have access
to all drives in the case of multiple outages or if you have to walk
someone else through the process over the phone in the remote DR
location.

The rest of this chapter describes how SQL Server provides backup
and restore features to help you develop a recovery strategy that is
most appropriate for your environment, so that when your
organization wants to produce a BCP, you have sufficient knowledge
to guide an appropriate and achievable technical response.

Most important, you must be able to rehearse a DR plan. The
runbook won’t be perfect, and rehearsing scenarios will help you
produce better documentation. That way, when disaster does strike,
even the most panicked individual will be able to figure things out.
Many organizations schedule regular walk-throughs and practice
scenarios for DR. Some even perform a failover from one datacenter
to another each month to rehearse their failover automation. When it
is important to your business, you must train for it like an athlete.
Financial organizations might check backups daily, perform system
checks monthly, conduct walk-throughs of the DR plan quarterly, and
perform full system failover annually.

Ransomware attacks



Ransomware is a kind of malware designed to deny a user or
organization access to files on their computer by encrypting them and
demanding a ransom payment to unencrypt them. Unfortunately, not
only do businesses have no guarantee the criminals will unencrypt
the files after the ransom is paid, but those same criminals might do it
again, or the files might not be usable or not in a fully usable state.

While organization leadership might feel that it will never happen to
them, the reality is it can and does happen to everyone. In a 2020
survey of 600 US companies, 68 percent said they had experienced a
ransomware attack and paid the ransom. Another 10 percent said
they were infected but did not pay any money, while only 22 percent
were never infected at all.

 For more information about this survey, visit
https://www.statista.com/statistics/701282/ransomware-
experience-of-companies.

Microsoft issues an annual Digital Defense Report. It is an interesting
if not unnerving read. One of the things to learn from the report is that
novel or zero-day vulnerabilities are not required to successfully
attack your infrastructure. “Most methods still rely on unpatched edge
applications, lateral movement via connected drives, and weak
credentials on available services” (Microsoft Digital Defense Report
2021, October 2021,
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWMFIi).
The report also emphasizes that prompt patching is still a critical
activity: “Identification and rapid exploitation of unpatched
vulnerabilities has become a key tactic. Rapid deployment of security
updates is key to defense” (Microsoft Digital Defense Report 2022,
November 2022,
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv).

Obviously, cybersecurity is not just a data platform topic, but
databases are a prize target for ransomware and data exfiltration
attacks. As noted in the report, “Maintaining a strong baseline of IT
security hygiene through prioritized patching, enabling anti-tamper
features, using attack surface management tools like RiskIQ to get an

https://www.statista.com/statistics/701282/ransomware-experience-of-companies
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RWMFIi
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv


outside-in view of an attack surface, and enabling multifactor
authentication across the full enterprise have become baseline
fundamentals to proactively defend against many sophisticated
actors” (Microsoft Digital Defense Report 2022, November 2022,
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv).
RiskIQ’s suite of cybersecurity tools was acquired by Microsoft in
2021, and is now called Microsoft Defender Threat Intelligence and
Microsoft Defender External Attack Surface Management.

Perpetrators are referred to as bad actors. They also get inside
systems in similar ways to malware and viruses: by using social
engineering techniques or bribery via unwitting or coerced insider
threats. (We discuss password hashing in Chapter 13, “Protect data
through classification, encryption, and auditing.”)

Once a bad actor gains access to an organization’s network, they
begin encrypting data, which causes applications to crash and go
offline. A ransom is requested, often in a cryptocurrency that is
impossible to trace; when the ransom is paid, the data is unencrypted
. . . maybe.

Many organizations protect their assets by categorizing their risks
and by having security teams assess the threats and methodologies
attackers use. They manage cybersecurity with a focus on detection-
based defenses like firewalls and antimalware software. But the
reality is, there is no perfect ransomware protection, only resilient
recovery. The best response to a ransomware attack is a solid
strategy to restore your data with very little downtime.

How do you restore if your data has been encrypted? This is where
resilient backups—ones that a bad actor with administrative
credentials cannot corrupt—is critical. A trusted immutable backup is
needed. It is the key item to your recovery, and what all software and
hardware vendors have in common.

Note

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE5bUvv


An immutable backup is a way of protecting data that ensures
the data is fixed, unchangeable, and can never be deleted,
encrypted, or modified.

Any backup is only a good backup if it is usable. You must be able to
restore it and make sure it is not corrupt. Some software vendors do
this automatically, but you should not rely on them. If you are a DBA,
your first and most important responsibility is to be able to restore a
database, with no data loss, within the RTO window.

Immutable copies do not just protect against ransomware attacks.
They also protect against accidental deletion and other human errors.
Before ransomware attacks became a widespread issue,
organizations would restore less than 10 percent of their backed-up
production data over the course of a year. That is now changing,
making it even more vital to ensure data is valid, correct, and
accessible.

 See the section “Availability and security of backup media”
later in this chapter for more information.

Understand different types of backups
There are three different backup types:

Full

Differential

Transaction log

To recover a database, you need at least a full database backup.
Differential backups are optional. They only include the data pages
that have changed since the last full backup. Differential backups can
reduce the amount of time required to restore a database.
Transaction log backups are incremental backups that enable point-



in-time restores. We talk more about each of these backup types in
the subsections that follow.

In Enterprise edition, you can also create file-level and filegroup-level
backups (known as partial backups) to allow a more controlled
procedure when restoring. This is especially useful for very large
databases (VLDBs).

 You can read more about the files that make up a SQL Server
database in Chapter 3.

A key part of understanding backups and their ability to restore is
understanding recovery models. After these introductory paragraphs,
we discuss recovery models first. The backup types, along with
partial database backups and backup options, are covered afterward.

Inside OUT
How large is a VLDB?

Opinions differ as to what constitutes a VLDB, based on
individual experience and available hardware resources (such
as memory and drive space).

For the purposes of this chapter, any database that exceeds
100 GB is considered a VLDB. Although modern solid-state
storage arrays do mitigate many of the challenges facing
databases of this size, they are not cost-effective for all
environments. You can read more about solid-state storage,
and storage arrays, in Chapter 2.

Regardless of the type of backup, it will always contain the active
portion of the transaction log, including relevant LSNs. This ensures
full transactional consistency when the backup is restored.



Every SQL Server native backup also contains a header and a
payload. The header describes the backup device, what type of
backup it is, backup start and stop information (including LSN
information), and information about the database files. The payload is
the content of the data or transaction log files in the backup. If
transparent data encryption (TDE) or backup encryption was enabled,
the payload is encrypted.

 You can read more about TDE in Chapter 13.

An overview of SQL Server recovery models
A key part of understanding backups and their ability to restore is
grasping recovery models. In SQL Server, a database’s recovery
model determines how the transaction log is maintained, which
affects your options for backups and restores. SQL Server supports
three recovery models:

Full. With this model, transactions are logged and kept at least
until the transaction log has been backed up. This model allows
a full point-in-time recovery. In this model, full, transaction log,
and differential can be created. (We talk more about these three
types of backups shortly.) The transaction log must be regularly
backed up to avoid continuous growth. All database changes
are fully logged and can be replayed.

Bulk-logged. This model reduces the amount of transaction log
used for certain bulk operations. SQL Server only logs what the
Database Engine needs to undo the bulk operation, but the bulk
operation cannot be replayed. Non-bulk operations are logged
and maintained as in the full recovery model. This model can
allow a point-in-time recovery only if no bulk-logged operations
are in that portion of the transaction log backup. Full, transaction
log, and differential backups can be created. Here too, the
transaction log must be backed up to avoid continuous growth.

Simple. Transactions are logged only until they are committed
to the data file(s) on disk. Only full and differential backups can



be created.

These models provide a high level of control over the types of
backups, and thus restore options, available to your databases. We
talk more about each of these models in the subsections that follow.

Note
These are called recovery models. If you see the term recovery
mode, it is incorrect.

You can change the recovery model of a database in SSMS in Object
Explorer, or by using the following Transact-SQL (T-SQL) statement
and choosing the appropriate option in the square brackets:
Click here to view code image

ALTER DATABASE <dbname> SET RECOVERY [ FULL | BULK_LOGGED | 
SIMPLE ];

Full recovery model
For databases that require point-in-time recovery—which is the case
for most business-critical systems—we recommend the full recovery
model. The recovery model for new databases is based on the
recovery model for the model database. By default, the model
database is in the full recovery model.

In this recovery model, after the first full backup takes place, the
virtual log files in the transaction log remain active and are not
cleared until a transaction log backup writes these log records to a
log backup. Only then will the log be truncated (cleared). Keep in
mind that a truncated log file does not return unused space to the
operating system.

Assuming you implement a process to ensure that these backups are
securely copied offsite as soon as they are created, and that you
regularly test these backups, you can use them to restore your



database in the event of a disaster. Provided the right circumstances
are in play, you might even be able to create a tail-log backup to
achieve zero data loss if that data has been committed and made
durable.

 Tail-log backups are defined in the “Transaction log backups”
section later in this chapter.

 You can read more about durability, including delayed
durability, in Chapter 2.

Bulk-logged recovery model
With the bulk-logged recovery model, typical commands are logged
as they are in the full recovery model, but bulk operations are
minimally logged. This reduces the size of the transaction log records
and subsequent log backups. The downside is that this model
eliminates the option of replaying certain operations from a
transaction log backup, including BULK INSERT, INSERT … SELECT,
SELECT … INTO (all using the TABLOCK hint), and BCP operations.
Certain indexing operations are also minimally logged. This affects
your ability to restore a database to a point in time if that time is
included in a transaction log backup that includes bulk-logged
operations.

 For more details, see https://learn.microsoft.com/sql/relational-
databases/logs/the-transaction-log-sql-
server#MinimallyLogged.

Note
Minimal logging is not supported for memory-optimized tables.

There is a way to achieve near-point-in-time recovery. This allows a
more flexible recovery strategy than the simple recovery model (more
on this in the next section), without generating large transaction logs
for bulk operations. For example, suppose you want to use the bulk-

https://learn.microsoft.com/sql/relational-databases/logs/the-transaction-log-sql-server#MinimallyLogged


logged recovery model to perform minimally logged operations,
without breaking the log backup chain. Here’s how it works:

Note
Your database must be in the full recovery model before the
bulk-logged operation is performed.

1. You create a transaction log backup. (Again, we talk about these
momentarily.)

2. You switch to the bulk-logged recovery model and perform the
bulk-logged operations.

3. You immediately switch the database back to the full recovery
model.

4. You back up the log again.

This process ensures that the backup chain remains unbroken and
allows point-in-time recovery to any point before or after the bulk-
logged operation. The Microsoft Docs on this subject note that the
bulk-logged recovery model is intended specifically for this scenario
to temporarily replace the full recovery model during bulk operations.

Simple recovery model
Databases in the simple recovery model can be restored only to the
point in time when the backups were completed. Point-in-time
recovery is not supported. After a transaction in the simple recovery
model is committed or rolled back, a checkpoint is implicitly issued,
which truncates (clears) the log.

Databases that use the simple recovery model can use full and
differential backups. This recovery model is better suited to
development databases, databases that change infrequently, and
databases that can be rebuilt from other sources.



Full backups
A full database backup is a transactionally consistent copy of the
entire database. The payload of this type of backup includes every 8-
KB data page in every database file in all filegroups, FILESTREAM
and memory-optimized files, and the portion of the transaction log
that is necessary to roll forward or roll back transactions that
overlapped with the backup window.

 You can read more about the active portion of the transaction
log in Chapter 3.

You can perform full backups on databases in all recovery models,
and you can compress them. Since SQL Server 2016, you can also
compress databases encrypted with TDE.

With a minimal amount of T-SQL code, you can perform a full backup
to a backup disk target. For example, you can use the following code
to back up the WideWorldImporters sample database on a default
instance with a machine called SERVER to a local drive (the drive path
must exist):
Click here to view code image

BACKUP DATABASE WideWorldImporters 
TO DISK = 
N'C:\SQLData\Backup\SERVER_WWI_FULL_20221218_210912.BAK'; 
GO

Transaction log backups
Transaction log backups are incremental backups of a database. In
the full recovery model, all transactions are fully logged. This means
you can bring a database back to a point in time on or before that
transaction log backup was created, provided the restore is
successful. These backups allow for a recovery to any moment in
time in the sequence (in other words, the backup chain—more on that
in a moment).



In a transaction log backup, the active portion of the transaction log is
backed up. Transaction log backups apply only to databases in the
full and bulk-logged recovery models. Databases in the full recovery
model can be restored to a point in time, whereas databases in the
bulk-logged recovery model can be restored to a point in time if the
transaction log does not contain bulk-logged operations. The
transaction log does not contain the information necessary to replay
bulk operations in the bulk-logged recovery model.

Inside OUT
What is a tail-log backup?

A tail-log, or tail-of-the-log, backup is fundamentally the same
thing as an ordinary transaction log backup. The difference is
in the circumstances in which you would perform this kind of
log backup.

When performing a tail-log backup, you might need to use the
NO_TRUNCATE clause on the BACKUP statement if the database is
damaged. The NO_TRUNCATE clause allows the transaction log
to be backed up, even if only the transaction log file is
accessible and undamaged. Thus, even if the database is
inaccessible or damaged, the committed transactions can be
backed up.

In a disaster scenario, the automation for performing
transaction log backups might be offline, or your backup drive
might not be available. Any time you need to manually
perform a transaction log backup to ensure the remaining
transactions in the log are safely stored somewhere after a
failure has occurred, it is considered a tail-log backup.
Performing a tail-log backup that you can restore properly
later is how you can achieve zero data loss following some
adverse events.



 You can read more about tail-log backups at
https://learn.microsoft.com/sql/relational-
databases/backup-restore/back-up-the-transaction-log-
when-the-database-is-damaged-sql-server.

Differential backups
A differential backup is a convenience feature to reduce the number
of transaction log backups (and time) required to restore a database
to a point in time. A differential backup is always based on the last full
database backup that wasn’t taken with the COPY_ONLY option.
Differential backups contain all changed extents, FILESTREAM files,
and memory-optimized data files since the last full backup. They
cannot be restored on their own. To restore a database using a
differential backup, you need that differential backup’s base full
backup.

In many cases, a differential backup is much smaller than a full
backup. This allows for a more flexible backup schedule. You can
take a full backup less frequently and take the differential backups
more regularly, taking up less space than full backups would.

Think back to Chapter 3, where we looked at extents. As a reminder,
an extent is a 64-KB segment in the data file comprising a group of
eight physically contiguous 8-KB data pages. After a default full
backup completes (without the copy-only option, which we cover
later), the differential bitmap is cleared. All subsequent changes in the
database, at the extent level, are recorded in the differential bitmap.
When the differential backup runs, it looks at the differential bitmap
and backs up only the extents that have been modified since the full
backup, along with the active portion of the transaction log. This is
quite different from a transaction log backup, which records every
change in the database, even if the change is made repeatedly to the
same rows in the same tables. Thus, a differential backup is not the
same thing as an incremental backup.

https://learn.microsoft.com/sql/relational-databases/backup-restore/back-up-the-transaction-log-when-the-database-is-damaged-sql-server


Even though you cannot restore a database to a point in time (or
LSN) that occurs within the differential backup itself, differential
backups can vastly reduce the number of transaction log files
required to effect those same changes.

Differential backups apply to databases in the full, bulk-logged, and
simple recovery models.

Caution
If a full backup is taken out-of-band without the COPY_ONLY
option, this will affect subsequent differential backups. In that
case, you will be restricted to using transaction log backups
exclusively to restore the backup chain. If you want to create a
full backup of a database without affecting the differential
backup schedule, always use the COPY_ONLY option. The copy-
only backup mechanism is covered later in this chapter.

Inside OUT
What do you do if your differential backup is larger than
your full backup?

Differential backups grow larger as the number of changed
extents in the database increases. So, a differential backup
could end up being larger than a full backup over time.

This is possible in situations in which every extent is modified
in some way—for example, if all the indexes in the database
are rebuilt. In this case, the differential backup will be the
same size as a full backup. When it then adds the active
portion of the log, you end up with a differential backup that is
larger than the full backup.

SQL Server 2017 and later versions provide a column called
modified_extent_page_count in the dynamic management



view (DMV) sys.dm_db_file_space_usage to let you know how
large a differential backup will be. A good rule of thumb is to
take a full backup if the differential backup approaches 80
percent of the size of a full backup.

 You can read more about differential backups at
https://learn.microsoft.com/sql/relational-databases/backup-
restore/differential-backups-sql-server.

The backup chain
A backup chain starts with a full backup, followed by a series of
differential and/or transaction-log backups. You can combine these
into a recovery sequence to restore a database to a particular point in
time after the full backup or to the time of the latest backup,
whichever is required. Databases in the full recovery model can be
restored to a point in time because transactions are fully logged in
that recovery model.

Note
You can also restore a database in the bulk-logged recovery
model to a point in time, provided the transaction log backup
does not contain bulk-logged operations up to that point in time.

Figure 10-1 illustrates a backup chain that starts with a full backup,
which contains the most recent LSN of the active portion of the
transaction log at the time that backup finished, followed by multiple
transaction log backups and differential backups based on that full
backup.

https://learn.microsoft.com/sql/relational-databases/backup-restore/differential-backups-sql-server


Figure 10-1 A backup chain.

You can use a combination of the most recent differential backup
(which must be based on that same full backup) and any additional
transaction log backups to produce a point-in-time recovery. If you do
not have a differential backup, or if the point in time you want to
restore to is before the end of the differential backup, you must use
transaction log backups. Either option will work, provided the LSNs
required in the sequence are contained in each of those backups.

Until you run the very first full backup on a database using the full or
bulk-logged recovery model, the database is pseudo-simple—that is,
it behaves as though it is in the simple recovery model. Active
portions of the log are cleared whenever a database checkpoint is
issued, and the transaction log remains at a reasonably stable size
unless a large transaction causes it to grow. This may seem
unexpected, but there’s no need to keep a transaction log that can’t
be restored.

Remember: A database restore always begins with a full backup
(piecemeal restores are an uncommon exception and discussed later
in this chapter). Until there is a full backup, there’s no need for
historic transactions to be kept. Conversely, once the first full backup
is created, less-experienced DBAs can be taken by surprise by the
sudden and seemingly uncontrolled growth of the transaction log.

We recommend that you configure appropriate maintenance plans
(including transaction log backups and monitoring) immediately after
you create a new database. It is also a good idea to continue taking
log backups even while a full backup is in progress. These log



backups will ensure the backup chain is preserved even if the full
backup fails or is cancelled.

Note
Backup chains can survive database migrations and upgrades,
as long as the LSNs remain intact. This is what makes certain
HA features possible in SQL Server.

Inside OUT
How long can the backup chain be?

Provided you have an unbroken backup chain for which the
LSNs are all intact, you can potentially have many thousands
of log backups stretching back over months or even years.
You can apply these backups, along with the full backup on
which they are based (and assuming the files are intact), to
restore the database to a current point in time, even if the
database was moved or upgraded during that time. However,
this can be extremely time consuming and will negatively
affect the RTO—especially if the backups need to be retrieved
from slow storage (including tape). Legend has it that some
organizations were forced to close down as a result of missing
the RTO. It is a far better practice to perform regular full
backups (and differential database backups if they are useful)
along with transaction log backups so that the dependency
chain is shorter.

 You can read more about designing an appropriate backup
schedule in the “Create and verify backups” section later in
this chapter. For more on maintenance plans, read Chapter 9,
“Automate SQL Server administration.”



Fix a broken backup chain with differential
backups
A backup chain is broken when a database is switched from the full
recovery model to the bulk-logged or simple recovery model for any
reason (such as shrinking the transaction log file during an
emergency to reclaim storage space). A backup chain can also be
broken if a full database backup is taken “out-of-band” and is then
discarded or becomes unavailable when a restore is required.

After you switch back to the full recovery model, you can restart the
log backup chain—without having to perform a full database backup
—by taking a differential backup. As long as you use this or a more
recent differential backup in a later recovery, along with the
accompanying transaction log backups, the backup chain will be
repaired.

If you keep the database in the bulk-logged recovery model, you can
restore the backup chain by taking a differential backup after bulk-
logged operations. Combined with the transaction log backups taken
after the differential backup, you can restore the database back to a
point in time after the bulk-logged operation, or to a point in time
before the transaction log backup containing a bulk-logged operation.

File and filegroup backups
You can take a more granular approach by backing up individual data
files and filegroups, which use the full or differential options, as well.
These options are available in the SSMS user interface; alternatively,
you can use the official documentation to create appropriate T-SQL
statements.

Caution
If a single file in a filegroup is offline (for instance, during a
restore), the entire filegroup is also offline. This affects backups.



Partial backups
Because read-only filegroups do not change, it does not make sense
to include them in ongoing backup processes. Primarily used for
VLDBs that contain read-only filegroups, partial backups exclude
those read-only filegroups, as required.

Partial backups contain the primary filegroup, any read-write
filegroups, and one or more optional read-only filegroups. Partial
backups can also contain a single file from a filegroup, but be aware
that a filegroup cannot be brought online until all the files are
available.

 To read more about partial backups, visit
https://learn.microsoft.com/sql/relational-databases/backup-
restore/partial-backups-sql-server.

File backups
You can use file backups to restore individual files if they become
corrupt. This makes restoring easier, because for VLDBs, it takes
much less time to restore a single file than the entire database.
Unfortunately, file backups increase complexity due to increased
administration of the additional file backups over and above the full,
differential, and transaction log backups. This overhead extends to
recovery script maintenance.

 To read more about file backups, visit
https://learn.microsoft.com/sql/relational-databases/backup-
restore/full-file-backups-sql-server.

Additional backup options and considerations
This section includes several options and special considerations for
creating backups in SQL Server.

Database snapshots

https://learn.microsoft.com/sql/relational-databases/backup-restore/partial-backups-sql-server
https://learn.microsoft.com/sql/relational-databases/backup-restore/full-file-backups-sql-server


A database snapshot is a read-only static view of a database at the
point in time the snapshot was created. A database snapshot isn’t a
backup and shouldn’t be considered as such, but it can play a role in
disaster recovery when used tactically.

You could, for example, take a database snapshot immediately before
making a major change. The snapshot can serve as a read-only copy
of the database before the major change, as well as a point to revert
to if the major change has unexpected consequences.

To create a database snapshot, you create a special database
snapshot file, commonly with the extension .ss. For example, to
create a database snapshot of the WideWorldImporters database at
the iso date and time November 2, 2022, at 10:45 a.m.:
Click here to view code image

CREATE DATABASE WideWorldImporters_202211021045 ON 
( NAME = WideWorldImporters, FILENAME = 
'C:\Program Files\Microsoft SQL 
Server\MSSQL16.MSSQLSERVER\MSSQL\Data\WideWorldImporters 
_data_202211021045.ss' ) 
AS SNAPSHOT OF WideWorldImporters;

The WideWorldImporters_202211021045 database can now be
connected to and read from as a read-only copy of the database at a
point in time.

Before reverting to the snapshot, you must remove any other
database snapshots for the database. To revert the entire
WideWorldImporters to the database snapshot, the T-SQL command
is simple:
Click here to view code image

RESTORE DATABASE WideWorldImporters FROM 
DATABASE_SNAPSHOT = ' WideWorldImporters_202211021045';

You can use database snapshots to ease administration when testing
new functionality to reduce the time required to restore to a point in
time, but they carry the same risks as regular database files.



Snapshots are not guaranteed backups, and you should not use them
to replace native SQL Server backups.

Database snapshots are unrelated to other features or concepts that
share the same vocabulary, such as snapshot backups, snapshot
isolation of transactions, or snapshot replication. For more on
database snapshots, see https://learn.microsoft.com/sql/relational-
databases/databases/database-snapshots-sql-server.

Backup encryption
Since SQL Server 2014, it has been possible to encrypt database
backups using an asymmetric key pair. This is different from the
encryption provided for backups with TDE enabled. The key
difference is that to restore an encrypted backup, you need the
asymmetric key, not the database master key (DMK) or the certificate
encrypted by the DMK.

 Chapter 13 discusses DMKs in more detail.

Like any asymmetric encryption process, you need a cipher (the
encryption algorithm) and an asymmetric key or certificate. Supported
ciphers are Advanced Encryption Standard (AES), with key sizes of
128, 192, and 256 bits, and 3DES (also known as Triple DES). As
discussed in depth in Chapter 13, AES is a safer and faster cipher
than 3DES. You must back up and store the key or certificate in a
secure location.

 For more about security and encryption, see Chapter 13.

As noted in Chapter 3, you can also compress backups. This is
recommended unless the database itself is already compressed, in
which case you should first evaluate whether your case will benefit
from backup compression. SQL Server 2016 introduced support for
backup compression of databases encrypted with TDE.

https://learn.microsoft.com/sql/relational-databases/databases/database-snapshots-sql-server


Inside OUT
Anything to watch out for with backup encryption?

Some unpatched versions of SQL Server 2017 and SQL
Server 2016 contained flaws that could corrupt backups of
databases encrypted with TDE when they were compressed.
These flaws were fixed in cumulative updates in May 2018.
For more information on this phenomenon, visit
https://support.microsoft.com/topic/kb4101502-fix-tde-
enabled-database-backup-with-compression-causes-
database-corruption-in-sql-server-d6df5614-9b20-4e0f-37d7-
eceda1eabe29.

We recommend that you follow Microsoft’s guidance and
evaluate and apply cumulative updates as they are released
for just this reason. This is also a cautionary tale for regularly,
if not automatically, testing your backups to ensure they can
be restored successfully.

Note
The MAXTRANSFERSIZE data transfer option with the BACKUP
statement specifies the largest possible size of transfers
between SQL Server and the backup media (in bytes). Backup
compression for a database encrypted with TDE does not kick
in unless the BACKUP statement contains a MAXTRANSFERSIZE
value greater than 65,536. If MAXTRANSFERSIZE is not specified or
is set to its minimum value of 65,536 bytes (64 KB), the backup
will not be compressed. Valid values for MAXTRANSFERSIZE are
multiples of 64 KB, up to 4 MB.

Backup checksums

https://support.microsoft.com/topic/kb4101502-fix-tde-enabled-database-backup-with-compression-causes-database-corruption-in-sql-server-d6df5614-9b20-4e0f-37d7-eceda1eabe29


SQL Server can perform optional checksum verifications on database
backups. By default, backups do not perform a checksum. You can
change this behavior either by Trace Flag 3023 or in the backup job
or T-SQL script that takes backups. We recommend you enable
backup checksum where possible, ideally using the trace flag, so it is
the default behavior.

Without backup checksum enabled, no validation is performed on
data pages or log blocks. This means any logical corruption will also
be backed up without showing any of the errors you might see with a
DBCC CHECKDB operation. This is to allow for scenarios in which you
want to back up a corrupt database before attempting to fix the
corruption. Alternatively, you can create the backup with checksum
enabled but add the CONTINUE_AFTER_ERROR option.

 To read more about recovering from corruption, see Chapter 8.

With backup checksum enabled, a checksum is calculated over the
entire backup file. Additionally, the page checksum on every 8-KB
data page (for both page verification types of checksum or torn-page
detection) and the log block checksum from the active portion of the
log will be validated.

Caution
Physical corruption, in which the data cannot be read from the
drive, including corruption in memory-optimized filegroups, will
cause the backup to fail.

The backup checksum can significantly increase the time for a
backup to run, but adds some peace of mind, short of running a
recommended DBCC CHECKDB on a restored database.

Copy-only backup
When a full backup runs with the default settings, a reserved data
page known as the differential bitmap (discussed previously in this



chapter) is cleared. Any differential backups that are created on the
database after that will be based off that full backup.

You can change the default behavior by using the COPY_ONLY option,
which does not clear the differential bitmap. Copy-only backups are
useful for creating out-of-band backups without affecting the
differential backup schedule. In other words, only differential backups
are affected by the lack of the COPY_ONLY option. Transaction log
backups, and thus the backup chain, are not affected.

Memory-optimized tables
Standard backups include memory-optimized tables. During the
backup process, a checksum is performed on the data and delta file
pairs to check for corruption. Any corruption detected in a memory-
optimized filegroup will cause a backup to fail, requiring you to restore
from the last known good backup.

Remember: The storage requirements for a memory-optimized table
can be much larger than its usage in memory, which will affect the
size of your backups.

 To learn more about how to back up memory-optimized files,
visit https://learn.microsoft.com/sql/relational-databases/in-
memory-oltp/backing-up-a-database-with-memory-optimized-
tables.

System database backups
The SQL Server system databases contain important information
about your system, and some of these should be backed up as well.

A system database that does not need to be backed up is tempdb.
This tempdb database is re-created every time your SQL Server
instance restarts and cannot be backed up or restored.

The model database typically does not contain data or database
objects; this system database serves only as a template. It should be

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/backing-up-a-database-with-memory-optimized-tables


backed up for consistency.

The master system database holds all the instance-level information
and should be backed up on regular intervals. You should also take a
full backup of the master database immediately before and after any
significant changes, such as the installation of a cumulative update.

Another system database that should be backed up is msdb. This
system database is used by the SQL Server Agent for job control.
This database also contains the backup and restore history tables.

In addition to these four system databases (master, msdb, model,
and tempdb) that are present on every SQL Server instance, you
might also have a distribution system database. This database exists
if you have configured replication, and should also be backed up
regularly, on the same schedule as full backups for replicated
databases.

 Microsoft provides additional guidance for backing up
replicated databases at
https://learn.microsoft.com/sql/relational-
databases/replication/administration/back-up-and-restore-
replicated-databases.

Back up non-database items
Successfully restoring data may require more than just the backup
files. For example, restoring a database with TDE enabled will require
the original certificate used to set up encryption. If you’re restoring to
a different server, you must restore the certificate, including its private
key, before attempting to restore the database.

Items you should consider backing up in addition to the database
include the following:

Certificates

Logins

https://learn.microsoft.com/sql/relational-databases/replication/administration/back-up-and-restore-replicated-databases


SSIS packages not stored in the SSISDB, but in the file system

Flat files, configuration files, or other custom-developed files
necessary for jobs and business applications

Availability and security of backup media
Your backups must be safeguarded from corruption or deletion and
from the disasters you’re trying to defend against. This means backup
files should be available in multiple locations, including both on-
premises and offsite. It’s not wise to keep backups only on-premises
because a disaster or ransomware attack might affect your entire site.
However, it’s advisable to keep one backup copy locally, because that
copy is easier and quicker to access.

Inside OUT
What is a good resilient copy policy for database
backups?

Consider the 3-2-2-1-0 rule for your database backups, and
other parts of your business continuity plan:

Three different copies of your data (3)

On two different media (2)

With two offsite copies (2)

One of which is air-gapped or immutable (1)

With no errors after recovery (0)

The devices that store your backups must be secured with
appropriate access controls, physical and virtual. Authorized
individuals, and only authorized individuals, must be able to access



the backups to implement the data recovery plan. The backups
contain the same sensitive information as your databases.
Unauthorized access may lead to a security breach. (Unfortunately,
attackers know organizations sometimes neglect to protect backups
as well as data stores.) However, you must also plan for the
eventuality that a disaster renders your identity and access
management (IAM) infrastructure unavailable.

Similar considerations apply for backups to Azure Storage. You must
verify that access to the storage account is limited to authorized
individuals. Azure provides mechanisms for securing storage
accounts, which are outside the scope of this text.

 For information on the many options for securing Azure
Storage accounts, see
https://learn.microsoft.com/azure/storage/blobs/security-
recommendations. Additional best practices for using shared
access signatures are available at
https://learn.microsoft.com/azure/storage/common/storage-
sas-overview#best-practices-when-using-sas.

Understand backup devices
SQL Server writes database backups to physical backup devices.
These storage media might be virtualized, but for the purposes of this
section, they are considered physical. They include disk, tape, and
URL. (Tape backup is now deprecated, and we will not cover it in
detail.)

Caution
The option to back up SQL Server databases to tape will be
removed from a future version of SQL Server. When creating a
recovery strategy, use disk or URL. You should change any
existing recovery strategies that involve tape to use another
media type.

https://learn.microsoft.com/azure/storage/blobs/security-recommendations
https://learn.microsoft.com/azure/storage/common/storage-sas-overview#best-practices-when-using-sas


Back up to disk
SQL Server backups are most commonly stored directly on a local
volume or network path, referred to as the backup disk. A backup
disk contains one or more backup files, and each file contains one or
more database backups.

A database backup might also be split across multiple files. To back
up VLDBs in less time, striping the backup across multiple files can
be a valuable strategy. Be careful, however, because you must have
all files in the set to successfully restore.

Back up to URL
Since SQL Server 2012 (with Service Pack 1 and Cumulative Update
2), you can back up your SQL Server database directly to Azure Blob
Storage. This is made possible by using an Azure Storage account
URL as a destination.

SQL Server 2016 added the ability to back up to Azure block blobs.
This is now the preferred blob type when backing up to Azure
Storage. When striping a backup on up to 64 blobs, block blobs
support much larger backups and enable higher throughput than
page blobs.

Note
Backing up to URL is especially useful for hybrid scenarios and
for Azure SQL Managed Instance.

To back up a database to a block blob, you must provide a token for a
shared access signature (SAS) for a standard Azure Storage
account. (Premium storage accounts are not supported.) You can
create a SAS using the Azure portal, PowerShell, the Azure Storage
Explorer application, or other means. Before creating the SAS, you
should define a matching stored access policy for the blob container



that will store the backup files. This policy allows the SAS to be
changed or revoked.

A SAS token represents the SAS. It is a query string that contains
several elements that refer to the SAS. When creating a SAS token,
you must specify the permissions that will be allowed using the SAS
token. Read, write, delete, and list permissions are minimally
required. The SAS token you obtain will begin with a question mark
(?), but that question mark must be removed before SQL Server can
successfully use the SAS token. (Readers versed in web
technologies will understand that the question mark is the beginning
of a URL query string and not part of the content.)

Note
A SAS must have an expiration date. Make sure the expiration
date is sufficiently far in the future so your backups don’t start
failing unexpectedly. Regardless of the expiration date of the
SAS token, it’s a good idea to rotate the secret on a regular
schedule. As with other certificates in your environment, mark
your calendars in advance of the expiration date you choose.

The SAS token must be used to create a credential. The credential’s
name is the URL to the Azure Storage container. After the credential
is created, backing up the database to Azure Storage only requires
specifying the TO URL clause, as illustrated in the upcoming sample.

The following sample creates a credential using a SAS token and
backs up the SSIO2022 database to the SSIO2022 Azure Storage
account. The sample uses the WITH FORMAT option to overwrite an
existing backup at the same URL. Your use case may require you to
keep historic backups, in which case you should probably generate
the backup file name by including the date and time of the backup. If
you keep historic backups, you must create a scheme to remove
outdated backup files; the RETAINDAYS and EXPIREDATE options are not
supported with the TO URL clause.
Click here to view code image



CREATE CREDENTIAL 
[https://ssio2022.blob.core.windows.net/onprembackup] 
    WITH IDENTITY = 'SHARED ACCESS SIGNATURE', 
    -- Remember to remove the leading ? from the token 
    SECRET = 'sv=2022-03-28&ss=…'; 
BACKUP DATABASE SamplesTest 
    TO URL = 
'https://ssio2022.blob.core.windows.net/onprembackup/db.bak' 
    -- WITH FORMAT to overwrite the existing file 
    WITH FORMAT;

 Extensive guidance on backup to URL is available at
https://learn.microsoft.com/sql/relational-databases/backup-
restore/sql-server-backup-to-url.

For security reasons, the container holding your SQL Server
database backups should be configured as Private. We recommend
that you configure the storage account to require secure transfer,
meaning only HTTPS connections are allowed. Secure transfer is
required by default on all new Azure Storage accounts. You can
further secure the SAS token by restricting the IP addresses that can
connect to the Azure Storage service using the token. If you choose
to do so, you must remember to obtain a new token and update the
database credential when your organization’s outbound IP addresses
change.

Note
Did you know that SSMS 18 and later support connecting to
Azure Storage? While Azure Storage Explorer is a great tool for
managing Azure Storage accounts, the option to connect to an
Azure Storage account used for SQL Server backups directly
from within SSMS can be a time-saver. You can access this
functionality from the Back Up Database dialog box.

Backup and media sets

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-to-url


As noted, SQL Server backups are written to media types (devices)—
namely tape, disk (which includes locally connected volumes, solid-
state drives, and UNC network paths), and Azure Blob Storage. Each
of these types has specific properties, including format and block
size.

Media set
A media set is an ordered collection of a fixed type and number of
devices (see Figure 10-2). For example, if you are using a backup
disk, your media set will comprise a fixed number of one or more
files.

Figure 10-2 A media set, containing three media families spread
over three devices.

A backup will always contain at least one media set. With tape
backup now deprecated, media sets with multiple devices are less
common. Other factors to consider:

Backup window. The backup window might be too short to
allow the backup to finish unless it’s striped across multiple files
or URLs.



Backup to URL. The recommended block blobs in Azure
Storage can hold 200 GB per blob at most. If your backup is
larger than 200 GB, you’ll need to use multiple block blobs.
Better backup performance may also be achieved using multiple
block blobs, assuming your Internet upload speed is sufficient.
We should note that concerns surrounding the integrity of
striped backups are less acute in Azure Storage because you
can, and should, configure the storage account with automatic
redundancy, if not geo-redundancy.

SQL Server Enterprise edition supports mirroring media sets. A
mirrored media set writes another copy of the backup. This feature
provides you with a redundant copy of your backup on the same type
of media. When the mirrored media sets are appropriately segmented
on different storage hardware, this redundant copy increases the
reliability of the backup, because an error in one backup set might not
affect the mirrored copy.

 To read more about mirrored backup media sets, see
https://learn.microsoft.com/sql/relational-databases/backup-
restore/mirrored-backup-media-sets-sql-server.

Media family
In each media set, all backup devices used in that media set make up
the media family. The number of devices in that set is the number of
media families. If a media set uses three backup devices that are not
mirrored, there are three media families in that media set.

Backup set
A successful backup added to a media set is called a backup set.
Information about successful backups is stored in the header of the
backup set.

You can reuse an existing backup set by adding new backups for a
database to the end of that media. This grows the media by
appending the backup. However, we do not recommend this practice,

https://learn.microsoft.com/sql/relational-databases/backup-restore/mirrored-backup-media-sets-sql-server


because the integrity of previous backups relies on the consistency of
that media. An errant INIT option in the backup command could even
accidentally overwrite existing backups in the backup set.

Inside OUT
What media set, media family, and backup set should you
use?

For typical SQL Server instances, we recommend that you
back up your databases to multiple, individual, clearly named,
self-contained files. Only one backup should be stored in each
file. If you are using a third-party solution (free or paid), make
sure they follow a strong naming convention, as well.

In other words, the filename itself should contain the server
and instance name, the database name, the type of backup
(full, differential, or transaction log), as well as the date and
time of the backup. This makes locating, managing, and
restoring backups much easier because every file is a
separate backup set, media family, and media set.

For example, a full backup of the WideWorldImporters sample
database on the default instance of a SQL Server called
SERVER, taken on February 9th, 2023, at 10:53:44 p.m.,
might have the following filename:
SERVER_WideWorldImporters_FULL_20230209_225344.BA
K. To avoid issues with filenames during daylight saving time
(DST) changeover, we recommend specifying the time in UTC
or with time zone offset.

Similarly, differential and transaction log backups should
follow the naming convention but use a different file extension.
The file extension does not actually matter, but a common
practice is .dif for differential backups and .trn for transaction
log backups.



Back up to S3-compatible storage
New in SQL Server 2022 is Simple Storage Service (S3)–compatible
object storage integration. This feature extends existing BACKUP TO
URL and RESTORE FROM URL functionality to S3 URLs using a REST
API. URLs pointing to S3-compatible resources are prefixed with s3://
to denote that the S3 API is being used.

 An introduction to the S3 protocol and how it is used at
Microsoft can be found at
https://learn.microsoft.com/sql/relational-databases/backup-
restore/sql-server-backup-and-restore-with-s3-compatible-
object-storage.

Requirements for S3-compatible storage
URLs beginning with the s3:// prefix assume that the underlying
protocol is HTTPS, which means SQL Server will require a TLS
certificate. Additionally, you will need credentials (an Access Key ID
and Secret Key ID) to access the S3-compatible endpoint. You
cannot back up to S3-compatible storage unless a bucket has been
created on the S3-compatible storage account. Creating a bucket is
not possible from within SQL Server.

Control backup size and speed
Your backup will use multiple parts—a maximum of 10,000 parts per
URL, ranging in size from 5 MB to 20 MB, with a default of 10 MB.
You can adjust this size using MAXTRANSFERSIZE. If a maximum of
10,000 parts at 20 MB per part is not sufficient, you can stripe your
backup across multiple URLs, to a maximum of 64.

Note
You must enable backup compression if you back up to S3-
compatible storage and modify the MAXTRANSFERSIZE setting.

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-and-restore-with-s3-compatible-object-storage


If a backup to S3-compatible storage fails, any temporary files
created during the backup process will not be automatically removed.
You must remove them manually.

 For more information about backing up to S3-compatible
storage, visit https://learn.microsoft.com/sql/relational-
databases/backup-restore/sql-server-backup-to-url-s3-
compatible-object-storage.

Create and verify backups
You should completely automate your SQL Server backups, whether
you use the built-in SSMS Maintenance Plan Wizard or a third-party
solution (free or paid). Always ensure that backups are successful by
observing that the backup files exist and that the backup task does
not error out. Additionally, you must regularly test backups by
restoring them, which you should also do with an automated process.

For example, the dbatools.io library of SQL Server administration
cmdlets includes Test-DbaLastBackup, which automatically restores,
runs a DBCC CHECKDB, and drops a database. Consider this tool or
similar automation solutions. For more information, see
https://docs.dbatools.io/Test-DbaLastBackup.html.

 You can read more about maintenance plans in Chapter 9.

SQL Server Agent is an excellent resource for automating backups,
and many third-party solutions use it, too—as does the Maintenance
Plan Wizard.

Create backups
You can design a backup solution to satisfy a recovery strategy by
using all or a combination of the available backup types. This chapter
already covered the backup types and code samples.

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-to-url-s3-compatible-object-storage
https://docs.dbatools.io/Test-DbaLastBackup.html


Inside OUT
How frequently should you run backups?

Business requirements and database size will dictate how
long your maintenance window is and what needs to be
backed up in that window. You might have a critical database
small enough that it can be fully backed up daily and therefore
has no need for differential backups. Larger databases might
require a weekly schedule, augmented by daily differential
backups.

A database in the full recovery model should have transaction
log backups occurring as a factor of the RPO. Transaction
logs should be backed up and securely copied offsite at a
more frequent interval than your RPO. Assuming your RPO is
5 minutes, you should back up your transaction log so it takes
less than 5 minutes to back it up and copy it offsite. For
example, you can back up the log every 3 minutes, which
gives you 2 minutes to get the backup offsite. This is to
accommodate the implicit delay between when a backup ends
and when the backup has been copied offsite. In the case of a
disaster, there is a higher chance that the files are copied
offsite with a smaller copy interval. A backup is realistically not
available to meet the RPO until it is copied offsite
successfully.

Databases that can be rebuilt using existing processes might
not need to be backed up at all. Such databases should use
the simple recovery model.

The buffer pool (see Chapter 2) is not used for database backups.
The backup buffer is a portion of memory outside the buffer pool, big
enough to read pages from the data file and write those pages to the
backup file. The backup buffer is usually between 16 MB and 32 MB
in size. Memory pressure can reduce the backup and restore buffer
sizes, causing backups and restores to take longer.



Caution
It is possible to increase the number of backup buffers (using
the BUFFERCOUNT option) as well as the transfer size of each
block to the backup media (using the MAXTRANSFERSIZE option)
to improve throughput. However, we recommend this cautiously,
and only in circumstances where the defaults calculated by SQL
Server prove problematic. Allocating too many buffers or
increasing the transfer size too much might cause out-of-
memory exceptions during the backup operation, which will
cause the backup to fail. While this is not a situation that would
require a server restart, it does diminish the automation you set
up for backups. You can read more about this possible issue at
https://blogs.msdn.microsoft.com/sqlserverfaq/2010/05/06/incor
rect-buffercount-data-transfer-option-can-lead-to-oom-condition.

Verify backups
After you create a backup, we highly recommend that you
immediately verify that the backup was successful. Although rare,
corruption is always possible. Most of the time, it is caused by the
storage layer (including device drivers, network drivers, and filter
drivers), but it can also occur in non-ECC RAM or as the result of a
bug in SQL Server itself.

Note
A filter driver is software that intercepts all drive reads and
writes. This class of software includes defragmentation tools
and security products like antivirus software. This is a good
opportunity to remind you to exclude SQL Server files (data,
logs, and backups) from antivirus scanners, and to note that
defragmenting solid-state storage is a bad idea because it will
dramatically reduce the lifespan of the drive.

https://blogs.msdn.microsoft.com/sqlserverfaq/2010/05/06/incorrect-buffercount-data-transfer-option-can-lead-to-oom-condition


 See KB309422 for more information on which antivirus
exclusions to add for SQL Server, available at
http://support.microsoft.com/help/309422.

There are two ways to verify a backup. You can probably guess that
the most complete way is to restore it and use DBCC CHECKDB to
perform a full consistency check on the restored database.

The other, quicker method is to use RESTORE VERIFYONLY. If you
backed up your database using the checksum option (which is
enabled by default on compressed backups), the restore will verify
the backup checksum as well as the data page and log block
checksums as it reads through the backup media. The convenience
with RESTORE VERIFYONLY is that you do not need to allocate drive
space to restore the data and log files, because the restore will read
directly from the backup itself.

Inside OUT
Why should you perform a DBCC CHECKDB if you have
backup checksums enabled?

Although backup checksums are verified by RESTORE
VERIFYONLY, it is possible for corruption to occur after a page
is verified, as it is being written to the drive or while it is copied
offsite. A successful RESTORE VERIFYONLY is not a clean bill of
health for the backup.

You can build an automated process on another server with a
lot of cheaper drive space to restore all databases after they
have been backed up and perform a DBCC CHECKDB on them.
This also gives you an excellent idea of whether you can meet
your RTO as databases grow. A successful DBCC CHECKDB is
the only way to know that a database is free of corruption.

http://support.microsoft.com/help/309422


Restore a database
To restore a database, you generally start with a full backup
(piecemeal restore is covered in a later section).

If you plan to use differential and/or transaction log backups, you
must use the NORECOVERY keyword for all but the last of the backup
files you will restore.

You restore a database in the simple recovery model by using a
full backup to begin, plus the most recent differential backup
based on the full backup if it is available.

You can restore a database in the bulk-logged recovery model
by using a full backup, along with the most recent differential
backup based on that full backup, if available. Should you want
to restore to a specific point in time for a bulk-logged database,
this might be possible if no bulk-logged operations exist in the
transaction log backups you use.

You can restore a database in the full recovery model to a point
in time using a full backup, plus any transaction log backups that
form part of the backup chain. You can use a more recent
differential backup (based on that full backup) to bypass a
number of those transaction log backups, where appropriate.

Caution
Differential and transaction log backups rely on a corresponding
full backup. If the full backup is not available, the differential and
transaction log backups are useless. All transaction log backups
must be available at least to the point in time to which you’re
trying to restore.

Each transaction log backup is replayed against the database being
recovered, using the NORECOVERY option, as though those transactions
are happening in real time. Each file is restored in sequential order up



to the required point in time or until the last transaction log backup is
reached, whichever comes first.

Note
When restoring a chain of transaction log backups, especially
the first one in the sequence after a full or differential backup,
it’s possible for the LSN of the transaction log backup to be
earlier than the latest LSN of the full or differential backup that
was restored. In most cases, you can ignore the error message
that appears, because the next transaction log file in the restore
sequence will usually contain the required LSN.

After the entire chain has been restored (indicated by the WITH
RECOVERY option), only then does the recovery kick in (covered in
some detail in Chapter 3). All transactions that are committed will be
rolled forward, and any in-flight transactions will be rolled back.

Some examples of restoring a database are included in the section
that follows.

Restore a database using a full backup
You can perform a database restore through SSMS, Azure Data
Studio, or by using a T-SQL statement. In this example, only a full
backup file is available to restore a database. The full backup comes
from a different server, where the path of the original database is
different, so the database’s files must be relocated (moved) on the
new server with the MOVE option.

To see the progress of the restore, you can set the statistics to
display to the output window with the STATS option. The default is to
write progress for every 5 percent complete. No statistics will be
output until the files have been created on the file system.
Click here to view code image



RESTORE DATABASE WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_FULL_20220918_2
10912.BAK' 
WITH MOVE N'WideWorldImporters' TO N'C:\SQLData\WWI.mdf', 
MOVE N'WideWorldImporters_log' TO N'C:\SQLData\WWI.ldf', 
STATS = 5, 
RECOVERY; 
GO

The RECOVERY option (the default) at the end brings the database
online immediately after the full backup has been restored. This
prevents any further backups from being applied. If you want to
restore a differential backup after this full backup, you must use the
NORECOVERY option. Later, bring the database online only after
restoring subsequent differential or transaction log backups. This is
covered in the next section.

Restore a database with differential and log
backups
Restoring using full, differential, and transaction log backups is more
complicated, but you can still perform it through SSMS’s graphical
wizard, Azure Data Studio, or by using a series of T-SQL statements.

For this scenario, we recommend creating your own automated
scripts. For example, after every transaction log backup, you can use
the information in the msdb database to build a script to restore the
entire database to that point in time and then save the script in the
same folder as the backup file(s).

Note
When restoring a database using more than one backup type
(full, plus differential and/or transaction log), each RESTORE
statement that will be followed by another restore file must
include a WITH NORECOVERY option. This prevents recovery from
running until needed. You can either use the WITH RECOVERY



option on the final file to run recovery and bring the database
online or you can add an extra line to the end of the script as in
the following example.

You restore a database by using the RESTORE command. Full and
differential restores use the RESTORE DATABASE option by convention.
You can also restore transaction logs by using the RESTORE DATABASE
option, but you might prefer to use RESTORE LOG, instead, for clarity:
Click here to view code image

-- First, restore the full backup 
RESTORE DATABASE WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_FULL_20220918_2
10912.BAK' 
WITH 
MOVE N'WideWorldImporters' TO N'C:\SQLData\WWI.mdf', 
MOVE N'WideWorldImporters_log' TO N'C:\SQLData\WWI.ldf', 
NORECOVERY; 
GO 
-- Second, restore the most recent differential backup 
RESTORE DATABASE WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_DIFF_20220926_1
20100.BAK' 
WITH NORECOVERY; 
GO 
-- Finally, restore all transaction log backups after the 
differential 
RESTORE LOG WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_LOG_20220926_12
1500.BAK' 
WITH NORECOVERY; 
GO 
RESTORE LOG WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_LOG_20220926_12
3000.BAK' 
WITH NORECOVERY; 
GO 



-- Bring the database online 
RESTORE LOG WideWorldImporters WITH RECOVERY; 
GO

Remember: Specify WITH RECOVERY in the final transaction log file
restore, or in a separate command as in the previous example.

The RECOVERY option instructs SQL Server to run recovery on the
database, which might include an upgrade step if the new instance
has a newer version of SQL Server on it. When recovery is complete,
the database is brought online.

Restore a database to a point in time
If configured properly, it is possible to restore a database to the exact
moment in time (or more precisely, to the exact LSN) before a
disaster occurred. A point-in-time restore requires an LSN or
timestamp (meaning any specific date and time value) to let the
RESTORE command know when to stop restoring. You can even restore
to a specific mark in the transaction log backup, which you specify at
transaction-creation time by explicitly naming a transaction. This
requires knowing in advance that this transaction might be the cause
for a point-in-time restore, which is rarely the case in a disaster
scenario.

Note
Some scenarios where you might suspect in advance that a
point-in-time recovery is required include performing a schema
upgrade, perhaps as part of an application release.

 To see more about marking transactions, go to
https://learn.microsoft.com/sql/t-sql/statements/restore-
statements-transact-sql.

Caution

https://learn.microsoft.com/sql/t-sql/statements/restore-statements-transact-sql


The timestamp used for a point-in-time restore comes from the
transaction log itself and refers to the local date and time on the
SQL Server instance when the transaction started. Remember
to take time zones and daylight saving time into consideration
when restoring a database to a point in time.

Depending on the cause of the disaster, you might want to investigate
the current state of the database to determine the best recovery
approach. You might need to close connections to the database and
set the database to single user mode. In single user mode, you have
time to find out what happened (without making modifications), take a
tail-log backup when possible and necessary, and recover the
database to the moment before disaster struck.

In some cases, you might opt to leave the database active but restore
it to a new database and reload changes from the restored version.
The feasibility of this depends on the database schema, the number
of changes that have been made since the adverse event, and the
RTO.

A point-in-time restore works only when restoring transaction log
backups, not full or differential backups. The point in time must be
after the full backup from which you begin the restore process. This
fact may make it valuable to keep several full backups prior to the
most recent one. Some errors, such as human error or database
corruption, may not always be detected before a new full backup is
taken.

Inside OUT
How can you tell when the unplanned event took place?

To find out when a disaster occurred that isn’t immediately
apparent, you can query the active portion of the transaction
log if it is available, using an undocumented system function
that reads from the active VLF(s), as demonstrated here:



Click here to view code image

SELECT * FROM sys.fn_dblog(NULL, NULL);

This displays all transactions that have not yet been flushed
by a checkpoint operation. The NULL parameters are the start
and end LSN, but of course, if you knew those, you wouldn’t
be searching the log in the first place.

Using a standard WHERE clause, you can trace back to the
point immediately before the event took place. For example, if
you know a user deleted a row from a table, you could write a
query looking for all delete operations:

Click here to view code image

SELECT * FROM sys.fn_dblog(NULL, NULL) 
WHERE operation LIKE '%delete%';

To get this to work, SQL Server should still be running, and
the transaction log should still be available (although this
technique does work on offline transaction log files using
sys.fn_dump_dblog).

To see more from Paul Randal about reading from the
transaction log, visit
https://www.sqlskills.com/blogs/paul/using-fn_dblog-
fn_dump_dblog-and-restoring-with-stopbeforemark-to-an-lsn/.

The process is the same as in the previous example, except for the
final transaction log file, for which the point in time is specified by
using the STOPAT or STOPBEFOREMARK options. Let’s look at each option:

STOPAT. A timestamp. You must know this value from the time
an unexpected event occurred. If it’s unclear when the event
occurred, you might need to explore the transaction log.

STOPBEFOREMARK or STOPATMARK. A log sequence
number or transaction name. You must know the LSN value

https://www.sqlskills.com/blogs/paul/using-fn_dblog-fn_dump_dblog-and-restoring-with-stopbeforemark-to-an-lsn/


from exploring the active portion of the transaction log (see the
preceding Inside OUT).

Assuming you have followed the same sequence as shown in the
previous example, the final transaction log restore might look like this:
Click here to view code image

-- Restore point in time using timestamp 
RESTORE LOG WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_LOG_20170926_12
3000.BAK' 
WITH STOPAT = 'Sep 26, 2017 12:28 AM', 
RECOVERY; 
GO 
-- Or restore point in time using LSN 
-- Assume that this LSN is where the bad thing happened 
RESTORE LOG WideWorldImporters 
FROM DISK = 
N'C:\SQLData\Backup\SERVER_WideWorldImporters_LOG_20170926_12
3000.BAK' 
WITH STOPBEFOREMARK = 'lsn:0x0000029f:00300212:0002', 
RECOVERY; 
GO

 To read more about database recovery, including syntax and
examples, visit https://learn.microsoft.com/sql/t-
sql/statements/restore-statements-transact-sql.

Restore a database piecemeal
Partial database backups deal with file and filegroup backups to ease
the manageability of your VLDB. This is an advanced topic with much
detail to be discovered in your environment.

Partial recovery is useful for bringing a database online as quickly as
possible to allow the organization to continue working. You can then
restore any secondary filegroups later, during a planned maintenance
window.

https://learn.microsoft.com/sql/t-sql/statements/restore-statements-transact-sql


Piecemeal restores begin with something called the partial-restore
sequence. In this sequence, the primary filegroup is restored and
recovered first. If the database is under the simple recovery model, all
read/write filegroups are then restored.

 To learn more about the SQL Server recovery process, read
Chapter 3.

While this is taking place, the database is offline until restore and
recovery is complete. Any unrestored files or filegroups remain offline,
but you can bring them online later by restoring them.

Regardless of the database’s recovery model, the RESTORE command
must include the PARTIAL option when doing a piecemeal restore, but
only at the beginning of the sequence. Because transactions might
span more than just the recovered filegroups, these transactions can
become deferred, meaning that any transaction that needs to roll
back cannot do so while a filegroup is offline. The transactions are
deferred until the filegroup can be brought online again, and any data
involved in that deferred transaction is locked in the meantime.

Restore a database piecemeal under the simple
recovery model
To initialize a partial recovery of a database under the simple
recovery model, you must begin with a full database or a partial
backup. The restore will bring the primary filegroup and all read/write
secondary filegroups online. You can then bring the database online.
If any read-only filegroups were damaged or corrupted and you need
to restore them, you will do those last.

Restore a database piecemeal under the full
recovery model
As with the simple recovery model, you must begin with a full
database or partial backup (which must include the primary filegroup).



When possible, you should also have a tail-log backup to help restore
the database to the most recent point in time.

It is possible to restore and recover only the most important read-
write filegroups first, then restore additional read-write filegroups,
before finally restoring any read-only filegroups. Depending on the
design of the database and applications, the organization may
resume critical operations sooner than if the entire database needed
to be restored.

Point-in-time restore is provided under the following conditions:

The first RESTORE DATABASE command must include the PARTIAL
option.

For a point-in-time restore against read-write filegroups, you
need an unbroken log backup chain, and you must specify the
time in the RESTORE statement.

 To see more about piecemeal restores, including code examples,
visit https://learn.microsoft.com/sql/relational-databases/backup-
restore/piecemeal-restores-sql-server.

Note
If you skip a FILESTREAM filegroup during partial recovery, you
can never again recover it unless the entire database is
restored in full.

Define a recovery strategy
Consider our scenario from the beginning of the chapter, in which
anything and everything that could go wrong did go wrong. This
section highlights certain issues that could have been addressed by
an appropriate recovery plan. You can then implement this recovery
plan, step by step, using your runbook. We also discuss recovery

https://learn.microsoft.com/sql/relational-databases/backup-restore/piecemeal-restores-sql-server


strategies around hybrid environments, and briefly discuss Azure
SQL Database.

Note
The word strategy means there is a long-term goal. Your
recovery strategy must adapt to environmental changes. A
runbook is a living document; it requires incremental
improvements as you test it.

A sample recovery strategy for our DR scenario
Several avoidable problems occurred in the fictional DR story at the
beginning of the chapter:

There was no redundant power system in place.

There was no redundant Internet connection (outside of a
personal cellular device).

There was no runbook to guide the accident-prone DBA.

The security on the DR server did not follow recommended best
practices.

Sending the backups offsite failed.

The following subsections discuss some key considerations for your
recovery strategy beyond taking backups.

Keep the lights on
In your runbook, ensure your UPS collection and backup generators
can run all necessary equipment for long enough to keep emergency
lights on, laptops charging, network equipment live, and servers
running (including a monitor) so that your DBA can log in to the SQL
Server instance long enough to run a tail-log backup if necessary. If
the RTO allows it, you might be able to proactively shut down



gracefully rather than attempting to keep less critical systems running
with limited power. A graceful shutdown before a looming sudden
shutdown is a smart idea.

It might sound like a small detail, but you should even have a list of
diesel suppliers in your runbook, especially if your generators must
keep running for several hours. Clean power is also important.
Generators cause power fluctuations, which can damage sensitive
electronic equipment. A power conditioner should be installed with
your generator, and you must make sure it works correctly.

In our scenario, the backup power failed. There was no sufficient way
to ensure electricity would continue to flow after the building lost
power, which had several knock-on effects, including the inability to
charge laptops and cellphone batteries.

Redundant Internet connection
If your backups are being copied securely offsite or you have a hybrid
environment in which systems are connected across datacenters
using virtual private networks (VPNs), make sure these routes can
stay connected if one of the links goes down. In our scenario, the
DBA had no option but to use a low-quality cellular connection. While
cellular modems can be a part of your recovery strategy, they can be
fickle, and fail under sudden public demand. It’s also difficult to
connect servers this way.

Know where the runbook is
The runbook itself should be printed out and stored in a secure but
easily accessible location (for example, a fireproof safe or lockbox).
Don’t forget to have an electronic copy available, as well, stored with
a cloud provider of your choice and kept up to date.

Make sure your offsite backups are secure and
tamper-proof



Security of the offsite location for backups is critical, and no one
should have access to that site unless they are required to do a
recovery. In our sample scenario, our DBA accidentally deleted an
email alert indicating that the offsite storage for backups was almost
full. This alert is a good one to have, but it was not acted on
appropriately. Also, the cause of the alert was an avoidable situation
because the colleague who used up the free space should not have
been able to access critical organization resources.

Remote, offsite backups ideally aren’t accessible via network shares.
Air-gapped backups are protected from ransomware attacks running
rampant in your network. Copying offsite backups into your network
should be through just-in-time access or other temporary means.

Regularly check and test your backups
Automate your backups and post-backup steps to verify backup
success. Use maintenance plans (see Chapter 9) or established
third-party backup tools such as dbatools.io or Ola Hallengren’s
Maintenance Solution (available from https://ola.hallengren.com).

Verify that you have a process to check that your backups are taking
place and test that process often. For example, if SQL Server Agent
is crashing, your notifications might not fire. Test the backups, as well,
by having a machine that restores backups continuously and by
running DBCC CHECKDB where possible. If you can afford it, have log
shipping configured so that all backups are restored as soon as they
come into offsite storage. Ensure that the backup files are being
securely copied offsite as soon as they can be.

If you’re unable to continuously restore databases, run random spot
checks of your backups by picking a date and time in the backup
history and restoring the backup. Aside from testing the databases
themselves, this is a good rehearsal for when something goes wrong.
Use the runbook for these exercises to ensure it is, and remains, up
to date. Remember to run DBCC CHECKDB on any database you
restore.

https://ola.hallengren.com/


You might find as databases grow that the SLA becomes out of date
and that the RTO is no longer achievable. Running these tests will
alert you to this situation long before it becomes a problem and will
allow you to tweak how you perform backups in the future. For
example, you might discover that it is much quicker to spin up an
Azure virtual machine (VM) with SQL Server and restore the
business-critical databases stored in Azure Blob Storage than to
struggle with VPN connections and failed hardware on-premises.

Our DBA assumed the backups were taking place every 15 minutes
and being copied offsite immediately afterward. This was not the
case, and instead of losing 15 minutes of data, the organization lost
as much as 27 minutes’ worth.

Check the security of your disaster recovery site
Your DR site might have outdated security access controls, whether
physical or virtual. Be sure you stay up to date, especially when
people leave the company. You don’t want to be in the position of
having to call someone who left your organization two years ago to
ask for a firewall password—especially not at 3 a.m. on a Sunday (as
is this author’s experience). If you must use a remote desktop
connection to access a server, protect it by using a VPN.

Prepare tools and credentials
Check that you have already downloaded additional tools and
documented how to use them. Unless they pose a security risk, have
them available on the recovery systems in advance.

Keep all passwords and keys (symmetric and asymmetric) in a
password manager as well as printed and stored in a secure location
with the runbook where practical. Make sure all digital certificates are
backed up securely.

Automate restore scripts



In case the msdb database is inaccessible, and you cannot generate
a restore script from a database backup history, be sure you have a
tool that generates a restore script based on files in a folder in your
offsite storage. Many tools do this, including the Restore-DbaDatabase
command in the free dbatools (available from https://dbatools.io).
This is also when self-evident backup file naming and extensions help
you to create the recovery chain.

Practice your disaster recovery plan
In concert with your HA strategy, which involves automated and
manual failovers (see Chapter 11 for more on this), you should
perform regular drills to test your runbook. You can also have people
in your organization who are unfamiliar with the environment look
through the runbook. They can provide valuable information
regarding assumptions you might have made.

The cadence is up to your organization, but a full DR scenario should
be tested at least once a year. Any changes you need to make to the
runbook should be made immediately. If the recovery fails, add notes
of how it failed and what you did to resolve the failure. All this
information is extremely valuable.

Recovery strategies for hybrid and cloud
environments
Many organizations use a combination of on-premises infrastructure
and services in remote locations, including Azure services, third-party
datacenters, and other cloud vendors.

Recover data in hybrid and cloud environments
The strategy for recovering data in a hybrid environment is very
similar to an on-premises strategy, except that you must take network
connection, latency, and bandwidth into account. When designing a
recovery strategy for a hybrid environment, pick a DR site that is
central, but geo-replicated.

https://dbatools.io/


It is prudent to use virtualization technologies that allow for VM and
file system snapshots to ensure that your virtual servers are backed
up regularly. These VM backups can be spun up in case of a disaster
more quickly than rebuilding physical servers. You can augment
these with appropriate native SQL Server backups that are tested
properly.

If you already use Azure Storage for your backups, this reduces the
network bandwidth and latency issues if you can restore your
organization’s databases to Azure VMs or databases in Azure SQL
Database.

Remember that after failing over to a DR site, you must fail back to
your on-premises site when it is up and running again. Based on the
magnitude of the disaster, you may need to keep the DR site as the
new primary, in which case you must set up a new DR site.

Recovering a database in Azure SQL Database
Chapter 17, “Provision Azure SQL Database,” offers an in-depth look
at managing Azure SQL Database, including preparing for DR. There
are three options to consider when restoring a point-in-time backup,
which play into your runbook:

Database replacement. You can replace an existing database
using a database backup. This requires you to verify the service
tier and performance level of the restored database. To replace
your existing database, rename the existing one and restore to
the old name.

Data recovery. If you need to recover data from a previous
point in time, you can restore the database to a new database.
Azure SQL Database lets you specify the point in time within the
backup retention period to which you wish to restore.

Deleted database. If you deleted a database and you are still
within the recovery window, you can restore that deleted
database to the time just before it was deleted.



The geo-restore feature can restore a full backup to any server in any
Azure region from a geo-redundant backup. Databases on the basic
performance tier can take up to 12 hours to geo-restore. This
estimated recovery time should factor into your RTO. With Azure SQL
Database, you’re also giving up control over the RPO. When properly
implemented, as discussed in Chapter 17, Azure SQL Database
supports an RPO of as little as 5 seconds.

 To read more about recovering a database in Azure SQL
Database, including associated costs, read Chapter 17, or
visit https://learn.microsoft.com/azure/sql-database/sql-
database-recovery-using-backups.

https://learn.microsoft.com/azure/sql-database/sql-database-recovery-using-backups


Chapter 11

Implement high
availability and disaster
recovery

Overview of high-availability and disaster-recovery technologies
Configure failover cluster instances
Design availability groups solutions
Understand the Azure SQL Managed Instance link feature
Configure availability groups in SQL Server on Linux
Administer availability groups

Two main goals for any database administrator are to ensure
databases remain available to the business and to prevent data loss.
Creating solutions that are highly available, and planning to minimize
downtime, not only greatly benefits your organization, it allows you to
look like a hero when disaster strikes. When considering these
solutions, you must also take into account your organization’s
Recovery Time Objective (RTO) and Recovery Point Objective
(RPO).

This chapter prepares you to meet both of these goals. It covers what
you should do beyond database backups. Its contents complement
the concepts discussed in Chapter 10, “Develop, deploy, and manage



data recovery.” First, it provides an overview of the high-availability
(HA) and disaster-recovery (DR) technologies available for SQL
Server, including log shipping, replication, failover clustering,
availability groups, and the new Azure SQL Managed Instance link
feature. Then, it looks at configuring failover clusters and availability
groups on Windows and Linux. Starting in SQL Server 2019, support
for Linux extends to availability groups as well as replication, and we
provide a guide to your first availability group on Red Hat Linux.
Finally, it covers the administration of availability groups, such as
monitoring, performance analysis, and alerting.

All code samples for this book are available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

 This chapter deals with SQL Server instances. Disaster
recovery technologies provided in Microsoft Azure SQL
Database are covered in Chapter 17, “Provision Azure SQL
Database.” Some concepts for availability groups also apply
to Azure SQL Managed Instance, including the new link
feature for Azure SQL Managed Instances discussed in this
chapter. We discuss Azure SQL Managed Instance in Chapter
18, “Provision Azure SQL Managed Instance.”

Overview of high-availability and
disaster-recovery technologies
As an enterprise-grade data platform, SQL Server provides features
to ensure HA and to prepare for DR. Using these features requires
some effort and extra investment, however; you must configure them
correctly to provide the desired benefits.

The level of effort and investment to ensure HA and DR should never
exceed the value of the data to the organization. In other words, not
every database on every server must be configured for HA and DR.
Depending on the value of the data and any Service-Level

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


Agreements (SLAs), having backups available off-premises might be
sufficient to prepare for disaster. (As always, you should copy your
backups off-premises as soon as possible after they are taken, and
you should test them regularly.)

For cases in which additional investment is warranted, there are
many technologies available. Some are suitable for HA and others for
DR, and a few are suitable for both uses. In this first section, we
cover the variety of technologies available in SQL Server to build a
highly available environment and to prepare for DR.

Inside OUT
What’s the difference between HA and DR anyway?

Before covering the different technologies, we should clarify
the difference between HA and DR.

HA means your databases automatically remain available in
the face of hardware failures, software failures, or any other
scenario that causes downtime. HA requires redundant
hardware and platforms, as well as automation and planning
for how secondary systems can assume the role of the
primary system. This chapter discusses HA in the context of
the SQL Server layer, but you should also consider the HA of
other layers necessary for running applications for end users,
such as the network, storage, and application layers.

DR means your data is not lost after a substantial incident (a
“disaster”), such as a human error that introduces bad data, a
storage failure, a ransomware attack, or a natural disaster like
an earthquake or hurricane. Data might be temporarily
unavailable until you run your DR plan. A DR plan involves
redundant storage of backup files, accomplished by copying
backups offsite. You can use other methods for DR, too, such
as maintaining online copies of databases in separate



datacenters. As discussed in the preceding chapter, a backup
shouldn’t be considered “taken” until it is copied offsite.

Compare HA and DR technologies
Table 11-1 compares the four major technologies for HA and DR
using a variety of attributes. This table is not meant to provide a
complete comparison of features; rather, it gathers the details
relevant for HA and DR.

Table 11-1 Comparison of four HA and DR technologies in SQL
Server 2022

 Log shipping
Failover
clustering

Availability
groups

Basic
availability
groups

Capable of
automatic
failover

No Yes Yes Yes

Instance
versions

Should match
exactly*

Match
exactly**

Match
exactly**

Match
exactly**

Edition Web,
Standard,
Enterprise

Standard,
Enterprise

Enterprise Standard

Readable
secondary

Yes, but
interrupted by
log restores

No Yes No

Different
indexing on
readable
secondary

No No No No



 Log shipping
Failover
clustering

Availability
groups

Basic
availability
groups

Schema
changes
required to
tables

No No No No

Schema
changes
replicated

Yes N/A Yes Yes

Primary purpose DR HA HA/DR/
Readable
secondary

HA/DR

Level Database Instance Databases Databases
FILESTREAM
and FileTable

Yes and yes Yes with
shared
disk, yes

Yes and
partially‡

Yes and
partially‡

* In theory, log shipping to a higher version of SQL Server is possible, in which case
there is no path to return to the primary copy after recovering from a disaster.
** Temporarily, these environments can be different versions while applying
cumulative updates in a rolling fashion.
‡ FILESTREAM is fully supported. FileTables are supported on the primary replica,
but FileTables are not readable on a secondary replica, regardless of replica
settings.

Understand log shipping
The log shipping feature in SQL Server enables you to create a copy
of a database on a secondary instance, by automatically restoring
transaction log backups from the database on a primary instance to
one or more secondary instances. You must set up log shipping for
each individual database. Therefore, if your application uses multiple



databases, you must independently configure each database for log
shipping.

Note
You can perform transaction log backups only if the database
uses the full or bulk-logged recovery model. You cannot
configure log shipping on a database in the simple recovery
model. For more information on database recovery models,
refer to Chapter 10.

The real role of log shipping isn’t to provide HA. Unlike other HA
features, log shipping does not provide a way to failover to the
secondary copy of the database. With log shipping, something
resembling failover would involve manual intervention and connection
string redirection outside of SQL Server. You can configure the log
shipping job to set the secondary database to standby mode,
however, allowing for read-only access. This is not as elegant or
useful a solution as an availability group’s secondary replica. Users
concurrently accessing the standby database block the next
transaction log restore in the chain.

All the logs are sent to the log shipping secondary database and are
restored WITH NORECOVERY, meaning the database maintains “In
Recovery” status and prevents you from accessing them. In the event
of a disaster, you can restore the last good transaction log backup
from the source or, if no more are available, simply bring the
destination database online.

In the most common use case, log shipping streams backups to an
off-premises DR SQL Server. In this scenario, you could manually
bring the remote secondary database online, create a new backup of
the secondary database, and restore it to the primary after a disaster
that claims the primary database. Another common use for log
shipping is to provide a “rewind” copy of the database. That is, you
can delay the restoration of the transaction log backups on the
secondary instance and provide an uncorrupted backup of the



database in the event of a data-related disaster, perhaps caused by
an application fault or human error.

Inside OUT
Can you use log shipping to send data from on-premises
SQL Server instances to Azure SQL Database or Azure
SQL Managed Instance?

You cannot currently configure log shipping with a database in
Azure SQL Database or Azure SQL Managed Instance as the
destination. However, you can use the Azure Database
Migration Service (DMS) to initiate the Log Replay Service
(LRS), which is functionally the same as log shipping. If you
use LRS, you also have the option to continuously restore
differential and log backups to the managed instance. One
popular use case for LRS is to migrate databases from on
premises to Azure SQL Managed Instance.

SQL Server 2022 introduces a superior alternative with
shorter downtime, however: the link feature for Azure SQL
Managed Instance. This feature provides near–real time
replication via a distributed availability group, and can
facilitate a migration, failover, and failback without downtime.
We discuss the link feature later in this chapter.

Although log shipping is a time-honored and straightforward way to
set up a secondary database, it does have a couple shortcomings:

You can create no other transaction log backups than those
used for log shipping. So, you must find a balance between the
replication frequency for DR and the frequency of creating
transaction log backups for point-in-time restores—for example,
to recover from user error or ransomware attack.



You can create log-shipped backups quite frequently—every
minute, even—but you must plan appropriately for the overhead
of creating the transaction log backups and having the files
copied over the network to the file share.

Overall, log shipping is considered a rudimentary form of DR—
indeed, it was introduced in SQL Server 7.0—that does what it can
and does it well. It is capable of continuously shipping a chain of
transaction logs to a remote database for months or even years. Let’s
take a quick look at setting up and configuring log shipping.

Configure log shipping
Log shipping relies on a network share for the folder where
transaction log backups will be stored. This folder and share require
specific permissions that depend on a few factors. Log shipping uses
SQL Server Agent to run scheduled jobs.

Be sure SQL Server Agent is scheduled to start automatically. The
account for the transaction log backup job (which runs on the primary
server) must have read and write access to the folder (if the folder is
located on the primary server) or the network share (if the folder is
not located on the primary server). The proxy account for the backup
copy job, which runs on the secondary server, must have read access
to the file share.

If you are using SQL Server Management Studio (SSMS) to configure
log shipping, it will restore a full backup of the database on the
secondary server from the network share, using your credentials. If
you are using Transact-SQL (T-SQL) scripts to create the log
shipping, you must copy and restore this backup manually.

Caution
If you let SQL Server create the secondary database(s) during
configuration, the data and log files for the secondary database
will be placed on the same volume as the data and log file for
the destination instance’s master database, by default. In



SSMS, in the Secondary Database Settings page, you can use
the Restore Options button on the Initialize Secondary
Database tab to change the destination data and log file
directories on the secondary server.

On the primary SQL Server instance, log shipping creates a SQL
Server Agent job called LSBackup_<dbname> to back up the transaction
logs to the network share. You must schedule the log shipping log
backup job to occur on a schedule that meets your RPO, while taking
into account the overhead and duration involved with creating,
transferring, and restoring the backups.

Log shipping also creates a SQL Server Agent job called
LSAlert_<primaryinstancename> that fails if no backup is detected in
the desired window. You can monitor the job for failure and also
monitor the SQL Server Error Log for severity 16 errors that might be
thrown that relate to log shipping not performing (error number
14420) or restoring a backup log operation (error number 14421).

 To configure SQL alerts, see Chapter 9, “Automate SQL
Server administration.”

On the secondary SQL Server instance, log shipping creates three
SQL Server Agent jobs:

LSCopy_<primaryinstancename>. Copies the backup files
from the file share to the secondary server

LSRestore_<primaryinstancename>. Continually restores the
transaction log backups

LSAlert_<secondaryinstancename>. Raises an error if no log
backup is detected after a certain time

When using SSMS, these steps are mostly automated. Otherwise,
you must manually schedule and enable these jobs. Here are a
couple recommendations for optimally configuring log shipping:



Configure the file share on a server other than the primary
database server. That way, log files will be copied from the
primary server only once. If you configure the file share on the
primary server, each secondary will initiate a copy of the backup
files. If you have more than one secondary, this will increase the
network traffic to your primary server.

Monitor log shipping activity using the report available in SSMS
and configure alerts.

Understand the capabilities of failover clustering
The purpose of failover clustering is to provide a fully automated HA
solution that protects against server failures due to hardware or
software. Failover cluster instances (FCIs) build on the Windows
Server Failover Cluster (WSFC) technology to implement this. In SQL
Server on Linux instances, you can use your own cluster manager,
such as Pacemaker. Conceptually, when the server hardware or
software of an active cluster node fails, the cluster manager detects
this and starts the SQL Server instance on another node.

Note
Always On is a marketing term to cover two HA technologies:
failover cluster instances (FCIs) and availability groups (AGs).
Although these two technologies are completely different and
accomplish different tasks in different ways, they can also be
combined.

An FCI is beneficial because the failover is automated, and because
it often takes mere seconds for the failover of the SQL Server
instance from one server to another. And even though clients
experience connection disruption in the event of a failover, and the
SQL Server experiences a restart, no special configuration on the
client is required and reconnection is usually prompt. After a failover,
the active instance will have the same DNS name and IP address as



before. Clients can open a new connection using the same
connection string and continue operating.

Failover clustering does not require any form of replication or data
duplication. Instead, the SQL Server data and logs are stored on
shared storage. Each cluster node has access to the shared storage,
and WSFC determines which node is actively connected to shared
storage, ensuring that only one node can write to the shared storage
at a time. Cluster disks appear only in Windows Explorer on the node
that “owns” them.

Note
We refer to any form of storage accessible by all nodes in the
cluster as shared storage. Versions of SQL Server before 2012
required this to be storage that was connected to all cluster
nodes. Since SQL Server 2012, however, shared storage can
also include file shares. And since SQL Server 2016 and
Windows Server 2016, shared storage can include Storage
Spaces Direct (S2D) and Cluster Shared Volumes (CSVs).
Although all these options can make selecting the appropriate
one a little more difficult, they bring SQL Server failover clusters
within reach for a much broader set of deployments.

Whichever option you select for storage, be sure it does not become
a single point of failure. The entire path from the cluster nodes to the
storage should be redundant. With traditional shared storage, this will
likely involve configuring Multipath I/O (MPIO) to prevent a single
shared drive from being discovered multiple times by each node.
Many storage vendors provide the necessary device-specific module
(DSMs)—that is, software drivers that work with the Windows MPIO
feature. For Fibre Channel and iSCSI storage area networks (SANs),
you can also use the generic Microsoft DSM if your vendor does not
provide one.

Using WSFC poses additional requirements on the hardware and
software configuration of each node as well as on shared storage. As



for the hardware, WSFC requires the hardware on each node to be
the same, including driver versions. The software on each node must
also be the same, including operating system (OS) patches. WSFC
provides a validation configuration wizard and the Test-Cluster
PowerShell cmdlet, which provides detailed analysis and reports on
the suitability of the selected servers to become cluster nodes.

 For details on the OS and SQL Server configuration necessary
to create a failover cluster instance, see the “Configure
failover cluster instances” section later in the chapter.

Inside OUT
Are SQL Server Integration Services (SSIS) and SQL
Server Reporting Services (SSRS) part of the FCI?

SSIS and SSRS are not part of the FCI and are not cluster-
aware services, so they do not follow SQL Server from one
server to another during a failover. There are other methods
for making those services highly available, however.

In general, SSRS should be configured on a separate
Windows Server using the FCI as its database only, or
configured on each Windows Server in the WSFC in scale-out
deployment. Similarly, SSIS should be installed on each
server in the WSFC. It can be manually made into a cluster-
aware service, but there are other options. You can review
these options here: https://learn.microsoft.com/sql/integration-
services/service/integration-services-ssis-in-a-cluster.

Understand the capabilities of availability groups
Availability groups (AGs) provide HA and DR capabilities and more.
An AG consists of one or more databases—called availability
databases—that failover together.

https://learn.microsoft.com/sql/integration-services/service/integration-services-ssis-in-a-cluster


Failover can be automatic or manual, and a manual failover can
either be planned or forced. Of these three failover methods, when
fully synchronized, only forced failover can cause data loss. The
secondary replica(s) can optionally be readable in Enterprise edition,
allowing some read-only access to be offloaded from the primary
read-write databases.

Compared to mirroring or replication, AGs provide a superior set of
dynamic management views for monitoring, as well as user interface
dialog boxes in SSMS and other tools. AGs offer a formidable and
capable feature set of which all DBAs should be aware.

Note
Many administrators are familiar with the Microsoft Exchange
term database availability group (DAG). DAG is not an acronym
used to describe Always On availability groups, however. It is
incorrect, and the technologies are very different, though
perhaps appear similar at a high level. To prevent
miscommunication, you should not use DAG to describe AGs,
or to describe distributed availability groups.

Availability groups feature set
The early code name for the AGs project internally at Microsoft was
HADRON. This wasn’t just a cool name. Like the Large Hadron
Collider (LHC) beneath the France-Switzerland border, which first
collided beams of high-energy particles in 2010, Microsoft was
developing HADRON for its initial release in SQL Server in December
2010.

In SQL Server, the acronym HADRON also spells out the three big
features of AGs:

High availability (HA). Describes the automatic failover to one
or more synchronous secondary replicas, or manual failover to
asynchronous secondary replicas.



Disaster recovery (DR). Describes the ability to take valid
backups directly on secondary replicas, including integrated
backup tools that use customizable replica backup priority.

Online (ON). Refers to the fact that the secondary replicas can
be read-only and allowed for the offloading of heavy-duty report
workloads. Concurrency with continuous synchronization from
the primary replica is achieved via snapshot isolation, to avoid
blocking transactions arriving from the primary replica.

Though the science-y HADRON name didn’t stick, availability groups
also provide some hightech features: automatic correction of data
corruption to repair damaged pages with data from other replicas,
and database health detection that can initiate failover in response to
database status.

Note
Failovers are not initiated when a database becomes suspect
due to factors such as transaction log corruption, data file loss,
or database deletion. For more on this, read
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/always-on-availability-groups-sql-server.

You should keep all the features of AGs in mind when developing an
architecture to meet your environment’s requirements for RPO (data
loss tolerance) and RTO (how long before the systems are back
online after a disaster).

Availability groups from other HA solutions
AGs operate by transmitting segments of transaction log data from a
primary replica to one or more secondary nodes. Like transactional
replication, AGs use the transaction log data itself. Blocks of
transaction logs are sent to the replicas—a scalable approach, as the
primary replica and secondary replica are independent from one
another. This minimizes dependencies between replicas, including

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server


hardware and networking. There is a limit on the number of replicas
in an AG: one primary replica and eight secondary replicas. It is
important to test and confirm that the network can handle the level of
activity as well as the cost of additional hardware.

Superior to the deprecated database mirroring feature, AGs begin
sending blocks of log data as soon as the data is ready to be flushed
to a drive, not afterward. So, transaction log data is sent to the
secondary AG replica(s) sooner, tightening the gap between replicas.

Unlike a SQL Server instance running on an FCI, AGs require at least
two copies of the data—no shared storage in use here—and at least
two active instances of SQL Server to accomplish HA. Unlike with
FCI, both servers can be of use to the enterprise: one as the primary
read/write replica and one as a secondary read-only replica.

The AG listener always provides redirection to the primary node, but
can also provide redirection to readable nodes. The listener is an
object that works via DNS to maintain the single name for the AG
regardless of which instance is primary.

The listener has its own IP address as well as an IP address in each
subnet where AG instances exist. Applications use a connection
string pointed at the AG listener, and provide a new parameter,
ApplicationIntent, to declare whether the transactions in the
connection will be read-write or read-only. You can route read-write
connections to the primary replica, and read-only connections to one
of the possible secondary replicas, thus splitting the workloads, even
across a WAN.

 For detailed configuration information, visit
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/configure-read-only-access-on-an-
availability-replica-sql-server.

Configure failover cluster instances

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/configure-read-only-access-on-an-availability-replica-sql-server


Windows Server Failover Clustering (WSFC) is a Windows Server
feature. Each server that will act as a cluster node must have this
feature (not a role, but a feature) installed. Cluster nodes can join or
leave a cluster at any time. However, adding a node to a cluster is not
all that is required to run the SQL Server instance(s). We first cover
(briefly) some key concepts of WSFC and then move into configuring
SQL Server FCIs.

When you create a cluster, Windows sets up an Active Directory (AD)
computer account for the cluster’s virtual network name (VNN). By
default, this VNN is created in the same AD Organizational Unit (OU)
as the cluster node. We recommend creating an OU for each cluster
you create, because permissions to create additional computer
objects are then more easily delegated. Additional computer objects
are created for each cluster resource, including each SQL Server
instance. The cluster’s VNN computer object should be given
permission to create new computer objects in the OU. Alternatively,
you could pre-stage the computer objects for the new VNNs in the
OU. The IP address associated with any VNN should be a static
address, not a dynamically assigned address.

SQL Server failover clusters can provide DR options through the
configuration of a stretch cluster. In a stretch cluster, some of the
nodes are geographically located in different datacenters from the
others. This provides the ability to failover to another datacenter in
the event of a disaster at the primary datacenter. The stretch cluster
is configured to work across a wide-area network (WAN) and the
outlying nodes do not have access to the same shared storage. This
requires the configuration of replication from the cluster nodes in the
primary site to the cluster nodes in the remote site(s).

 For information on multi-subnet clustering with SQL Server,
including considerations for the IP address cluster resource,
refer to https://learn.microsoft.com/sql/sql-server/failover-
clusters/windows/sql-server-multi-subnet-clustering-sql-
server.

 To read more about multi-subnet cluster configuration for
availability groups, see the “Configure RegisterAllProvidersIP

https://learn.microsoft.com/sql/sql-server/failover-clusters/windows/sql-server-multi-subnet-clustering-sql-server


and MultiSubnetFailover correctly” section later in the chapter.

Note
Instead of configuring a single stretch cluster to provide DR, you
should configure two independent clusters, one at each site.
Then, to replicate data between sites, set up distributed
availability groups, discussed next.

Understand FCI quorum
Creating and operating a WSFC requires an understanding of
quorum. Like rules in a governmental meeting, quorum establishes
that a majority of voting parties are present. The quorum of the
cluster determines which nodes in the cluster are operating and how
many failed nodes the cluster can sustain. This is tracked in a file
called the quorum log, stored by default in the \MSCS\quolog.log file
on the quorum resource and continuously accessed by the cluster
service.

Note
In common Windows-based configurations, AGs use the WSFC
as a cluster manager. See the section “Create WSFC for use
with availability groups” later in this chapter for more
information.

In Windows, this is the WSFC cluster type option. When using WSFC
for AGs, the same guidance for quorum in this section applies.

In Linux, there is an external cluster manager: the EXTERNAL cluster
type option. A clusterless configuration that does not require a cluster
manager is also available with the cluster type option NONE. For more
information on these two types, see the section later in this chapter,
“Compare different cluster types.”



Correctly selecting a quorum configuration is important to avoid a
split-brain scenario, which occurs when two instances of the cluster
are running but are unaware of each other. You can choose from five
quorum configurations, each of which accomplishes the basic goal of
allowing a majority of the nodes to maintain quorum, often by the use
of an extra vote called a witness to increase an even number of votes
into an odd number:

Node majority. This is the recommended configuration choice
for clusters with an odd number of nodes. To determine whether
the cluster will function—and if so, which nodes will be active
cluster members—a majority of nodes must “vote.” The number
of failures that can be sustained for the cluster to remain
operational is (n / 2) – 1, where n is the number of cluster nodes,
and the result of the division is rounded up. Thus, in a five-node
cluster, you can sustain at most two failed nodes, or two nodes
that have lost communication with the other nodes, and so on,
because (5 / 2) – 1 = 3 – 1 = 2.

Node and disk majority. This is the recommended
configuration choice for clusters with an even number of nodes.
Each node gets a vote, and the presence of a shared witness
disk, designated as the quorum disk, adds a vote to whichever
node owns it. In the case of a four-node cluster, two nodes can
fail if the shared disk is online or can be brought online on one of
the remaining two nodes. If the shared disk cannot be brought
online, the number of nodes that can fail is half minus one, or (n
/ 2) – 1. In the case of a four-node cluster with the witness disk
unavailable, only one node can fail for the cluster to remain
available.

Node and file share majority. This configuration is used for
clusters with an even number of nodes but without shared
drives. The file share witness adds the extra vote only when the
number of nodes is even. The witness file share isn’t owned by
any particular node, but the nodes that cannot reach the file
share (due to whatever problem caused them to no longer be
able to communicate with their peers) will not be active.



Node and cloud witness. Cloud witness, pointing to an Azure
Blob Storage resource as a type of file share witness, is
available starting with Windows Server 2016. In this
configuration, which is very similar to node and file share
majority, the witness is a cloud service—specifically, an Azure
storage account. To configure this option, you must provide the
name of the storage account and one of its access keys.

Disk only. In the disk-only quorum configuration, node count is
never considered. Only the shared witness disk’s availability to
nodes matters. This means the (single) shared disk becomes a
single point of failure; even if all nodes can communicate, if the
disk is unavailable, the cluster will not be operational. This mode
is largely available for legacy purposes, but it can make it
possible for you to start the cluster in case of a significant
disaster when there is no other way to achieve quorum.

Because of the intricacies of quorum configuration, we recommend
that you use node majority (for a cluster with an odd number of
nodes) or node and disk majority (for a cluster with an even number
of nodes) as the configuration if shared storage is available. If shared
storage is not available, configure node and file share majority for a
cluster with an even number of nodes. You should not use the disk-
only quorum configuration to operate the cluster; its value lies in
recovering a severely broken cluster using only a single node.

Inside OUT
Should you use dynamic quorum management for your
AG?

Yes. Starting with Windows Server 2012 R2, dynamic quorum
management can remove nodes that drop from a cluster.
Dynamic quorum is enabled by default since Windows Server
2012 R2.



Consider a five-node cluster. With dynamic quorum, when
three nodes are shut down in a planned manner, their votes
are removed, leaving only two votes remaining. This allows
the cluster to maintain quorum and continue functioning
because those two votes are available on the two remaining
nodes.

However, this can be dangerous in the event of a total site
failure. Should a site in a cluster that spans two physical
locations be left with no way to achieve node majority, no
automatic failover is possible without manually “rigging” the
node weights to force a failover. Forcing quorum and manually
performing a failover is a temporary measure and requires the
reestablishment of proper node weights after DR.

As an example, if you have only two nodes at two physical sites, the
third vote—for example, a file share witness—should be located at
the primary site and moved upon planned failover. This ensures the
best chance for the current primary replica to remain online even if
there is a network loss between the two sites. If you have three
nodes, you should still create a quorum witness, though with dynamic
quorum management, it will not be assigned a vote unless needed to
make the total quorum vote count an odd number.

Configure a SQL Server FCI
When configuring SQL Server as a cluster resource, you should
configure the cluster resources for a single instance in a single cluster
resource group. A cluster resource group is the level at which a
failover happens—that is, all the resources on a single cluster node
that will move together from one node to another during a failover.
Cluster resources in a cluster resource group can include the IP
address, the SQL Server instance’s network name, the shared disks
(if any; there aren’t any shared disks with Clustered Shared Volumes
and Storage Spaces Direct), the SQL Server service itself, the SQL
Server Agent, SQL Server Analysis Services (SSAS), and the



FILESTREAM file share. If multiple SQL Server instances are
configured on a single cluster, each will need a resource group.

If you would like to have multiple servers running active instances of
SQL Server simultaneously, you can install additional instances on
each FCI. Each SQL Server instance can be active on only one
server at a time, but when using multiple instances, each instance
can run independently of the others. The following is an example of
how these SQL Server instances might be configured on multiple
servers:

Server 1

SQL Instance A. Active

SQL Instance B. Passive

Server 2

SQL Instance A. Passive

SQL Instance B. Active

However, we recommend always keeping a passive cluster node—
that is, a node that has no active responsibilities. Otherwise, if a
failover occurs, one server must run at least one additional instance,
increasing the load on the server. If you run each instance on
separate hardware, you’ll need n + 1 cluster nodes, where n is the
number of SQL Server instances.

Keep in mind that any cluster configuration of more than two nodes
requires SQL Server Enterprise edition.

Inside OUT
How should you configure service accounts for SQL
Server in a WSFC?



With a standalone installation, SQL Server will default to
virtual service accounts for all services during setup. With a
cluster installation, you should specify a domain account for
the clustered services: Database Engine, SQL Server Agent,
and SSAS if installed. Shared services, such as SSRS, can
continue to use a virtual service account.

The domain accounts require no special privileges or rights in
advance, so use a domain user account for each SQL Server
service that will run on the cluster. SQL Server Setup grants
the necessary permissions to each service account, such as
access to the data and log folders. The account running the
installer will need permissions to make these changes.

You can choose to create a group managed service account
(gMSA) for each service. This reduces management overhead
because the password for these service accounts is managed
by AD and regularly changed. In addition, the security
configuration is enhanced because no one knows the
password.

Starting with SQL Server 2016 and Windows Server 2016,
you can create WSFCs with certificates instead of using AD
service accounts, known as workgroup clusters. These are
based on a concept called an Active Directory–detached
cluster, which still requires a domain. You can create a
domain-independent AG on a workgroup cluster for any
mixture of Windows Server nodes that are not joined to the
same domain or any domain. For more information, visit
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/domain-independent-availability-groups.

In the same way that the hardware and OS patch levels should be
identical on every cluster node, so too should the SQL Server
configuration. The best way to guarantee initial exact configuration is
to use configuration scripts to first prepare each cluster node, and
then complete the cluster installation with another script. These

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/domain-independent-availability-groups


scripts are valuable because they ensure consistent installation of the
SQL Server binaries. They also serve as DR preparation because
they document the configuration of each instance, and you can use
them to set up a new cluster in case of a disaster.

You can create these scripts by hand. However, this is a tedious and
error-prone process. Instead, we recommend starting SQL Server
Setup and running the Advanced Cluster Preparation setup from the
Advanced tab of the SQL Server Installation Center window. On
the Ready to Install step of the installation wizard, the path to the
configuration file is displayed. Open the configuration file and save it
somewhere. A network share is ideal because it can then be
referenced from all cluster nodes that will run the SQL Server
instance.

If you prefer to have a completely automated configuration file, you
must modify the script as outlined in the following example. You start
Setup from the command line by using the /ConfigurationFile=path
parameter; then specify the full path to the configuration file:
Click here to view code image

; Add this line 
IACCEPTSQLSERVERLICENSETERMS="True" 
; Modify the next lines 
; Change to True to enable unattended installation to 
progress 
IACCEPTPYTHONLICENSETERMS="True" 
; Quiet simple means you'll see the UI auto-progress. 
QUIETSIMPLE="True" 
; Or, leave QUIETSIMPLE="False" and modify this line for no 
UI 
QUIET="True" 
; Delete, or comment out, this line 
UIMODE="Normal"

 For more about installing SQL Server from the command line,
see Chapter 4, “Install and configure SQL Server instances
and features.”



To complete the cluster installation, in SQL Server Setup, run the
Advanced Cluster Completion setup option. There again, you can
choose to save the script for later. The cluster completion phase is
where you will do the following (in no particular order):

Select or create the cluster resource group.

Set the virtual network name and IP address for the SQL Server
instance—how your clients will connect.

Select the shared storage for the database files.

Note
Azure Virtual Machines (VMs) hosting SQL Server FCI used to
be limited to one SQL Server instance per cluster. This was a
unique limitation to Azure VMs. In recent years, however, Azure
VMs were updated to allow for multiple front-end virtual IPs on
internal load balancers. You can now have multiple SQL Server
FCIs per cluster, just like in an on-premises Windows Server
cluster.

Patch a failover cluster
Near-zero downtime is the objective when configuring FCIs. Some
events are unexpected, but some regular maintenance tasks such as
patching the OS and SQL Server instance are regular activities. You
can perform these maintenance tasks with near-zero downtime by
using rolling upgrades.

To conduct a rolling upgrade, you should have a passive node—that
is, a node that, under normal circumstances, does not run any
workload. You upgrade the passive node first and, if necessary,
reboot it. This reboot does not cause any downtime because the
node is not running a workload. When the reboot is complete and the
upgrade has been validated, the roles from any active node should
be failed over to the passive node.



As indicated, a brief amount of downtime is incurred while this takes
place (on the order of seconds). The newly passive node is then
upgraded, and so on, until all nodes in the cluster are at the same
software version. Although you can choose to return the original
passive node to its passive state when all nodes have finished
upgrading, this would incur one more interruption and will likely not
provide any benefit other than consistency.

First introduced in Windows Server 2012, Cluster-Aware Updating
(CAU) automates this process, and you can even schedule rolling
upgrades and updates for Windows patches and SQL Server
updates. Even though this is not automated, it is a significant benefit
with the frequent updates available for modern Windows Server
operating systems.

Design availability groups solutions
This section contains information about designing, configuring, and
troubleshooting AGs, along with the various features associated with
AGs, a core element of SQL Server’s HA capabilities. Much of the
content applies to SQL Server instances on-premises on Windows, in
Azure VMs, in Azure SQL Managed Instance, and in SQL Server on
Linux. Later in this chapter, we talk in detail about configuring an AG
in Red Hat Enterprise Linux (RHEL).

 For considerations with regard to HA options in containers,
see Chapter 3, “Design and implement an on-premises
database infrastructure.”

You can create AGs using the Availability Groups Wizard in SSMS, T-
SQL, or PowerShell. If this is your first time creating an AG, we
recommend using the Availability Groups Wizard and scripting out the
steps and objects it creates with T-SQL to further your understanding.

In SSMS, creating a copy of a database on a secondary replica SQL
Server can be fairly wizard-driven, including the ability to automate
the process of taking a full and transaction log backup of the



database, copying the data to a file share, and restoring the database
to any secondary replica(s). You can script these tasks at the end of
the wizard and deploy them to future AGs via T-SQL or PowerShell.

As in many places in this book, although we don’t provide a step-by-
step walk-through, we do offer pointers and key decisions to make
when creating AGs. There is, however, a more in-depth walk-through
of AGs in SQL Server on Linux later in this chapter.

Inside OUT
What server principal owns an AG replica?

The server security principal used to create the AG will own
the AG replica object by default, creating an immediate follow-
up action item for administrators after setup. Each replica
object has an owner, listed in the dynamic management view
(DMV) sys.availability_replicas, where the owner_sid is a
server-level security principal.

What the owner_sid is used for isn’t fully documented.
However, because it could be used as the authority to make
changes to AGs, it should not be an administrator’s personal
named account. You should either create the AG (and create
future replicas) under the security context of a service account
that does not expire or immediately change the owner of the
AG replica to a service account.

A similar problem occurs when you create an AG with a login
that doesn’t have an explicit server principal or SQL Server
login, but rather has access via a security group. In that case,
an AG will be created with the built-in public server role as the
owner_id. In general, ownership or additional permissions
should not be granted to the public role, so you should change
this.



Changing the owner of the AG replica to the instance’s sa
login, on instances with mixed mode authentication enabled,
is also an acceptable and common practice. For example:

Click here to view code image

ALTER AUTHORIZATION ON AVAILABILITY GROUP::[AG1] to 
[domain\serviceaccount];

Compare different cluster types
While most enterprise implementations of AGs involve Enterprise
edition SQL Servers and a WSFC, the instance does not necessarily
need to reside on a Windows Server that is a member of a WSFC.
You can enable the HA feature and create clusterless AGs starting
with SQL Server 2017. The only cluster types available when creating
an AG without the presence of a WSFC are External and None.
These cluster types are created for non-Windows cluster managers
and clusterless AGs, respectively.

Let’s compare the three cluster type options—WSFC, External, None
—and other possible cluster architectures.

Windows Server Failover Cluster (WSFC)
WSFC is the original supported architecture. It relies on the
underlying cluster quorum for failover, discussed earlier in this
chapter. Even though SQL Server creates the necessary objects
inside the WSFC, manages settings such as preferred/possible
resource ownership, and runs any user-initiated failovers, the WSFC
quorum is used to detect node outage and trigger automatic failover.

Just because failover isn’t automatically prompted by SQL Server, it
doesn’t mean you can’t have HA. There are production enterprise
environments with AGs configured for manual failover, but with the
failover automated along with other server assets (such as web or
application servers) so that the automation isn’t piecemeal.



PowerShell is a common automation tool for this task, and we provide
a sample of such a failover script in Chapter 9.

External
This type of cluster uses an external cluster manager, not the WSFC.
SQL Server on Linux supports the use of external cluster managers,
with Pacemaker being the most common. Red Hat Enterprise Linux,
Ubuntu, and SUSE Linux Enterprise Server are all supported
platforms. AGs on Linux clusters require at least two synchronous
replicas to guarantee HA, but at least three replicas for automatic
recovery, so we recommend that you set up your AG on at least three
nodes.

SQL Server on Linux is not cluster-aware, and AGs on Linux are not
tightly bound to the clustering resource manager, as they are on
Windows. This means you cannot control failovers from within SQL
Server. To manually perform a failover, for example, you must use the
pcs command line to manage the Pacemaker cluster manager.

 To learn more about setting up AGs in Linux, see the
“Configure availability groups in SQL Server on Linux” section
later in this chapter.

None
You can implement clusterless AGs that, like the deprecated
database mirroring feature, do not require a failover cluster network.
Introduced in SQL Server 2017 and available in Standard and
Enterprise editions, this was initially referred to as a read-scale
availability group in documentation. Now, Microsoft refers to this AG
option as clusterless. The None option provides a subset of AG
features on SQL Servers on Windows and/or Linux replicas.

With the None option, all the machinery of synchronization and
failover is within the SQL Server instances. There is no cluster
manager. One of the biggest sources of complexity and problems
(especially during failover) with AGs based on WSFC is not the SQL



Server configuration or behavior, but the configuration or behavior of
the quorum and the various forms of quorum witnesses. We
discussed these earlier in this chapter, in the section “Understand FCI
quorum.” Since SQL Server 2012, the causes of AG issues are more
likely to be misconfigurations of Windows Server, cluster networks,
DNS, or cluster quorum settings, as opposed to SQL Server–based
issues.

Although automatic failover is not possible with a read-scale AG,
manual planned and forced failover is still possible, as are the usual
AG features to which you’re accustomed, including both synchronous
and asynchronous availability modes, readable secondary nodes,
and secondary replica backups. (More on these options later in this
chapter.) AGs without a WSFC cluster can still provide readable
secondary nodes, load balancing, and read-only routing. Introduced
in SQL Server 2019, automatic traffic redirection provides for routing
of read/write traffic back to the primary node and does not require a
listener. More on this later, in the section “Recent improvements to
availability groups.”

Failover can be automated with external tools and often is, so that the
database, application, and web layers of a multi-tier application
failover from one datacenter to another together.

To use this feature, you must select the Enable Always On
Availability Groups check box in the SQL Server Properties dialog
box for the SQL Server Database Engine service, accessible from
SQL Server Configuration Manager. The Properties page of the SQL
Server instance service contains a tab labeled “Always On Availability
Groups” (see Figure 11-1).



Figure 11-1 In Configuration Manager, you can enable AGs even
if the Windows Server is not a member of a WSFC, to
use with clusterless, read-scale AGs. This behavior is
only possible in SQL Server 2017 and above.

Other possible architectures
You can also consider the following alternate architectures, which
might be more appropriate for your environment if you are not running
Enterprise edition or if you have geographically separated
environment HA requirements.

Basic availability groups
A basic availability group is a limited version of a traditional AG. Basic
AGs are supported only on SQL Server Standard edition. This feature
wholly replaces the deprecated database mirroring feature but with
the modern SSMS dialog box options and monitoring tools.

As with database mirroring, the single secondary replica cannot be
readable or backed up. Although each basic AG can support only two
replicas, you can create more than one basic AG per server. Basic
AGs are supported on SQL Server 2016 and above, mostly to match
the features of database mirroring. Otherwise, basic AGs allow for
many of the same features as regular AGs, including synchronous
and asynchronous replication, manual and automatic failovers, plus



management DMVs and commands that are superior to those with
database mirroring.

Contained availability groups
SQL Server 2022 introduces a new feature called contained
availability groups. With contained AGs, DBAs no longer need to
create scripts and processes to keep logins and SQL Server Agent
jobs synchronized between replicas. Instead, the master and msdb
databases are contained within the AG and seeded to all nodes.
These system databases are named after the contained AG and
appended with the system database name—for example,
ContainedAG_msdb.

You use a contained AG listener to interact with the contained system
databases, which are referred to internally as master and msdb. Any
changes made to these databases, while connected to the contained
AG listener, will be made to the contained system databases
themselves.

One limitation of contained AGs is they include no support for any
form of replication, distributed AGs, or log shipping to a target
database inside the contained AG. There are also considerations with
a contained AG if you are using change data capture, log shipping, or
transparent data encryption.

 For more information about contained AGs, see
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/contained-availability-groups-overview.

Distributed availability groups
With distributed availability groups, you can have an AG treat another
AG, typically over a WAN, as a secondary replica. The read-only
secondary replicas can be globally dispersed, offloading workloads to
regional read-only secondary replicas. Distributed availability groups
sound complicated, but they are a proven platform. The new Azure

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/contained-availability-groups-overview


SQL Managed Instance link feature was developed with distributed
availability groups as the platform for that PaaS offering.

The two AGs, each with their own listener, do not need to be in the
same network or WSFC. This allows for local hardware and
geographically remote HA and DR across multi-site deployments.
With distributed AGs, you do not need to span a WSFC across the
WAN or subnet. There is no risk of accidental failover of the WSFC
over the WAN; in fact, there is no automatic failover supported at all
between the primary AG and the secondary AG. The AG that is not
primary can only serve read-only queries, but it does have a primary
replica itself, referred to as the forwarder. The primary replica, or
forwarder, in the secondary AG is charged with replicating
transactions to the other secondary replicas in the secondary AG.
Otherwise, distributed AGs operate in much the same way as
traditional AGs.

This architecture could be especially useful for future OS and SQL
Server version upgrades of instances in an AG because you can
have different versions of Windows Server (2012 minimum) and SQL
Server (2016 minimum) and perform a fast migration with minimal
downtime.

Although each partner AG in a distributed scenario has its own
listener, the distributed AG as a whole does not. Applications,
perhaps with the aid of DNS aliases, connect to each AG directly
after a failover to take advantage of readable secondary replicas.

You can also use distributed AGs to migrate Windows-based AGs to
Linux-based AGs, though this is not a permanent, stable, or
recommended configuration.

FCIs and availability groups
SQL Server FCIs can themselves be members of AGs, though these
AGs do not support automatic failover. The FCI is still capable of
automatic failover of the instance hardware, allowing for local HA and
hardware availability, but not remote HA.



We do not recommend creating a WSFC that spans a WAN, even if
the subnet spans the network. Instead, you should consider AGs
without FCIs, or distributed AGs, if you require local hardware HA.

Create WSFC for use with availability groups
We covered WSFCs earlier in this chapter. A failover cluster can be
the underlying technology for both FCIs and AGs. If you choose to set
up an AG that uses the underlying structure of a WSFC, the first big
decision is the same for setting up any WSFC: Quorum votes—
specifically, where quorum votes will reside—are key to
understanding how the servers will eventually failover. The
recommendations remain the same:

Use the node majority quorum mode when you have an odd
number of voting nodes.

Use the node and file share majority quorum mode when you
have an even number of voting nodes.

 Refer to the section “Understand FCI quorum” earlier in this
chapter for more information.

Your quorum strategy might also be different based on two factors:

Do you intend to mostly run out of one datacenter, with the other
datacenter used in disaster operations only?

Do you intend to have manual failover only, without any
automatic failover?

If you answered yes to both, it makes sense to have a quorum vote
maintaining uptime in the primary node, including placing a file share
witness in the primary node datacenter. If you answered no to either,
you should follow best practices for WSFC quorum alignment,
including an odd number of quorum votes, with one of the quorum
votes in a third location. This can include an Azure Storage Account



Cloud Witness, introduced with Windows Server 2016, which is a
relatively inexpensive and very reliable witness.

When creating your cluster using the wizard, you do not need to
select the Add All Eligible Storage check box for the cluster.
Similarly, you do not need to run cluster validation wizard checks on
your storage. The WSFC for your AG won’t have any storage unless
you choose to use a shared storage witness as your odd vote. Add
that separately. You can view the current quorum votes per member
roles in the following DMV: sys.dm_hadr_cluster_members.

During cluster validation and after the WSFC is online, you might see
warnings in the Failover Cluster Manager that storage is not
configured. Because storage is not clustered in AGs, you can ignore
these warnings and, in the future, use the Failover Cluster Manager
only to view the overall health state of the cluster or to manage
quorum.

Do not initiate failovers from the Failover Cluster Manager unless you
are forcing quorum in an emergency or recovery scenario. All
failovers for the AG should be initiated through SQL Server—for
example, via SSMS, T-SQL statements, or PowerShell commands.

 See the section “Understand failovers in availability groups”
later in this chapter for more information.

Inside OUT
What permissions are needed to create AG objects?

When creating the WSFC without domain administrator
permissions, you might encounter errors when creating a
Cluster Name Object (CNO) or the listener objects in AD. The
listener object is created by the CNO, so the CNO must have
access to read all properties and to the Create Computer
Objects dialog box in the cluster’s OU. The user creating the
cluster must have rights to grant the CNO these permissions,



as well, or grant these permissions to the CNO after it is
created. The listener object can also be pre-created by a
domain administrator instead of giving the CNO these rights.

Understand the database mirroring endpoint
The endpoint for AG communication, which exists on each SQL
Server instance in the AG, is also called the database mirroring
endpoint. It shares a name, functionality, and port with the endpoint
created by the deprecated database mirroring feature.

The endpoint name Hadr_endpoint is given by default to the
endpoint. It is used by SQL Server to communicate between
instances, not user connections, and is created only for the purposes
of AGs (or the deprecated database mirroring feature).

By default, the endpoint communicates on TCP port 5022. This does
not need to change unless the port is already in use by another AG.
You can view information about the endpoint in the
sys.database_mirroring_endpoints (including its current status, role,
and encryption settings) and sys.tcp_endpoints (including its port
number, IP settings, and listener IP) system reference tables.

If you’re creating the AG database_mirroring endpoint manually, you
can use the CREATE ENDPOINT T-SQL command or the New-
SqlHadrEndpoint PowerShell cmdlet.

 Network connectivity to the endpoint is a common source of
initial problems when configuring AGs. For more information
on troubleshooting initial configuration, visit
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/troubleshoot-always-on-availability-groups-
configuration-sql-server.

Recent improvements to availability groups

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/troubleshoot-always-on-availability-groups-configuration-sql-server


AGs were first released in SQL Server 2012 and have seen dramatic
improvements since then. If you are still the administrator of an AG
running on SQL Server 2012, you should consider the advantages of
these feature improvements, especially now that SQL Server 2012
has reached the end of extended support.

Replica read-write traffic redirection
SQL Server 2019 introduced the optional ability to redirect read-write
connections from a secondary replica back to the primary replica.
This behavior is not coordinated by the listener and ensures quick
reconnection after a failover for AGs that do not have a listener.
Replica read-write redirection is helpful for scenarios where a listener
is not available for the AG—for instance, a listener is not supported
on the cluster technology, or in a clusterless AG setup where
cluster_type = NONE.

Not set by default, the READ_WRITE_ROUTING_URL parameter for the
primary replica is required for this behavior. Secondary replicas must
also allow all connections, so they must have the ALLOW CONNECTIONS
= ALL parameter set, which is also not the default.

When a connection with Application_Intent=ReadOnly is sent
directly to a secondary replica with SECONDARY_ROLE
(READ_ONLY_ROUTING…), the connection continues to the specified
server. The same is true when connecting to the primary replica. This
feature of routing of read/write traffic back to the primary does not
require a listener.

When a connection with Application_Intent=ReadWrite arrives at an
online secondary replica with ALLOW CONNECTIONS = ALL, the
connection is routed to the primary replica automatically.

Before SQL Server 2019, a connection with
Application_Intent=ReadWrite that arrived at a secondary replica
with ALLOW CONNECTIONS = ALL would communicate with the
secondary replica, but a transaction would fail if it attempted to write
to the secondary replica, which in all scenarios remains read-only.



 For more information on the various scenarios of connecting to
a secondary replica before and after this feature of SQL
Server 2019, see https://learn.microsoft.com/sql/database-
engine/availability-groups/windows/secondary-replica-
connection-redirection-always-on-availability-groups.

To take advantage of this feature, you should:

Set a READ_WRITE_ROUTING_URL on all replicas. This is not set by
default.

Make a habit of declaring Application_Intent in all connection
strings, including read-write connections.

Set the secondary replica to ALL to allow all connections.

Cluster types
Improvements introduced in SQL Server 2017 included structural
expansion to the very foundation of AGs, including support for
replicas to SQL Server on Linux instances and the possibility of
cross-platform AGs using an external cluster manager.

Linux servers cannot be part of a WSFC, so the architecture of AGs
had to be expanded to operate without a WSFC. As a result,
clusterless availability groups, previously referred to as read-scale
availability groups, have been possible since SQL Server 2017. We
discussed the NONE cluster type and its potential advantages for
Windows-based SQL Servers without failover clusters earlier in this
chapter.

Distributed AGs, where individual clusters treat another cluster as a
replica, also became possible beginning with SQL Server 2016. We
discussed possible cluster architectures earlier in this chapter.

Replica limits

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-always-on-availability-groups


Since SQL Server 2014, the total number of secondary replicas has
been eight, including both synchronous and asynchronous replicas.
Starting in SQL Server 2019, the cap on synchronous replicas
increased to five, meaning there is one primary replica and up to four
synchronous secondary replicas. This was capped at one primary
and up to two synchronous replicas in SQL Server 2017.

Before SQL Server 2016, you could only specify two automatic
failover replicas: a primary and only one secondary. But since the
release of SQL Server 2016, you can specify three: the primary plus
up to two secondary replicas.

Distributed transaction support
AGs on Windows now fully support the Microsoft Distributed
Transaction Coordinator (MSDTC). Initially, AGs in SQL Server 2012
did not support distributed transactions using MSDTC. This was a
deal breaker for migrating some legacy applications to take
advantage of AGs.

Since SQL Server 2017 (and including SQL Server 2016 with Service
Pack 2), cross-database transactions using MSDTC have been fully
supported on the same or different instances. The DTC_SUPPORT setup
parameter when creating or altering an AG is provided to enable
(DTC_SUPPORT = PER_DB) or disable (DTC_SUPPORT = NONE) distributed
transactions.

MSDTC is available in SQL Server on Linux starting with SQL Server
2019 (and SQL Server 2017 CU 16), but MSDTC with AGs is not
supported in SQL Server on Linux.

Note
Before SQL Server 2016 with Service Pack 2, it was not
possible to modify the DTC_SUPPORT setting of an AG, as cross-
database transactions were not supported.



Configure the minimum synchronized required
nodes
The REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT setting
establishes a minimum number of synchronized replicas, which you
can set to an integer value between 0 and the number of replicas
minus 1.

By default, this setting is 0, which mimics the behavior before this
feature’s introduction in SQL Server 2017. In this case, a
synchronous replica that stops responding does not stop the primary
replica from committing transactions. Instead, the problematic
synchronous replica’s state is set to NOT SYNCHRONIZED until it is
reachable again and catches up, at which point its state is set back to
SYNCHRONIZED. (You can see each replica state in the
sys.dm_hadr_database_replica_states DMV on the primary replica
or in the Availability Group dashboard for the primary replica in
SSMS.)

When greater than zero, this setting guarantees that transactions
commit to that number of secondary replicas. At least as many
secondary replicas as the value of the setting must be set to
SYNCHRONIZED or transactions on the primary replica will not be
allowed to commit! This guarantees that the primary database replica
cannot introduce new data while there are insufficient secondary
synchronous replicas, and therefore automatic failover targets. You
should carefully consider the impact of transaction rollbacks on client
applications and your data loss tolerance requirements before
changing this setting from the default.

Choose the correct secondary replica availability
mode
The most important consideration when choosing between the
asynchronous-commit availability mode and synchronous-commit
availability mode for each secondary replica is the requirement for
automatic or manual failover.



Three overall factors guide this decision:

If your HA goals require automatic failover, you must choose
synchronous.

If your databases are geographically separated, even if they’re
in the same subnet, you should choose asynchronous-commit
availability mode because the performance impact discussed in
the following section will be significant. Replicas in
asynchronous-commit availability mode do not place as much of
a performance burden on the primary replica and are more
appropriate for high-latency network environments than
synchronous mode, especially over geographically separated
datacenters. Performance of the primary replica with only
asynchronous-commit availability mode replicas will also be
noticeably improved during index maintenance and other bulk
data operations. We discuss the performance impact of
secondary replicas in the next section.

If your databases are in the same physical network area,
consider whether your performance requirements allow for
synchronous commit mode.

This section discusses how synchronous-commit availability mode
replicas work and how the commit mode affects their behavior and
that of the primary replica. Choosing synchronous-commit availability
mode is not without a performance impact on the primary replica.
This performance impact has two causes:

The actual delay of the commit due to the time it takes to receive
the acknowledgements from the secondary replica(s)

The potential for concurrency issues due to the longer lock
periods

The commit delay can be measured by using performance counters
(if you want to measure the delay for a specific duration) or by
querying wait statistics.



 Methods for measuring data movement latency are detailed in
the Microsoft blog post at
https://techcommunity.microsoft.com/t5/sql-server-support-
blog/troubleshooting-data-movement-latency-between-
synchronous-commit/ba-p/319141.

Inside OUT
Does SQL Server compress transaction log data sent to
secondary replicas?

By default, asynchronous-commit availability mode
compresses transaction logs sent over the network, reducing
network bandwidth but increasing CPU load and potentially
increasing the amount of time it takes to commit. You can
disable this log stream compression with global Trace Flag
1462. This is not generally necessary because of the benefits
of the log stream compression over a WAN, but asynchronous
replicas within the same datacenter may not benefit from the
compression.

The log transport of synchronous commit availability mode is
not compressed to make the commit to the secondary replica
as fast as possible. You can choose to enable log stream
compression with global Trace Flag 9592 if you believe
network bandwidth is a bottleneck to the performance of
secondary replica synchronization.

In either case, enabling or disabling compression via the
global trace flags will affect all AGs on the instance.

Understand the impact of secondary replicas on
performance

https://techcommunity.microsoft.com/t5/sql-server-support-blog/troubleshooting-data-movement-latency-between-synchronous-commit/ba-p/319141


If you exceed the amount of replica data that your secondary replica
hardware can process in a timely fashion, the log redo queue on the
secondary replica(s) and the log send queue on the primary replica
will begin to grow, as they cannot truncate committed transactional
data. These log queues grow under heavy load and must process
before the secondary replica can come online. Synchronous commit
mode delays commits on the primary replica. In asynchronous
commit mode, there are still transaction delay repercussions if the
secondary replica(s) cannot match the performance of the primary
replica.

A redo backlog on a secondary replica causes the following
problematic conditions:

It delays automatic failover by preventing a failover without data
loss, forcing any failover to be a manual failover.

It delays database recovery at startup after a crash or reboot.

The data on the secondary replica will be stale, which might
reveal itself in queries against read-only secondary nodes.

It delays data being backed up when using the secondary
replica for database or log backups.

Transactions in the primary replica’s transaction log will be
delayed, truncating only during transaction log backups because
transactions cannot be applied to secondary replicas.

For these reasons, to protect the performance of the primary replica,
a secondary synchronous replica might switch to asynchronous
because of time-outs when communicating with the primary node.
This switch happens automatically and temporarily, and logically
blocks the possibility of automatic failover. Favoring the performance
of the primary means that synchronous replicas are not guaranteed to
provide zero data loss in all workloads, and are best described as
potential automatic failover partners.

If a synchronous commit secondary replica does not send
confirmation before a time-out period, the primary replica marks the



secondary replica status as DISCONNECTED, essentially removing it
from the AG. The time-out period is 10 seconds by default, but you
can change it via the SESSION_TIMEOUT property of the secondary
replica. This prevents the primary replica from suffering transaction
hardening delays. You can detect when this happens by setting a
SQL Agent alert for error numbers like 41416 and 41418, or by
monitoring databases for the Availability Replica Role State and
Availability Replica Connection State policies.

 For more information on SQL Agent alerts and policy-based
management (PBM), see Chapter 9.

A secondary replica that has become DISCONNECTED must be added
back to the AG by an administrator. Depending on how far behind it
is, it might also need to be reseeded with a new full backup.

You should consider switching the AG’s secondary replicas from
synchronous to asynchronous if you anticipate a period of heavy,
performance-sensitive writes to the system—for example, when
performing index maintenance, modifying or moving large tables, or
running bulk operations. Afterward, change the replicas back to
synchronous. You’ll be able to observe their state change from
SYNCHRONIZING to SYNCHRONIZED as soon as the secondary replicas
have caught up.

Similarly, you must temporarily switch your asynchronous secondary
replicas to synchronous mode to perform a manual failover without
data loss, and without having to use the FORCE parameter. After the
failover, you can switch the replicas back to asynchronous mode.
You’ll be able to observe their state change from SYNCHRONIZED to
SYNCHRONIZING as soon as the secondary replicas have switched to
asynchronous.

In SQL Server on Windows, manual failovers of an AG should always
be initiated via SQL Server, not by the Failover Cluster Manager. In
SQL Server on Linux, all manual and automatic failover actions are
initiated by the external cluster manager, such as Pacemaker.



Inside OUT
How many potential synchronous automatic failover
partners can a replica have?

Before SQL Server 2016, only one secondary replica could be
a potential automatic failover partner with the primary replica.
Starting with SQL Server 2016, you can now set up to two
synchronous commit secondary replicas in an automatic
failover set using the WSFC cluster type, for a total of three
(including the current primary) replicas that you can set to be
a part of automatic failover.

 For more information on failover sets, see
https://learn.microsoft.com/sql/database-
engine/availability-groups/windows/failover-and-failover-
modes-always-on-availability-groups#failover-sets.

The preferred owner properties of the AG object in the WSFC
determine which of the two secondary replicas is the target of
an automatic failover.

SQL Server automatically manages the potential and
preferred owners list of AG resources in the WSFC, and there
is no method in SQL Server to control this. If you change
these settings in the WSFC, they will be overwritten the next
time SQL Server performs a failover, and thus we do not
recommend doing so.

You can view the current possible and preferred owners in the
Failover Cluster Manager. On the Roles page, double-click
the AG object to open its Properties dialog box; you’ll find the
Preferred Owners list on the General tab. Then, back in
Failover Cluster Manager, under Other Resources, double-
click the AG object. On the Advanced Policies tab, you’ll find
the Possible Owners list.

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/failover-and-failover-modes-always-on-availability-groups#failover-sets


Understand failovers in availability groups
When an AG fails over, a secondary replica becomes the new
primary, and the primary replica (if available) becomes a secondary
replica. The properties of replicas after they become primary or
secondary should be reviewed and reconfigured after a failover,
especially if the failover was unplanned and/or forced. It might not be
appropriate given the loss of one or more nodes to support automatic
failover, readable secondary nodes, or backup priority settings.

Automatic failover
Automatic failovers provide HA, and rely on properly configured
listener and WSFC objects for their success. Only a synchronous-
commit availability mode replica can be the destination of an
automatic failover.

You can configure the conditions that prompt an automatic failover on
a scale of 1 to 5, where 1 indicates that only a total outage of the SQL
Server service on the primary replica should initiate a failover, and 5
indicates any number of critical to less-severe SQL Server errors.
The default is 3, which prompts an automatic failure in the case of an
outage or unresponsive primary replica, but also for some critical
server conditions.

 These flexible failover policy conditions are detailed at
https://learn.microsoft.com/sql/database-engine/availability-
groups/windows/flexible-automatic-failover-policy-availability-
group#FClevel.

Automatic failovers will not occur unless they meet the same
conditions as a planned failover, which we look at next. Specifically,
automatic failovers cannot occur with the possibility of data loss.

Planned failover

https://learn.microsoft.com/sql/database-engine/availability-groups/windows/flexible-automatic-failover-policy-availability-group#FClevel


A planned failover can occur only if there is no possibility of data loss.
Specifically, this means the failover occurs without the use of the
FORCE parameter to acknowledge warnings in code or in SSMS dialog
boxes. It is therefore only possible to have a planned failover to a
secondary replica in synchronous-commit availability mode. That
doesn’t mean, however, that asynchronous is out of the question. You
can move an asynchronous-commit availability mode replica to
synchronous, wait for the SYNCHRONIZED state, and then issue a
planned failover without data loss.

You should not attempt a planned failover from within the Failover
Cluster Manager. Instead, you should use SQL Server commands via
SSMS, T-SQL, or PowerShell.

 For PowerShell code examples of scripted failover, see
Chapter 9.

Forced failover
You should attempt a manually initiated, forced failover only in
response to adverse cluster conditions such as the loss of the
primary node. You should never attempt to force failover from within
the Failover Cluster Manager unless adverse cluster conditions have
made it impossible to force failover from SQL Server commands via
SSMS wizards, T-SQL commands, or PowerShell.

Force failover if WSFC quorum is down
You will not be able to force a failover for AGs based on a WSFC if
the WSFC has no quorum. You will first have to force quorum in the
Configuration Manager by rigging the vote and modifying node
weights. You should consider this step only in emergencies, such as
when a disaster has disrupted a majority of cluster nodes. You can
accomplish this with a short PowerShell script, to force an online
node to assume the primary role without a majority of votes.
Click here to view code image



Import-Module FailoverClusters 
$node = 'desired_primary_servername' 
Stop-ClusterNode -Name $node 
Start-ClusterNode -Name $node -FixQuorum 
#FixQuorum forces the cluster to start 
# without a valid quorum, which we're about to fix 
(Get-ClusterNode $node).NodeWeight = 1 
$nodes = Get-ClusterNode -Cluster $node 
#Force this node's weight in the quorum

After execution of this temporary fix, you can then address issues
with the cluster and nodes to repair long-term stability and/or restore
what a partial disaster has wrought. Subsequent nodes or witnesses
coming back online could change the vote and cause a quorum
failover or failure.

Force failover in other scenarios
If you initiate a forced failover to a synchronous, synchronized
secondary replica, the behavior is the same as if you had performed
a planned manual failover, as detailed in the previous section. In this
way, the behavior of a planned failover in healthy circumstances is no
different from the FORCE syntax.

What if the AG isn’t healthy, or is in asynchronous commit mode, and
a failover must be forced regardless of the risk? The following sample
T-SQL command issues a forced failover, allowing for data loss, for
execution on the primary replica of the AG named AG1:
Click here to view code image

ALTER AVAILABILITY GROUP [AG1] 
FORCE_FAILOVER_ALLOW_DATA_LOSS;

Again, you should consider this step only if efforts to get the target
secondary replica into a synchronized state in synchronous commit
mode are unsuccessful. However, just because you’re forcing a
failover doesn’t mean you have to tolerate data loss. (Also, this is the
only option for a manual failover for AGs with cluster_type = NONE.)
Use the following steps to attempt to prevent data loss:



1. Before any failover, try to get the intended failover target
secondary replica into synchronous commit mode. Wait for the
synchronization state to indicate Synchronized, not
Synchronizing, as is indicated in the Availability Groups
dashboard or the sys.dm_hadr_database_replica_states DMV.
This is the sample T-SQL code for execution on the primary
replica:

Click here to view code image

ALTER AVAILABILITY GROUP [AG1] 
     MODIFY REPLICA ON N'secondary_replica_name' 
     WITH (AVAILABILITY_MODE = SYNCHRONOUS_COMMIT);

2. Use the REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT setting
to require a secondary replica to commit any transaction before
committing to the primary replica. This is a safety measure to
ensure no transactions are lost in failover. By default, this is 0.
Execute this on the primary replica:

Click here to view code image

ALTER AVAILABILITY GROUP [AG1] 
SET REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT = 1;

3. Demote the primary replica to a secondary replica and ensure it
is configured as a readable secondary replica. This means that
briefly, the AG will have no writable replica. This is also a safety
measure to ensure no transactions are lost in failover. Execute
this on the primary replica:

Click here to view code image

ALTER AVAILABILITY GROUP [AG1] SET (ROLE = SECONDARY);

4. Force the failover, now with no chance of data loss, by executing
this on the primary replica:

Click here to view code image



ALTER AVAILABILITY GROUP [AG1] 
FORCE_FAILOVER_ALLOW_DATA_LOSS;

5. After a forced failover, you may need to execute the following on
all secondary replicas to resume data movement after the
interruption.

Click here to view code image

ALTER DATABASE [WideWorldImportersDW] 
SET HADR RESUME;

6. Because it is a precautionary measure that could affect
performance, remember to revert
REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT back to its
original state for your environment. By default, this is 0. Execute
this on the primary replica:

Click here to view code image

ALTER AVAILABILITY GROUP [AG1] 
SET REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT = 0;

Note
You should always use SQL Server commands via the SSMS
Availability Group dashboard, T-SQL, or PowerShell to initiate
failovers, not via the Failover Cluster Manager interface or
directly to the WSFC. An exception to this rule is with AGs for
which the cluster_type = EXTERNAL. This would be the case
for instances on SQL Server on Linux, when using a Linux-
based cluster manager such as Pacemaker. In this case, you
must use the external cluster manager to initiate all failovers.

Seeding options when adding replicas
Copying the data to the secondary replica to begin synchronization is
a prerequisite step for adding a database to an AG. There are a few
different ways this can occur, some more automatic than others. The



following sections detail the options on the Add Database to
Availability Group page of the SSMS Availability Groups Wizard—
Automatic Seeding, Full, Join Only, and Skip—including explanations
of when you should use each one. Each of the four options has a
different strategy for moving the data across the network to the
secondary replica.

Automatic seeding
Introduced in SQL Server 2016, automatic seeding handles the data
copy, performing a backup using the endpoint as a virtual backup
device. This is a clever way to automate the backup/restore without
using network file shares or requiring the administrator to expend
effort backing up, copying, and restoring. This works seamlessly for
most cases, given the following caveats:

In general, you should use the same data and log file paths for
all replicas on the same OS (Windows or Linux). Starting with
SQL Server 2017, however, this is no longer a requirement for
automatic seeding. Keep in mind that the default path to the
instance data and log folders includes the named instance
names, which could be different from instance to instance. For
example, here is the path on this author’s named instance on
Windows:

Click here to view code image
F:\Program Files\Microsoft SQL 
Server\MSSQL16.InstanceA\MSSQL\DATA

This will not match the path on another server with a different
instance name:

Click here to view code image
F:\Program Files\Microsoft SQL 
Server\MSSQL16.InstanceB\MSSQL\DATA

The only manual intervention required by the administrator is to
grant the AG object permissions to create databases on the



secondary replicas. This is slightly different from a typical GRANT
statement for permissions:

Click here to view code image
ALTER AVAILABILITY GROUP [AG_WWI] GRANT CREATE ANY 
DATABASE;

After automatic seeding, the AUTHORIZATION (also known as the
owner) of the database on the secondary replica might be
different from the AUTHORIZATION of the database on the primary.
You should check to ensure that they are the same, and alter
the database if needed:

Click here to view code image
ALTER AUTHORIZATION ON DATABASE::WideWorldImporters TO 
[serverprincipal];

 For more about database authorization, see Chapter 12,
“Administer instance and database security and permissions.”

Compression of the log stream sent over the network for the
automatic seeding backup transfer is disabled by default. You
may choose to enable log stream compression if you suspect
that network bandwidth is a bottleneck to the automatic seeding
transfer. We do not recommend that you perform automatic
seeding during regular production usage anyway, so enabling
compression to speed the transfer at the cost of CPU overhead
might be worthwhile. You cannot currently enable compression
via SSMS dialog boxes; instead, you do it using global Trace
Flag 9567. Keep in mind that enabling automatic seeding
compression via the global trace flag affects all AGs on the
instance.

The automatic seeding backup can take longer than a normal
backup, especially if it is over a WAN connection or a distributed
AG. During automatic seeding, the source database’s
transaction log cannot truncate. If automatic seeding takes too
long, you can stop it for databases that have yet to complete by



using the following code, which changes the replica
synchronization preference to MANUAL or Join Only. Use the
following T-SQL example on the primary replica:

Click here to view code image
--Stop automatic seeding 
ALTER AVAILABILITY GROUP [AG_WWI] --availability group 
name 
   MODIFY REPLICA ON 'SQLSERVER-1\SQL2022' --Replica name 
   WITH (SEEDING_MODE = MANUAL); --'Join Only' in SSMS 
GO

You can view the progress of automatic seeding (on all replicas)
in the system DMV sys.dm_hadr_physical_seeding_stats,
which includes a column that estimates the completion of the
automatic seeding, estimate_time_complete_utc. Even though
data is displayed for sys.dm_hadr_physical_seeding_stats on
both the primary and secondary replica, an estimate might be
available only on the primary node. The role_desc column will
indicate which end of the automatic seeding the local SQL
instance is: source or destination.
You can review the history of automatic seeding activity in the
DMV sys.dm_hadr_automatic_seeding, on both the primary and
the target secondary replica. The current_state field will equal
'SEEDING' for in-progress automatic seeding sessions, as shown
in the following T-SQL examples:

Click here to view code image
--Monitor automatic seeding 
SELECT s.* FROM sys.dm_hadr_physical_seeding_stats s 
ORDER BY start_time_utc desc; 
--Automatic seeding history 
SELECT TOP 10 ag.name, dc.database_name, s.start_time, 
s.completion_time, 
    s.current_state, s.performed_seeding, 
s.failure_state_desc, s.error_code, 
   s.number_of_attempts 
FROM sys.dm_hadr_automatic_seeding s 
INNER JOIN sys.availability_databases_cluster dc ON 
s.ag_db_id = 



dc.group_database_id 
INNER JOIN sys.availability_groups ag ON s.ag_id = 
ag.group_id 
ORDER BY start_time desc;

Troubleshooting automatic seeding
In addition to the guidance in the preceding section, here is a
checklist of troubleshooting steps for unsuccessful automatic seeding
attempts:

You must grant permissions to the AG object to create
databases on each secondary replica. For example:

Click here to view code image
ALTER AVAILABILITY GROUP [AG_WWI] GRANT CREATE ANY 
DATABASE;

Check the primary and secondary replica’s SQL Server Error
Log, which contains error messages related to the attempted
automatic seeding backup and restore events.

Be sure the secondary replica’s SQL Server service account has
permissions to create and obtain full control over the path where
the restore is attempting to place the seeded files. On each
replica, you can use different paths, but we do not recommend
doing this, because it increases complexity and could be the
source of errors in future reconfigurations or restores.

Check that the same features, including FILESTREAM if
applicable, are enabled for the secondary instance before
automatic seeding.

During a lengthy automatic seeding, turn off transaction log
backups to the database on the primary replica. Transaction log
backups could cause automatic seeding to fail, with the
message “The remote copy of database ‘databasename’ has not



been rolled forward to a point in time that is encompassed in the
local copy of the database log.”

If automatic seeding fails, drop the unsuccessfully seeded database
on the secondary replica, including the database data and log files in
the file path. After you have resolved the errors and want to retry
automatic seeding, you can do so by using the following sample T-
SQL statement. Run this code sample on the primary replica to retry
automatic seeding:
Click here to view code image

ALTER AVAILABILITY GROUP [AG_WWI] --availability group name 
    MODIFY REPLICA ON 'SQLSERVER-1\SQL2022' --Replica name 
    WITH (SEEDING_MODE = AUTOMATIC); --Automatic Seeding

Inside OUT
Can you use automatic seeding to add a database with
transparent data encryption enabled?

Databases that already have transparent data encryption
(TDE) enabled are supported in AGs but require an extra step
with automatic seeding. You cannot have a database with
TDE enabled for one replica but not enabled for another
replica. If you’re setting up a new database, enable TDE and
then seed it to all secondary replicas. If adding an existing
database with TDE enabled to a new replica, distribute the
certificate to all secondaries. It is recommended that you test
this entire process along with testing failovers before
promoting this to your production environment.

Enabling TDE on a database that is already a member of an
AG is supported in the SSMS wizard with other seeding
modes, starting with SQL Server 2016. (This feature was
required to place the SQL Server Integration Services
database into an AG.)



Full
This option performs an automatic background backup of the
database and log, copies them via a network share (Windows or
Linux) that you must set up beforehand, and restores the databases.
Configuring the network share and its permissions successfully is the
trickiest part of this strategy. The SQL Server service account of the
primary replica instance must have read and write permissions to the
network share. The SQL Server service account of the secondary
replica instance(s) must have read permissions to the network share.

Be sure the secondary replica’s SQL Server service account has
permissions to create and obtain full control over the path where the
restore is attempting to restore the copied backup files. Because you
cannot specify REPLACE, the databases and database files should not
already exist in place on the secondary replicas. Check also that the
same features, including FILESTREAM if applicable, are enabled for
the secondary instance before adding the database to the secondary
replica.

Join Only (manual backup, copy, and restore)
As a fallback to more automated options, when creating an AG
outside of the SSMS dialog boxes, with T-SQL or PowerShell, Join
Only is the default and least complicated option. Consider this
strategy also when the Full option would take too long within the
available maintenance window.

One way to speed up this process is by moving the data before the
creation of the AG. Join Only requires the administrator to do the
following manually, in this order:

1. Take full and log backups of each database (or use recently
taken backups).

2. Copy them to the secondary replica(s).

3. Restore the full backup WITH NORECOVERY.



4. Restore one or more log backups WITH NORECOVERY.

The closer the log chain is to live, the sooner the database will catch
up after it is joined to the AG. After the transaction log backup is
restored, the database is ready to be joined to the AG on that replica,
via SSMS or code.

Skip
Using this option, you can complete setup of the rest of the AG
without synchronizing any databases. Choose this if you want to
synchronize the replica databases later. This option may be helpful if
you are working with very large databases, an extremely slow
network, array backups, or on-premises where storage hasn’t been
attached yet.

Additional actions after creating an availability
group
Before SQL Server 2022, AGs could only replicate database-level
data, but not server-level data, such as logins. Starting with SQL
Server 2022, you now have the option to create a contained AG. As
the DBA, your job is to determine whether a standard or contained
AG is the best option for your company and to prepare the secondary
instances for failover.

Depending on whether you use a contained AG, you either need to
create scripts to sync information between replicas or set up the
contained AG to create the necessary server-level settings and
objects to support normal operations during a failover. We
recommend creating these by using a script, which can easily be run
on multiple secondaries (including new secondaries that might be
added later on) or after a disaster affects the primary or secondary
server(s). Using scripts ensures that the server-level configuration is
consistently and efficiently applied.



Although database-level settings are populated automatically for a
contained AG, including users, user permissions, and database roles,
there are server-level objects that the SQL DBA needs to create or
update after setting up the AG, performing a failover, or recovering
from a disaster.

Before adding a SQL Server instance as a secondary replica of an
AG, you should move the server-level objects from the primary
replica to the new secondary replica SQL Server instances. Consider
the following checklist for all the server-level objects that should exist
on all SQL Server replica instances:

Server-level security, including logins and server roles, can be
used to access the replicated databases, plus any explicit
server-level permissions or role memberships for logins and
roles. The SIDs and passwords of any SQL authenticated logins
must match on all replicas.

The owner_sid of the database owner should also exist in the
secondary replica instances.

Create server-level certificates, including certificates used by
TDE for databases in the AG.

Configure Transport Layer Security (TLS) settings and
endpoints.

Create SQL Server Audit configurations.

Create SQL Server Agent jobs, operators, alerts, retention
policies enforced for backup files, log files, various msdb history,
and policy-based management.

Review and match server-level configuration options and
surface area configuration options.

Create backup devices and maintenance plans or backup jobs.

Configure the Resource Governor. Create the classifier function
and any groups and pools.



Create custom Extended Events sessions for monitoring.

Create user-defined messages.

Create server-level triggers, including logon triggers.

In Azure, configure Azure Network load balancer backend pools
(if applicable).

In your corporate network environment, configure the network
firewall to handle all availability group replicas. Test with failover
from replica to replica that connectivity is allowed.

Note
If you are using a contained AG, some of the items in the
preceding list might not need to be scripted and updated
manually. This is the primary advantage of the new contained
AGs feature. Refer to the section “Contained availability groups”
earlier in this chapter for more information.

After the AG is set up, perform the following additional steps:

Review all settings and document the current configuration.
Document the planned settings for each replica in all failover
scenarios. When any replica is primary, which should be
synchronous/asynchronous, automatic/manual failover, and
readable?

Perform a planned failover to each replica (with replicas in
synchronous mode, even if temporarily). Confirm application
network connectivity where each replica is primary. A regular
failover exercise is recommended.

Confirm that the cluster network RegisterAllProvidersIP
setting is configured correctly to work with application
connection strings (see the next section). If enabled, confirm
that the listener has IPs in each subnet. Confirm that application



connection strings are using the proper value for
MultiSubnetFailover.

Confirm that application connection strings are using appropriate
values for ApplicationIntent.

Configure the read-only secondary replica endpoints and routing
URLs for all replicas.

Add a step to all SQL Server Agent jobs, except those in the
Report Server category, to check if the server is primary or
secondary.

Confirm the backup strategy for databases in AGs. If the method
for backups is aware of backup priority values, the backup
preferences should be configured for each replica. Verify that
the Availability Group Properties page for Backup Preferences
are configured appropriately on each replica.

Read secondary database copies
This section provides an overview of how the synchronization of
secondary replicas works, and then moves into using the secondary
replicas to offload heavy read-only workloads from the primary
replica. This is the online portion of the original HADRON code name
acronym for AGs, and it can be integral to the architecture of an
enterprise transactional system.

One of the biggest advantages of AGs over the legacy database
mirroring feature is the ability to obtain some value out of the
secondary database: a live, remote copy of the data. Read-only
replicas can be part of your enterprise architecture, providing an easy
way to offload heavy workloads to another server, including business
intelligence (BI); extract, transform, load (ETL); and integration
workloads. Secondary replica databases are not set to read-only
using the READ_ONLY option; rather, they are written to by the AG
mechanism, and are available to be read by transactions.



How synchronizing secondary replicas works
In synchronous commit mode, transactions must write to the primary
server, send to secondary replica(s), commit to secondary replica(s),
and then receive an acknowledgement from each secondary replica
before it can commit on the primary server.

Log data is written to the drive, or flushed, to the primary replica log
file, and that data is received by the secondary replicas and applied
to the secondary replicas’ data files. The log data is then written to
the drive to the secondary replica(s) log file(s). The amount of data
waiting to be flushed on the secondary replica is known as the log
redo queue.

In asynchronous commit mode, transactions must write to the primary
server and commit; then, transactions are sent to secondary
replica(s), commit to secondary replica(s), and the primary replica
receives an acknowledgement from each secondary replica.

As a result, asynchronous replicas will never display SYNCHRONIZED
with the primary replica, but they can be “caught up” to reflect the
same state of all row data. You should expect asynchronous replicas
to be shown as SYNCHRONIZING during normal operation. You cannot
trust an asynchronous replica to be completely caught up with all
transactions from the primary. You can measure the backlog of
transactions waiting to be committed to an asynchronous replica by
using the sys.dm_hadr_database_replica_states DMV.

 For a sample of such a query, see the section “Monitor
availability group health and status” later in this chapter.

To avoid blocking transactions arriving from the primary replica,
secondary replicas use snapshot isolation to return queries using row
versioning, stored in the secondary replica’s tempdb database.
Queries against secondary replicas use the snapshot isolation level,
overriding any transaction isolation level settings or table hints.

Readable secondary databases automatically append a 14-byte
overhead to each data row to facilitate the row versioning, just as a



14-byte overhead is added to row data on the primary database if
snapshot isolation or read committed snapshot isolation (RCSI) is
used. The tempdb database also is used to store temporary statistics
for indexes in secondary replica databases.

 For more information about snapshot isolation and RCSI, see
Chapter 14, “Performance tune SQL Server.”

Use the listener for traffic redirection
The AG listener not only forwards traffic to the current primary replica
and handles redirection automatically during failover, but it can also
redirect traffic that identifies itself as read-only to readable secondary
replicas. This is especially effective for long-running SELECT
statements coming from reports or other BI systems.

Each replica, when primary, provides a list of endpoints to the
listener. You can configure this routing list on each listener in
advance; however, in certain failover scenarios, your desired routing
list might change. Updating the read-only routing lists for each replica
should be part of your failover scripting if necessary.

Each replica should have a read-only routing URL, regardless of
whether it is currently serving as a secondary replica. You should also
set this in advance, but use it only when the replica is serving as a
readable secondary replica. The options to set the
READ_ONLY_ROUTING_URL property and routing list for each replica are
available in SSMS in the Availability Group Properties dialog box
as of version 19.0. (See Figure 11-2.)



Figure 11-2 The Read-Only Routing page of the Availability
Group Properties dialog box in SSMS.

You can configure the read-only routing URLs and routing lists for
each replica. Note that each routing list is wrapped in parentheses,
indicating that the secondary readable replicas will be load-balanced.
Without the parentheses, traffic is directed only to the first replica in
the list that is online.

The read-only routing URL is not used for application connection
strings. You should always use the listener name for connection
strings.

To be routed to a secondary readable replica by the listener, a
connection string must specify ApplicationIntent=ReadOnly.
Otherwise, the listener does not have a way to determine whether the



user connection will run only read-only statements. However, starting
with SQL Server 2019, the Replica Traffic Redirection feature can
prevent errors when accidentally trying to write to a secondary replica
via the use of READ_WRITE_ROUTING_URL, when
ApplicationIntent=ReadWrite is specified.

Each replica has a property indicating what types of connections it
can receive when it is a secondary replica. Here are the three options
for the ALLOW_CONNECTIONS parameter for replicas:

No. No user connections are allowed to the secondary replica.

Read-intent only. Only user connections that use the
ApplicationIntent=ReadOnly parameter in their connection
string are allowed, and only read-only statements can be run.

Yes. Any user connections are allowed, though only read-only
statements can be run.

Note
If application connection strings do not provide a value for
ApplicationIntent, specifying SECONDARY_ROLE
(ALLOW_CONNECTIONS = NO) or SECONDARY_ROLE
(ALLOW_CONNECTIONS = READ_ONLY), the databases on a
secondary replica will be inaccessible and will block access to
your query connections, even in SSMS. This will hide
databases on secondary replicas from DMVs and your
monitoring tools.

Each replica also has a property indicating the types of connections it
can receive when it is a primary replica. Here are the two options:

Allow all connections. This is the default. It allows connections
to a secondary replica even if they declare
ApplicationIntent=ReadWrite. Starting in SQL Server 2019,
they are automatically redirected to the primary replica.



Allow read/write connections. Use this when your application
connection’s strings use ApplicationIntent. This setting blocks
any user connection that specifies
ApplicationIntent=ReadOnly. This could be useful if you have
report connection strings that use instance names instead of the
listener name (not recommended). If you have no secondary
replicas set up for read-only access, connections to the replica
database via the listener with ReadOnly intent will fail.

When connecting to AGs, we recommend that you provide both the
ApplicationIntent and MultiSubnetFailover parameters and
appropriate values for each connection string. The default value for
ApplicationIntent is ReadWrite, which is always directed to the
primary replica of the AG. MultiSubnetFailover, as explained in the
next section, is critical for basic connectivity.

Connecting directly to a secondary readable database without using a
listener is possible. However, we do not recommend designing
connection strings for reporting systems that use a secondary
readable SQL Server instance. In future failover scenarios, you would
not be able to separate read-write traffic from read-only traffic without
reconfiguration. Consider hardcoding a readable secondary replica
name only if you’re using a connection string that cannot use the
ApplicationIntent parameter or if using a listener for some reason is
not possible.

Configure RegisterAllProvidersIP and
MultiSubnetFailover correctly
In a multi-subnet cluster, you should enable the
RegisterAllProvidersIP setting (1) if your application connection
strings will use the listener using MultiSubnetFailover = Yes. When
RegisterAllProvidersIP is enabled in the cluster, the listener has IPs
in each subnet.

You can verify that RegisterAllProvidersIP is enabled in your cluster
and that the listener has an IP in each subnet from the command line,



with the following command. In this example, Listener1 is the name
of the AG listener:

nslookup Listener1

You should see two IP addresses listed, one per subnet, if
RegisterAllProvidersIP is enabled.

Optimally, you enable the RegisterAllProvidersIP setting and
specify MultiSubnetFailover = Yes when in a multi-subnet cluster.
The MultiSubnetFailover connection string parameter allows both
IPs for the listener to be always registered, and modern connection
strings to use a parallel connection attempt to each IP address. The
result is a quick connection to the active IP address during normal
operation and immediately after failover.

You will notice misconfiguration of the RegisterAllProvidersIP and
MultiSubnetFailover options in the following circumstances:

If you enable RegisterAllProvidersIP with your connection
strings using MultiSubnetFailover = No or if you do not specify
MultiSubnetFailover, your application could have very high
latency connection times. This is because connection strings
attempt to connect to IPs in a non-determinant sequence, based
on the DNS query results. As a result, your application may
experience network timeouts upon connection to the listener.

If you disable RegisterAllProvidersIP, then
MultiSubnetFailover = Yes will have no effect, and your
applications will not reconnect promptly after AG failovers.
Instead, they must wait for DNS to resolve the new primary
subnet IP address for the listener. The time-to-live (TTL) could
be minutes to hours!

If you are using any connection strings that do not support
MultiSubnetFailover or do not have the ability to enable that
connection string parameter, the RegisterAllProvidersIP setting in
the cluster should be disabled (0), which is the default.



Inside OUT
Can you use OLE DB to connect to a multi-subnet AG?

There is some confusion about preferred modern data
providers due to the temporary deprecation of the popular
OLE DB standard.

The older OLE DB–based SQL Native Client (SNAC),
appearing as SQLNCLI or SQLNCLI11, has been removed
from SQL Server and SSMS starting with SQL Server 2022.
Do not use the SNAC for new development, and especially
not for connecting to a multi-subnet AG because it cannot
specify the needed parameter MultiSubnetFailover=True.
This could cause long periods of timeouts, as explained in the
previous section.

Instead, consider the new MSOLEDBSQL provider, released
in 2018 when OLE DB was un-deprecated. It is highly
recommended that developers convert connection strings
from the old providers to MSOLEDBSQL. For more
information on the new MSOLEDBSQL provider, visit
https://blogs.msdn.microsoft.com/sqlnativeclient/2017/10/06/a
nnouncing-the-new-release-of-ole-db-driver-for-sql-server/.

To change the RegisterAllProvidersIP setting in the cluster network,
you can use the following PowerShell script:
Click here to view code image

Import-Module FailoverClusters 
# Get cluster network name 
Get-ClusterResource -Cluster 'CLUSTER1' 
Get-ClusterResource 'AG1_Network' -Cluster 'CLUSTER1' | ` 
   Get-ClusterParameter RegisterAllProvidersIP -Cluster 
'CLUSTER1' 
# 1 to enable, 0 to disable 
Get-ClusterResource 'AG1_Network' -Cluster 'CLUSTER1' | ` 

https://blogs.msdn.microsoft.com/sqlnativeclient/2017/10/06/announcing-the-new-release-of-ole-db-driver-for-sql-server/


    Set-ClusterParameter RegisterAllProvidersIP 1 -Cluster 
'CLUSTER1' 
# All changes will take effect once AG1 is taken offline and 
brought online again. 
Stop-ClusterResource AG1_Network' -Cluster 'CLUSTER1' 
Start-ClusterResource 'AG1_Network' -Cluster 'CLUSTER1' 
# Must bring the AAG Back online 
Start-ClusterResource 'AG1' -Cluster 'CLUSTER1' 
# Should see the appropriate number of IPs listed now, one in 
each subnet. 
nslookup Listener1

Note
The FailoverPartner connection keyword used with database
mirroring does not apply to AGs or the listener. If you’re
upgrading from database mirroring to AGs, remove the
FailoverPartner keyword from connection strings. A
connection string will fail if both the MultiSubnetFailover and
FailoverPartner keywords are present.

Configure load-balanced read-only routing
Introduced in SQL Server 2016, you can load-balance connections
that use ApplicationIntent=ReadOnly across multiple read-only
replicas in the AG. You can implement this easily by changing the
read-only routing list to use parentheses to create load-balanced
groups.

For example, the ALTER statement that follows provides a read-only
routing list for a three-node AG that is not load-balanced. All read-
only queries will be sent to the secondary node SQLSERVER-1, and if it
is unavailable, to SQLSERVER-2, and if that is also unavailable, to
SQLSERVER-0. This was the behavior before SQL Server 2016. Here is
a sample script to configure a read-only routing list for the AG WWI.
Click here to view code image



ALTER AVAILABILITY GROUP [WWI] 
MODIFY REPLICA ON 'SQLSERVER-0' 
WITH (PRIMARY_ROLE(READ_ONLY_ROUTING_LIST = 
('SQLSERVER-1','SQLSERVER-2', 'SQLSERVER-0')));

The ALTER statement provides a read-only routing list that is not load-
balanced. Note the lack of parentheses around the node names.

With the configuration in the following sample, read-only traffic will be
routed to a load-balanced group of SQLSERVER-1 and SQLSERVER-2,
and failing those connections, to SQLSERVER-0:
Click here to view code image

ALTER AVAILABILITY GROUP [WWI] 
MODIFY REPLICA ON 'SQLSERVER-0' 
WITH (PRIMARY_ROLE(READ_ONLY_ROUTING_LIST = 
(('SQLSERVER-1','SQLSERVER-2'), 'SQLSERVER-0')));

To add load-balanced replica groups in SSMS, access the Read-
Only Routing page in the Availability Group Properties dialog box.
Then, in the Availability Replicas window, press the Ctrl key while
selecting multiple nodes. Finally, select Add to add them
simultaneously as a load-balanced group.

SQL Server won’t stop you from adding the primary replica to its own
read-only routing list, so be sure your list is correct before you run the
command.

Query Store on replicas
Query Store is an important tool for performance tuning, providing
query execution and plan history since SQL Server 2016. Starting in
SQL Server 2022, Query Store can collect information from
secondary replicas in an AG.

Before you enable Query Store on the secondary replicas, you must
update the SQL Server instance to use the global Trace Flag 12606
at startup for all nodes in the AG. After you restart the SQL Server



service on each node, you can run the following on the primary node
of the AG:
Click here to view code image

ALTER DATABASE CURRENT SET QUERY_STORE = ON; 
ALTER DATABASE CURRENT 
FOR SECONDARY SET QUERY_STORE = ON 
( OPERATION_MODE = READ_WRITE );

 For more information about setting up Query Store on
secondary replicas, see
https://learn.microsoft.com/sql/relational-
databases/performance/monitoring-performance-by-using-the-
query-store#query-store-for-secondary-replicas.

 For more on Query Store, see Chapter 14.

Implement a hybrid availability group topology
You can include Azure VMs running SQL Server instances in an AG
alongside on-premises SQL Server instances. Azure VMs in multiple
regions can be part of the same AG, as well. In terms of SQL Server
functionality, the AG feature operates the same, but there are
differences in the network setup. Communication is accomplished via
a prerequisite site-to-site VPN with Azure to your on-premises
subnet.

The Azure VMs that belong to the AG should also be in the same
availability set per region so the VMs obtain the benefits of being part
of an availability set. (Note that you cannot change a VM from one
availability set to another after they are created.) It is possible to put
your AGs in different availability zones. This allows you to have your
data stored in separate physical locations for additional disaster
recovery and business continuity.

The Add Replica dialog box in SSMS provides an easy method to
add Azure VM replicas, and the Add Azure Replica button appears

https://learn.microsoft.com/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store#query-store-for-secondary-replicas


on the Specify Replicas page of the Add Replica Wizard when the
prerequisites have been met.

The Add Azure Replica button does significantly more work than the
Add Replica button for the new secondary replica, including creating
the Azure VM. You can select the Azure VM tenant and the image for
the VM, and specify the domain. The Availability Group Wizard
handles creating the VM based off the image, configuring the VM’s
administrator user, and joining the VM to your domain.

Note
An important licensing change was introduced in October 2019,
allowing customers with Software Assurance as part of their
SQL Server license to run free Azure VMs as replicas in their
AGs. This dramatically lowers the cost of moving a replica of
your existing AG into Azure. For more information, talk to your
licensing reseller, and read the announcement blog post at
https://cloudblogs.microsoft.com/sqlserver/2019/10/30/new-
high-availability-and-disaster-recovery-benefits-for-sql-server/.

AG listeners using Azure VMs use an internal Azure load balancer—
one per region. You must create the load balancer before you create
the listener, so skip this step in your initial AG setup and/or wizard.
When creating the load balancer, add all Azure SQL Server VMs in
that region to the back-end pool. You can then configure the AG
listener to use the Load Balancer IP.

With Azure VMs, creating an AG listener requires an internal load
balancer. The load balancer’s IP address becomes the listener’s IP
address.

 For a Microsoft-provided walk-through on configuring Azure
VM–specific objects such as an internal load balancer, see
https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/availability-group-manually-configure-
tutorial-multi-subnet.

https://cloudblogs.microsoft.com/sqlserver/2019/10/30/new-high-availability-and-disaster-recovery-benefits-for-sql-server/
https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/availability-group-manually-configure-tutorial-multi-subnet


 A detailed walk-through on creating and configuring a new
listener between Azure VMs is provided at
https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/manage-sql-vm-portal.

Caution
Just like any AG, a hybrid on-premises and cloud AG may
experience a mismatch of the Bytes per Cluster disk setting,
resulting in poor VM performance, transaction logs that are
unable to truncate, and the error message “There have been
nnn misaligned log IOs which required falling back to
synchronous IO.” See the section “Important SQL Server
volume settings” in Chapter 4 for a workaround involving Trace
Flag 1800.

 For more on Azure VMs, see Chapter 16, “Design and
implement hybrid and Azure database infrastructure.”

Understand the Azure SQL Managed
Instance link feature
An exciting addition to Azure for creating a hybrid environment is the
link feature for Azure SQL Managed Instance, which was introduced
in preview around the launch of SQL Server 2022. Since this feature
is still in preview at the time of this writing, some details and features
may have changed by the time you read this. Keep up with the latest
on this powerful new feature at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/managed-instance-link-feature-overview.

The new link feature allows for near–real time replication between an
on-premises SQL Server instance and an Azure SQL Managed
Instance, as if they were in an availability group. (In fact, the link uses
distributed availability groups.) However, the link feature does not

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/manage-sql-vm-portal
https://learn.microsoft.com/azure/azure-sql/managed-instance/managed-instance-link-feature-overview


require you to set up an AG or WSFC in your SQL Server
environment (though for SQL Server 2016 instances, setting up a
WSFC is required). The link feature enables you to create a
connection between a SQL Server instance and a managed instance.

Behind the scenes, this uses a distributed AG that you do not need to
manage. The distributed AG spans two separate AGs, but your local
on-premises or Azure VM–based instance of SQL Server uses a local
availability group created and managed entirely for you. Again, no
WSFC is required, except with SQL Server 2016.

There are several use cases where this may come in handy:

You can use an existing AG with the link feature to add a cloud-
based replica to your current AG.

You can use the link feature to create a read-only node for
offloading reporting and analytical workloads to a Managed
Instance.

With SQL Server 2022, you can take advantage of Azure SQL
Managed Instance for HA/DR, with the ability to failover and
failback. (Failover and failback are not supported in previous
versions of SQL Server; more on this in the next section.)

The link feature offers a superior migration path to Azure SQL
Managed Instance than the Log Replay Service (LRS) offered
by Azure Database Migration Service (DMS). In general, the link
feature provides much faster replication than log shipping. LRS
also has an upper limit of 30 days, where the link feature has an
unlimited initial seeding duration.

Inside OUT
What versions and editions of SQL Server can use the
link feature for Azure SQL Managed Instance?



You can synchronize from SQL Server 2016, SQL Server
2019, or SQL Server 2022. The link feature is supported in
Standard, Developer, and Enterprise editions of SQL Server.

Only SQL Server 2022 supports the ability to failover and
failback from SQL Server to a SQL managed instance, thanks
to the new version compatibility with SQL Server 2022. Prior
versions can still use the Azure SQL Managed Instance link
for migrations or for read-only workloads.

In SQL Server 2016, at least Service Pack 3 and the Azure
Connect Feature Pack are required. Curiously, SQL Server
2017 is not supported at launch, but is expected to be soon
thereafter. In SQL Server 2019, at least CU 17 is required.

Failover and failback to Azure SQL Managed
Instance with database portability
You can now failover and failback an Azure SQL Managed Instance
thanks to a new version compatibility feature being introduced
alongside the release of SQL Server 2022. Because of the version-
specific nature of the link feature, the ability to failover and failback is
limited to SQL Server 2022.

Two new features enable this ability to failover and failback between
SQL Server 2022 and Azure SQL Managed Instance:

Previously, Azure SQL Managed Instance ran at a special
version level higher than any public SQL Server release, which
meant restoring down was impossible and migration to an Azure
SQL managed instance was a one-way ticket. Starting around
the SQL Server 2022 release, all managed instances have a
new database portability ability. Migrations to Azure SQL
Managed Instance are no longer one-way and can be migrated
back to SQL Server 2022 if necessary.



The Azure SQL Managed Instance link feature synchronizes
individual databases in your on-premises SQL Server instances
to an Azure SQL managed instance. The replication is
asynchronous, low latency, and low impact.

New and existing managed instances have database portability. The
Azure SQL Managed Instance link feature entered preview with the
release of SQL Server 2022. You can now failover and failback from a
SQL Server to a managed instance, for example, with a simple
wizard-based setup.

With database portability, new Database Engine features that bump
the database version will not be delivered to managed instances until
they are released in SQL Server CUs. Some Database Engine
feature changes with no on-disk metadata changes will also be
released at the same time on Azure SQL Managed Instance and for
SQL Server.

 Additional information on Azure SQL Managed Instance can
be found in Chapter 18.

Provision and scale the Azure SQL Managed
Instance link feature
To use the link feature for Azure SQL Managed Instance, you must
configure your SQL Server 2022 environment, enable availability
groups, allow network access, and ensure your databases are in full
recovery mode.

 Information on how to configure your environment can be
found at https://learn.microsoft.com/azure/azure-sql/managed-
instance/managed-instance-link-preparation.

This section will guide you through provisioning your first Azure SQL
Managed Instance link to SQL Server through SSMS. Microsoft has
also published a complete walkthrough of automating the setup of an
Azure SQL Managed Instance Link via PowerShell here:
https://techcommunity.microsoft.com/t5/modernization-best-practices-

https://learn.microsoft.com/azure/azure-sql/managed-instance/managed-instance-link-preparation
https://techcommunity.microsoft.com/t5/modernization-best-practices-and/automating-the-setup-of-azure-sql-managed-instance-link/ba-p/3696961


and/automating-the-setup-of-azure-sql-managed-instance-link/ba-
p/3696961.

There are different networking requirements if you are using SQL
Server in your infrastructure as opposed to SQL Server on an Azure
VM. In general, TCP port 5022 is required inbound and outbound for
setups outside of Azure. An Azure ExpressRoute virtual private cloud
connection between your infrastructure and Azure is recommended
because a private connection to Azure for this traffic is required.
Other VPN connections from your infrastructure to Azure are
supported, such as Azure site-to-site VPN connections and point-to-
site VPN connections. In the case of an Azure VM hosting an
instance of SQL Server, you can put both the VM and the Azure SQL
Managed Instance in the same VNet for the simplest possible
networking configuration. From different VNets in Azure, use global
VNet peering to connect the two VNets.

When you have completed the setup, you are ready to replicate the
databases. Use SSMS 19.0 to select the link feature for Azure SQL
Managed Instance and select the Replicate database option. At the
time of this writing, a similar wizard was not yet developed for Azure
Data Studio. You can also programmatically create the link via new
PowerShell cmdlets being developed for Az.SQL 3.9.

 Visit https://github.com/microsoft/azure-managed-instance-
link/ for fully automated migration scripts in PowerShell,
including a version leveraging the dbatools.io project.

Always use the latest version of SSMS available. The link feature for
the Azure SQL Managed Instance wizard is shown in Figure 11-3.

https://techcommunity.microsoft.com/t5/modernization-best-practices-and/automating-the-setup-of-azure-sql-managed-instance-link/ba-p/3696961
https://github.com/microsoft/azure-managed-instance-link/


Figure 11-3 The menu path to replicate databases in SSMS using
the Azure SQL Managed Instance link.

The link feature wizard pre-populates almost every option for you and
creates all necessary Azure objects. Initially the databases report a
Restoring… status in the SSMS Object Explorer, and the SEEDING
status in the DMV sys.dm_hadr_physical_seeding_stats, just as if
you were using automatic seeding with an availability group.

Currently, a single link supports a single database, but you can host
many databases replicated via the link feature in a single managed
instance. Read-write databases not participating in a link can exist in



the same managed instance as those synchronized by the link. The
link feature itself is free, for as many databases as you want.

The seeding speed of data to the managed instance is primarily
limited by the bandwidth between your SQL Server instance and
Azure. Setting up a small or empty database should take only
seconds.

Once the databases are replicated, you are ready to use the
managed instance to offload read-only work, plan for a migration, or
failover for HA. As in an AG, the secondary side will be read-only. The
link feature does not provide active-active replication where writes are
accepted on both sides.

Much like an on-premises AG, the link is tolerant of network failures.
In the event of a network outage or service restart on either side, the
link will automatically resume without data loss.

The link feature supports TDE by default, and also supports a user-
provided TDE certificate. You should upload your TDE certificate to
the managed instance before setting up a link.

 These steps are provided by Microsoft in the preparation
article, at https://learn.microsoft.com/azure/azure-
sql/managed-instance/managed-instance-link-
preparation#migrate-a-certificate-of-a-tde-protected-database-
optional.

Continue to back up databases as usual on your SQL Server,
including your transaction log backups.

Inside OUT
Is something wrong? My managed instance successfully
provisioned too quickly.

Nothing’s wrong! Azure SQL Managed Instance provisioning
times were greatly reduced around November 2022. At the

https://learn.microsoft.com/azure/azure-sql/managed-instance/managed-instance-link-preparation#migrate-a-certificate-of-a-tde-protected-database-optional


time of this book’s writing, a stop/start preview for managed
instances was introduced as well. This means you can pause
a managed instance you keep around for testing, and quickly
bring it back online without waiting for provisioning at all.

Failover and failback tooling and automation
When you are ready to failover to your managed instance, you can
use the GUI or wizard in SSMS, or use a combination of PowerShell
and T-SQL. Before performing a failover, ensure you have stopped all
traffic on the primary node so you do not have data loss.

 For additional information about how to failover to Azure SQL
Managed Instance using SSMS, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/managed-instance-link-use-ssms-to-failover-
database. If you would like to use PowerShell and T-SQL,
review https://learn.microsoft.com/azure/azure-sql/managed-
instance/managed-instance-link-use-scripts-to-failover-
database.

Configure availability groups in SQL
Server on Linux
This section summarizes how to configure AGs with SQL Server on
Linux. Red Hat Enterprise Linux (RHEL), Ubuntu, and SUSE Linux
Enterprise Server (SLES) are all supported platforms; however, this
section focuses specifically on the Microsoft-recommended RHEL,
using Pacemaker for the cluster manager, and setting up an AG.

 You can read how to create a read-scale AG that does not
require a cluster manager at
https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-configure-rs.

https://learn.microsoft.com/azure/azure-sql/managed-instance/managed-instance-link-use-ssms-to-failover-database
https://learn.microsoft.com/azure/azure-sql/managed-instance/managed-instance-link-use-scripts-to-failover-database
https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-configure-rs


This section assumes you have some limited knowledge of Linux and
builds on Linux concepts introduced in Chapter 5, “Install and
configure SQL Server on Linux.” All commands provided should be
run in the bash shell.

Understand the differences between Windows
and Linux clustering
There are three main differences between Windows and Linux
clustering:

SQL Server is not cluster-aware when running on Linux. You
can configure an AG in SQL Server on Linux to be clustered or
clusterless. For an AG with a cluster in SQL Server on Linux,
Pacemaker is the cluster provider we use in this chapter, but it is
much more limited than WFCS Manager. You can also configure
a clusterless or read-scale AG, just as you can with SQL Server
on Windows. The rest of this section discusses a cluster-based
AG in SQL Server on Linux.

Because we are not creating an FCI or extending a Windows
AG to a Linux replica, VNNs do not exist, so you must manually
add the listener name yourself to DNS with the virtual IP you
create.

You must configure a fencing agent for your cluster. This
ensures misbehaving nodes in the cluster are returned to a
known state (which might include forcing it to shut down and
restart).

 To read more on how to configure an appropriate fencing agent in
RHEL 8, see https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/configuring_and_managing_hi
gh_availability_clusters/assembly_configuring-fencing-
configuring-and-managing-high-availability-clusters.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters


Set up an availability group in SQL Server on
Linux
To set up an AG on Linux, you must do the following:

1. Create the AG from within SQL Server.

2. Configure the cluster resource manager—in this case,
Pacemaker.

3. Add the AG to the cluster.

To reiterate, you must create the AG before you create the cluster.
This is the opposite order of operations for SQL Server on Windows.

 A step-by-step walk-through is available at
https://learn.microsoft.com/sql/linux/sql-server-linux-create-
availability-group.

Linux clusters require at least two synchronous replicas to guarantee
HA, but at least three replicas for automatic recovery. We recommend
you set up your AG on at least three nodes. Each node can be
physical or virtual, but Red Hat requires that VMs use the same
hypervisor, to keep the platform-specific fencing agents happy. One
of these replicas could be in a configuration-only role, running any
edition, including SQL Server Express for Linux. We’ll discuss this in
more detail in a moment.

Configure the server
Each node must have a unique name on the network that is no more
than 15 characters in length. (This 15-character limit is a legacy
requirement dating back to the old NetBIOS service.) To set the
server name, edit the entry in the /etc/hostname file. (Remember to
do this on all nodes.)

If you use a DNS server (which we recommend), you do not need to
add entries to each node’s hosts file. Otherwise, you must add entries

https://learn.microsoft.com/sql/linux/sql-server-linux-create-availability-group


for each node that will be in the AG, including the node on which you
edit each hosts file. You can find the hosts file at /etc/hosts.

Once you have installed SQL Server and opened TCP port 1433 on
the firewall, you can connect to it using Azure Data Studio or SSMS.

Enable availability groups
Now you must enable AGs on each node using mssql-conf. The
following two commands configure the instance for AGs, and then
restart SQL Server:
Click here to view code image

sudo /opt/mssql/bin/mssql-conf set hadr.hadrenabled 1 
sudo systemctl restart mssql-server

Optionally, you can set up the familiar AlwaysOn_health Extended
Events session, which will aid with troubleshooting AG issues. We
discuss this in more depth later in this chapter, in the section “Analyze
Extended Events for availability groups.”

To start the session, execute the following command:
Click here to view code image

ALTER EVENT SESSION AvailabilityGroupHealth ON SERVER 
WITH (STARTUP_STATE = ON);

Create the availability group
To create the AG, you must set up the database mirroring endpoints
first (see the upcoming Inside OUT box). This is where things are
closer to how Windows works—but remember, the cluster has not
been set up yet. You can use the New Availability Group Wizard in
SSMS to configure your primary and secondary replicas just as you
would on Windows. But because Pacemaker is an external cluster
resource manager, you must create the AG with the cluster type and
failover mode set to EXTERNAL.



Inside OUT
How do you set up the database mirroring endpoints in
Linux?

You create a user on each replica, being sure to use a strong
password, using CREATE LOGIN, then CREATE USER. Then, you
create a certificate to allow the nodes to communicate
securely with each other, using CREATE MASTER KEY
ENCRYPTION followed by CREATE CERTIFICATE. Copy the
certificate and the private key that you generated to the same
location on each availability replica, and run the commands
again, remembering to use the same password and certificate
files. Remember to back up your certificate using BACKUP
CERTIFICATE. Finally, create the database mirroring endpoints
on all replicas using CREATE ENDPOINT.

 For more information on creating the certificate, visit
https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-configure-ha#create-a-certificate.

Add a database
On the primary replica, ensure that the database you want to add to
the AG is in the full recovery model and take a full backup of it. When
the backup is complete, you can add the database to the AG by using
the following T-SQL command:
Click here to view code image

ALTER AVAILABILITY GROUP [LinuxAG1] ADD DATABASE [<dbname>];

To check whether the database has been created on the secondary
replicas, run the following statements. Note that the second
statement is checking the synchronization status; make sure it is
SYNCHRONIZING or SYNCHRONIZED.

https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-configure-ha#create-a-certificate


Click here to view code image

SELECT * FROM sys.databases WHERE name = '<dbname>'; 
SELECT DB_NAME(database_id) AS 'database', 
synchronization_state_desc 
FROM sys.dm_hadr_database_replica_states;

Congratulations! You have created an AG on Linux. The next step is
to create the cluster so that your AG is highly available.

Set up the cluster
Each node in the cluster must have an appropriate (paid) subscription
for the HA components in RHEL.

 To read more about subscriptions, visit
https://learn.microsoft.com/sql/linux/sql-server-linux-deploy-
pacemaker-cluster.

After you have registered each replica and configured the
subscription, you can configure Pacemaker.

As discussed earlier in this chapter, WSFC uses quorum votes to
decide how to manage resources in the cluster. Pacemaker uses a
scoring system, which is calculated per resource. We discuss the
scoring system and the constraints to control it later in this chapter, in
the section “Create colocation constraint and ordering constraint.”

Pacemaker does not provide witness functionality like WSFC does.
Instead, you have the option to use a third SQL Server as a
configuration-only replica. This does not act as a node in the AG, only
an extra copy of the AG configuration information. First introduced
with SQL Server 2017 CU 1, the configuration-only replica type
applies only to AGs that aren’t based on WSFC and provides
additional coverage for replica loss scenarios for a two-node cluster.
The configuration-only replica can be a SQL Server instance of any
edition, including SQL Server Express for Linux. As with the various
witness types in WSFC, you can have only one configuration-only

https://learn.microsoft.com/sql/linux/sql-server-linux-deploy-pacemaker-cluster


replica, and it does not contain the synchronized databases, only
cluster configuration metadata.

 Various scenarios and guidance around the use of the
configuration-only replica are available at
https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-ha#two-synchronous-replicas-and-a-
configuration-only-replica.

Configure the cluster resource manager
(Pacemaker)
Pacemaker requires the following ports to be opened on the firewall.
You can use the same method as described in Chapter 5.

TCP. 2224, 3121, and 21064

UDP. 5405

On each node, install Pacemaker from the command line like so:
Click here to view code image

sudo yum install pacemaker pcs fence-agents-all resource-
agents

Pacemaker creates a username, hacluster, by default, which requires
a proper password. Make sure it is the same one for all nodes:

sudo passwd hacluster

The pcsd service is required to allow nodes to rejoin the cluster after
a restart. You should run this on all nodes for the cluster:
Click here to view code image

sudo systemctl enable pcsd 
sudo systemctl start pcsd 
sudo systemctl enable pacemaker

https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-ha#two-synchronous-replicas-and-a-configuration-only-replica


Create the cluster (Pacemaker)
The commands that follow create the cluster. Note that the nodes
must have the correct names, and you must use the hacluster
password you set previously. This is where you get to choose the
cluster name (not the same as your AG name, but it can be):
Click here to view code image

sudo pcs cluster auth server1 server2 server3 -u hacluster -p 
<password> 
sudo pcs cluster setup --name <clusterName> server1 server2 
server3 
sudo pcs cluster start –all <PMClusterName> --start –all --
enable

Now install the SQL Server resource agent:
Click here to view code image

sudo yum install mssql-server-ha

Pacemaker is installed; you use the pcs command line tool to
manage it. You can run all commands from a single node.

Remember to configure node-level fencing with STONITH, based on
your organizational requirements.

 For more information about how to set up node fencing, refer
to https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-cluster-rhel#configure-fencing-stonith.

Restart nodes after failure
Pacemaker enables you to specify how to handle a failure to restart
the cluster. Starting with the Pacemaker package 1.1.18-11.el7, a
primary node that fails to restart will continue attempting to restart if
start-failure-is-fatal=false is set, preventing the entire cluster
from coming online. To set this on Linux, use the following code:
Click here to view code image

https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-cluster-rhel#configure-fencing-stonith


sudo pcs property set start-failure-is-fatal=true

The value should be set to true so a secondary node can be
promoted and brought online. The failover-timeout should also be
set to indicate the time between restart attempts.

Create the Pacemaker login in SQL Server
You must create a SQL Server login for Pacemaker on each server
so it can manage the AG in the event of a failover. First use CREATE
LOGIN, then grant permissions for ALTER, CONTROL, and VIEW
DEFINITION of the AG to that login.

For safety, save the credentials on the file system on all servers:
Click here to view code image

echo 'pacemakerLogin' >> ~/pacemaker-passwd 
echo 'UseAReallyStrongMasterKeyPassword' >> ~/pacemaker-
passwd 
sudo mv ~/pacemaker-passwd /var/opt/mssql/secrets/passwd 
sudo chown root:root /var/opt/mssql/secrets/passwd 
sudo chmod 400 /var/opt/mssql/secrets/passwd

These passwords are accessible only by root. You can see the
ownership change (chown) and access permission (chmod) commands
in the preceding example.

Create an availability group resource and virtual
IP resource
The following command (which spans two lines) creates a
primary/replica type of availability group resource (the master
terminology is unfortunate; it doesn’t refer to the master database):
Click here to view code image

sudo pcs resource create ag_cluster ocf:mssql:ag 
ag_name=LinuxAG1 \ 
--master meta notify=true



In the example of three synchronous replicas, the Pacemaker agent
sets REQUIRED_SYNCHRONIZED_SECONDARIES_TO_COMMIT to 1, which
ensures that the primary replica will not accept transactions without
an online, synchronized secondary replica. By default, this value is 0.
We discussed this setting in more detail earlier in this chapter in the
section “Configure the minimum synchronized required nodes.”

 You can read more about data protection for AG configurations
specific to SQL Server on Linux at
https://learn.microsoft.com/sql/linux/sql-server-linux-
availability-group-ha.

To create the virtual IP resource, run the following command on one
of the nodes (use your own valid IP address here):
Click here to view code image

sudo pcs resource create virtualip ocf:heartbeat:IPaddr2 
ip=172.8.0.120

Remember that there is no virtual server name equivalent, so ensure
that you have DNS configured with the virtual IP resource and virtual
server name. Remember to do this in your DR environment, as well.

Create colocation constraint and ordering
constraint
As mentioned, Pacemaker uses a scoring system rather than quorum
votes to decide on how to manage resources in the cluster. This
system is calculated per resource. You can manipulate the scoring
system by using constraints. For example, to make sure the virtual IP
resource runs on the same host as the primary replica, you can
create a constraint with a score of INFINITY. Anything lower than
INFINITY is simply taken as a recommendation.

To create a colocation constraint to place the virtual IP and primary
replica on the same host, run the following command on one node
(note that it again spans two lines):

https://learn.microsoft.com/sql/linux/sql-server-linux-availability-group-ha


Click here to view code image

sudo pcs constraint colocation add virtualip ag_cluster-
master \ 
INFINITY with-rsc-role=Master

A colocation constraint is implicitly ordered. In the previous example,
if a failover occurs, the virtual IP will point to a secondary node before
the first node is demoted to secondary, and the second node is
promoted to the primary replica. To resolve this, you can create an
ordering constraint, which waits for the promotion before pointing the
virtual IP resource to the new node. Here’s how to do it:
Click here to view code image

sudo pcs constraint order promote ag_cluster-master then 
start virtualip

This concludes the content strictly specific to AGs on SQL Server on
Linux. Now we will discuss managing and monitoring AGs across all
platforms.

Administer availability groups
Although the built-in Availability Groups dashboards in SSMS provide
a base amount of information about overall AG health, they do not
provide much in the way of monitoring the performance, current
latency, or throughput of the AGs cluster.

This section reviews the insights to be had in monitoring AGs in three
main categories: DMVs, wait types, and Extended Events. In all three
categories, most of the data to be had will be on the primary replicas.

 For more scripts to automate the management of AGs,
including failover, see Chapter 9.

Analyze DMVs for availability groups



This section reviews a few scenarios for which using DMVs to
retrieve AG information is useful. You either won’t see data or will see
incomplete data when viewing availability group DMVs on secondary
replicas.

Monitor availability group health and status
You can view dashboards for individual AGs within SSMS or by using
the following script, which uses three different DMVs. Both methods
provide a complete snapshot of data only when run on a SQL Server
instance that serves as the primary replica for an AG, but the script
will show information for all replicas, for all AGs in which the instance
is the primary replica. This sample is a good foundation script for
monitoring.
Click here to view code image

/*Monitor availability group Health 
On a secondary replica, this query returns a row for every 
secondary database on the 
server instance. On the primary replica, this query returns a 
row for each primary data- 
base and an additional row for the corresponding secondary 
database. Recommended execut- 
ing on the primary replica. */ 
IF NOT EXISTS (SELECT @@SERVERNAME 
    FROM sys.dm_hadr_availability_replica_states rs 
    WHERE rs.is_local = 1 
    and rs.role_desc = 'PRIMARY') 
SELECT 'Recommend: Run script on Primary, incomplete data on 
Secondary.'; 
 
SELECT AG = ag.name 
, Instance = ar.replica_server_name + ' ' + 
CASE WHEN is_local = 1 THEN '(local)' ELSE '' END 
, DB = db_name(dm.database_id) 
, Replica_Role = CASE WHEN last_received_time IS NULL THEN 
'PRIMARY (Connections: 
'+ar.primary_role_allow_connections_desc+')' 
ELSE 'SECONDARY (Connections: 
'+ar.secondary_role_allow_connections_desc+')' END 



, dm.synchronization_state_desc, 
dm.synchronization_health_desc 
, ar.availability_mode_desc, ar.failover_mode_desc 
, Suspended = CASE is_suspended WHEN 1 THEN 
suspend_reason_desc ELSE 'NO' END 
, last_received_time, last_commit_time, 
dm.secondary_lag_seconds 
, Redo_queue_size_MB = redo_queue_size/1024. 
, dm.secondary_lag_seconds 
, ar.backup_priority 
, ar.endpoint_url, ar.read_only_routing_url, 
ar.session_timeout 
FROM sys.dm_hadr_database_replica_states dm 
INNER JOIN sys.availability_replicas ar 
on dm.replica_id = ar.replica_id and dm.group_id = 
ar.group_id 
INNER JOIN sys.availability_groups ag on ag.group_id = 
dm.group_id 
ORDER BY AG, Instance, DB, Replica_Role;

 For more information on the data returned in this DMV, read
the next code sample and reference
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/sys-dm-hadr-database-replica-
cluster-states-transact-sql.

Monitor for suspect pages and database
automatic page repair events
AGs, and the database mirroring feature that came before them, use
replicas to automatically repair any corrupted, unreadable data pages
on one replica with data from a replica with a readable copy of the
data page. This is different from the behavior of DBCC CHECKDB and
REPAIR_ALLOW_DATA_LOSS, which could result in lost data when
repairing pages.

The automatic page repair is a background process that occurs after
the operation that discovered the corrupted page data. Transactions

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-hadr-database-replica-cluster-states-transact-sql


will still fail with an error code 823, 824, or 829 in the SQL Server
Error Log.

You should monitor the msdb.dbo.suspect_pages system table and
the sys.dm_hadr_auto_page_repair DMV, which will contain entries of
these events. For example:
Click here to view code image

--Check for suspect pages (hopefully 0 rows returned) 
SELECT * FROM msdb.dbo.suspect_pages WHERE (event_type <= 3); 
--Check for autorepair events (hopefully 0 rows returned) 
SELECT db = db_name(database_id), * FROM 
sys.dm_hadr_auto_page_repair;

Monitor live availability group performance
Typically, the gap between the primary and an asynchronous replica
is mere seconds. You can measure the backlog of transactions
waiting to be committed to an asynchronous replica using the
sys.dm_hadr_database_replica_states DMV, which provides a
wealth of information of interest with respect to tracking how far
behind a secondary replica is:

log_send_queue_size. Expressed in kilobytes, this is the
amount of log data not yet sent to the secondary replicas.

log_send_rate. Expressed in kilobytes per second, this is the
average of data sent to secondary replicas. Values only present
for primary replicas.

redo_queue_size. Expressed in kilobytes, this is the amount of
log data not yet committed on the secondary replica. This data
must be committed before the secondary replica can become
primary in a failover, a part of RTO.

redo_rate. Expressed in kilobytes per second, this is the
average amount of data committed on the secondary replica.



secondary_lag_seconds. Expressed in seconds, this is a more
accurate amount of time the secondary replica is “behind.” It
does not express how long it would take the secondary replica
to catch up.

Dividing log_send_queue_size (KB) by log_send_rate (KB/s) provides
a rough estimate for the time it will take to send all data from the
primary replica to the secondary replicas. Similarly, dividing
redo_queue_size (KB) by redo_rate (KB/s) provides an estimate for
the number of seconds it will take a secondary replica to catch up to
the primary.

You can combine what we’ve learned about the
sys.dm_hadr_database_replica_states and
sys.dm_os_performance_counters DMVs to create a script, which you
can see in the code sample available for download under this
chapter’s sample scripts.

Analyze wait types for availability groups
You should baseline these wait types and act on increases in these
wait types, whether they are sudden or gradual. This section looks at
some wait types to note when administering AGs.

 For more information on wait statistics, such as how to monitor
and trend them, see Chapter 8, “Maintain and monitor SQL
Server.”

There are 60-plus wait types in SQL Server, prefixed with HADR_*.
Many are background tasks that are expected or will rise when the
SQL Server is idle. You should be wary of the following wait types:

HADR_SYNC_COMMIT. This is the transaction delay present
when using synchronous mode secondary replicas. This wait
type is associated with primary replicas waiting on the
acknowledgement of the synchronous replicas when sending log
data. An increase in HADR_SYNC_COMMIT on the primary replica is
caused by performance constraints on the secondary replica.



This wait type, and many others, is not present when running
only with asynchronous secondary replicas. This wait type does
not include the time spent on the secondary replicas processing
the redo log data. The secondary replica might be experiencing
WRITELOG.

HADR_SYNCHRONIZING_THROTTLE. A sudden spike in this
wait type indicates that synchronous secondary replicas are
trying to get caught up and that transactions are waiting on
secondary replicas to commit. Expect to see this wait on
synchronous secondary replicas when they are still in the
SYNCRONIZING state. (Correspondingly, on the primary, you’ll see
HADR_SYNC_COMMIT.)

WRITELOG. This wait type is likely to appear on any SQL
Server instance, including AG primary and secondary replicas,
when there is heavy write activity. The WRITELOG wait is time
spent flushing the local SQL Server instance log to the drive and
is due to physical I/O subsystem performance.

ASYNC_NETWORK_IO. This wait is not usually associated with
network transport speed for AGs; rather, it measures the
communication via the network stack to remote clients or
storage systems. Misconfigured networks—for example, due to
routing problems inside the datacenter or malfunctioning
network cards—could explain this wait, but more likely it is not
related to AG communication and is caused instead by
excessive data sent to remote clients, especially long-running
report applications.

You will see some common wait types that are not a cause for
concern. For example, the HADR_WORK_QUEUE and
WAIT_XTP_OFFLINE_CKPT_NEW_LOG wait types are an indication of
worker threads waiting; you do not need to worry about them. The
HADR_TIMER_TASK and HADR_CLUSAPI_CALL wait types are also not
indicative of a problem, and thus you can ignore them. If these
common wait types are among the top waits, it generally indicates a
lack of activity, not performance problems. Finally, the
HADR_GROUP_COMMIT wait indicates that log records are waiting for a



sufficient quantity to be grouped together, and is also not indicative of
any performance issue.

Analyze Extended Events for availability groups
SQL Server includes an Extended Event session called
AlwaysOn_health. By default, this session collects Data Definition
Language (DDL) events, failover and state changes, and more than
30 SQL Server errors by number. You can view the details of what the
session collected by scripting it.

The AlwaysOn_health session is used by the dashboard, but it can
also be queried in aggregate, and by default keeps up to four 5-MB
rolling .xel files in the Instancepath\MSSQL\Log folder. This Extended
Events session is always present in SQL Server, but not enabled
unless you have configured AGs.

Look for the log_flush_complete event duration in your Extended
Events sessions. It includes the duration (in milliseconds), which
indicates the amount of time it took for I/O to complete the log flush
on any replica.

The ucs_connection_send_msg event signals the communication
between replicas. This occurs after the hardening of the block of
transaction log data on the secondary replica, and in the case of
synchronous replication, before the hardening of the block on the
primary replica.

The hadr_log_block_group_commit and hadr_db_commit_mgr_harden
events on the primary node are the start and end of the log block
replication. The hadr_db_commit_mgr_harden event follows the
acknowledgement from any synchronous secondary replicas and the
hardening of the primary transaction log.

You might consider creating an Extended Events session to watch the
timing of synchronization events on your primary and secondary
instances. Here is a script to get you started:
Click here to view code image



--Create Extended Events session to monitor availability 
group synchronization 
--Recommended for diagnostic purposes only 
--For monitoring events on Primary Replica 
CREATE EVENT SESSION [AG_Synchronization_Events_Primary] ON 
SERVER 
ADD EVENT sqlserver.hadr_log_block_group_commit, 
ADD EVENT sqlserver.log_flush_start, 
ADD EVENT sqlserver.hadr_log_block_send_complete, 
ADD EVENT sqlserver.log_flush_complete, 
ADD EVENT ucs.ucs_connection_send_msg, 
ADD EVENT sqlserver.hadr_receive_harden_lsn_message, 
ADD EVENT sqlserver.hadr_db_commit_mgr_harden 
ADD TARGET package0.event_file 
     (SET filename=N'Synchronization_Events_Primary.xel', 
     max_file_size=(5),max_rollover_files=(2)) 
WITH (STARTUP_STATE=ON); 
GO 
--Recommended for diagnostic purposes only 
--For monitoring events on a Secondary Replica 
CREATE EVENT SESSION [AG_Synchronization_Events_Secondary] ON 
SERVER 
ADD EVENT sqlserver.hadr_transport_receive_log_block_message, 
ADD EVENT sqlserver.log_flush_start, 
ADD EVENT sqlserver.log_flush_complete, 
ADD EVENT sqlserver.hadr_send_harden_lsn_message, 
ADD EVENT ucs.ucs_connection_send_msg 
ADD TARGET package0.event_file 
    (SET filename=N'Synchronization_Events_Secondary.xel', 
     max_file_size=(5),max_rollover_files=(2)) 
WITH (STARTUP_STATE=ON); 
GO 
ALTER EVENT SESSION [AG_Synchronization_Events_Secondary] ON 
SERVER STATE=START 
ALTER EVENT SESSION [AG_Synchronization_Events_Primary] ON 
SERVER STATE=START

 For more information on Extended Events, see Chapter 8.

 For more information on the syntax configuring alerts that
follow, see Chapter 9.



Alerts for availability groups
Consider placing alerts for a list of errors that are specific to AGs to
trigger the sending of nontrivial, actionable emails to your SQL DBA
team. If you are not already using SQL Server Agent Alerts for error
events to send emails to your SQL DBA team via Database Mail, see
Chapter 9. If you are using an external error log–monitoring
application, trigger high-priority alarms for the following error
messages, each of which is significant:

35264. Database movement for a database has been
suspended.

35265. Database movement for a database has resumed;
informational only.

35273, 35274. Indicates database failure during recovery at
failover.

35276. Synchronization of the database has stopped and cannot
be resumed.

41418. A secondary replica has become disconnected from the
primary and must be reconnected.



Part IV

Security



Chapter 12

Administer instance and
database security and
permissions

Understand authentication modes
Grasp security principals
Understand permissions and authorization
Perform common security administration tasks

This chapter covers how to implement security when it comes to
accessing the data in your databases, starting with authenticating
who you are, what you can access, and what you can do with the
data once you have access. Many of these principles apply equally to
SQL Server and Azure SQL, but there are some differences due to
the fundamental nature of each service.

This chapter begins by covering modes to authenticate who the entity
is that is trying to access the database. There are several
authentication modes that you can use to access the server, from on-
premises Active Directory (AD) on Windows to Azure offerings.

After authenticating to the server where the data is located, the
accessing entity is assigned to security principals. A security principal
is an entity that can be authenticated and then given access to one or



more resources on a server or database. Principals are used to
obtain access to system activities at the server level, and to database
objects at the database level. Once the accessing entity is
authenticated and sorted into security principals, those security
principals can be given permissions to see and make changes to
servers, databases, structures, and data in tables. We cover all this in
this chapter.

Lastly, this chapter discusses common security administration tasks
that DBAs need to handle, including managing orphaned security
identifiers (SIDs), security migration, service account permissions,
and more.

All the code for this chapter and the rest of the book is available for
download at
https://www.microsoftpressstore.com/SQLServer2022InsideOut/down
loads.

Understand authentication modes
When it comes to security, you should focus on connecting to the
database where your data is stored. This section covers an overview
of the modes of authentication to a SQL Server instance, database,
or one of the Azure SQL database types. You can see the various
authentication modes when you first open SQL Server Management
Studio (SSMS), as shown in Figure 12-1.

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


Figure 12-1 The Connect to Server dialog box in SSMS, logging
into a fictitious local named instance, .\SQL2022.

Let’s start with the authentication methods with which DBAs are most
familiar when working with the on-premises versions of SQL Server,
because they are still the most commonly used. As Azure continues
to become increasingly prevalent both for new and existing
applications, it is also important for DBAs to continue to expand their
expertise with the new authentication methods.

Windows Authentication
Windows-authenticated logins take advantage of authentication that’s
built into Windows clients to seamlessly pass credentials in a
Windows or domain environment. This is the only authentication
method that is turned on by default during installation of SQL Server
on-premises, and we strongly recommend it for use in most
applications that support it, because it helps alleviate the need to
manage multiple logins for most users.

Note



Windows Authentication only works with on-premises versions
of SQL Server. Azure Active Directory (Azure AD)
authentication is covered later in this chapter.

For Windows-authenticated logins, the Windows SID for the account
or group is used as the reference value in the SQL Server. For
domain accounts, this SID is the same from Windows server to
Windows server, making it easy to move security data around.

In a typical business environment, using Windows Authentication
means that the existing corporate security administration
infrastructure handles account creation/termination, AD security
group membership, and password policy. In fact, using AD security
groups is a best practice for centrally managed role-based
authentication (RBA).

SQL Server Authentication
SQL Server Authentication is an authentication method that stores
usernames and passwords of server principals in the master
database of the SQL Server instance. SQL DBAs must manage
password complexity policy, password resets, locked-out passwords,
password expiration, and changing passwords on each instance that
uses SQL Server Authentication.

The SID assigned to a newly created SQL Server–authenticated login
is generated by the SQL Server instance. Two logins with the same
name and password on two SQL Server instances will seem as if
they are the same to the DBA, but they will have different SIDs, which
will cause some complexities in managing your databases. (This is
covered in the “Perform common security administration tasks”
section later in this chapter).

You can use SQL Server Authentication to connect to on-premises
SQL Server instances, Azure Virtual Machine (VM)–based SQL
Server instances, and databases in Azure SQL Database, but other
methods of authentication are preferred in all cases when possible.



In the most common usage, SQL Server Authentication authenticates
you to the server. However, the same concept can be used for
contained databases to authenticate directly to one database. This is
covered later in the “Understand authentication modes” section.

Azure Active Directory
The last four authentication types are Azure-based, working in Azure
SQL Database, Azure SQL Managed Instance, Azure Synapse, and
in SQL Server 2022 on-premises SQL Servers using Azure AD
credentials.

To connect to SQL Server 2022 using your Azure credentials, there is
more setup than just creating a login. The server needs to be Azure
Arc–enabled (covered in Chapter 4, “Install and configure SQL Server
instances and features,” in the section “Install Azure extension for
SQL Server”); as of this writing, this only includes SQL Server 2022
instances on-premises and on Windows.

Azure Active Directory Universal Authentication
with MFA
The Authentication drop-down list in the Connect to Server dialog box
(refer to Figure 12-1) contains an Azure Active Directory – Universal
with MFA option, where MFA stands for multifactor authentication.
Universal Authentication uses Azure MFA, and when you attempt to
connect to your resources with it, SSMS opens an Azure security
dialog box that lets you authenticate.

In addition to the password, you are initially prompted to log in with
the universal login client, and asked to provide your domain account
and whatever extra authentication the AD administrator has
configured—for example a PIN, smart card, authenticator app, or
even a code that is emailed or texted to you.

As is true for any account on the Internet, it is always better to use
MFA whenever possible. It can be more burdensome to use, but



someone who gets your password cannot then log in without the
second factor in their possession.

Azure Active Directory password authentication
Azure AD accounts can be used for authentication with a username
and password for users that have been created in the Azure tenant
and granted access. This authentication method makes it possible for
you to employ your Azure account to sign into SQL Server via a
username and password. This is more secure than SQL Server–
based authentication because it is linked to an Azure AD account that
is, in theory, managed by an existing Enterprise Security group. You
can use this method, for example, to grant an Azure AD account with
a Microsoft Office 365 license direct access to a database in Azure
SQL Database over the web.

Azure Active Directory integrated authentication
This mode is analogous to Windows Authentication, but using an
Azure AD account rather than a Windows Server AD account. Once
logged into a Windows machine with your Azure AD account, you can
use that Azure AD account to authenticate to the database in a
manner very similar to Windows Authentication. No username or
password is requested; instead, your profile’s local connections are
used to connect to the SQL Server. For example, you can use this
authentication method when connected via Remote Desktop to an
Azure AD–authenticated session on an Azure VM.

This also includes connections from App Services using a managed
identity. Managed identities (much like managed service accounts,
mentioned in Chapter 4) enable you to eliminate secrets from your
app by allowing Azure to manage the principal used by the
application to connect to SQL Server. To enable Azure AD
authentication in SQL Server, you must register the server in the
Azure portal.



 For more information about Azure AD authentication in SQL
Server 2022, see
https://cloudblogs.microsoft.com/sqlserver/2022/07/28/azure-
active-directory-authentication-for-sql-server-2022/.

Inside OUT
Can you use Azure managed identities to connect to SQL
Server?

Azure App Service managed identities are password-less
credentials for connection strings designed for connections
through Azure AD to Azure database platforms, including
Azure SQL Database, Azure Database for MySQL, and Azure
Database for PostgreSQL. (Yes, Azure hosts non–SQL Server
relational database platforms!) While you can’t use managed
identities and Azure AD to connect to SQL Servers on-
premises, they are a helpful and simplifying method of
securing application access to platform as a service (PaaS)
databases.

Azure AD supports two different types of managed identities:
system-assigned managed identities (SMIs) and user-
assigned managed identities (UMIs). SMIs are managed
completely by Azure services, while UMIs are created by
tenants and assigned to services as needed.

Databases in Azure SQL Database and Azure SQL Managed
Instance are assigned SMIs upon creation but can be
configured to use UMIs as well. This allows permissions and
access to persist because UMIs are independent of logical
servers or managed instances. For example, if you migrate
from one Azure SQL Database to another, the original SMI is
deleted along with the original Azure SQL Database.
However, if the same UMI is assigned to the old and new
databases, any permissions needed can be continued
(assuming they were all assigned correctly to the UMI).

https://cloudblogs.microsoft.com/sqlserver/2022/07/28/azure-active-directory-authentication-for-sql-server-2022/


For more information, see Chapter 17, “Provision Azure SQL
Database,” and Chapter 18, “Provision Azure SQL Managed
Instance.”

Azure Active Directory access token
Some command line clients like PowerShell and SQLCMD allow you
to authenticate using an Azure AD token created using the Microsoft
Authentication Library (MSAL). The documentation for SQLCMD
details how to create a token using the -P parameter.

 For more details, visit
https://learn.microsoft.com/sql/connect/odbc/linux-
mac/connecting-with-sqlcmd.

Advanced types of server principals
Beyond users that map to a set of typical username and passwords,
you can create a server principal that is mapped directly to a
certificate or to an asymmetric key. Secure access to the SQL Server
instance is then possible by any client with the public key of the
certificate, using a nondefault endpoint that you create specifically for
this type of access.

The SQL Server Service Broker feature, used for asynchronous
messaging and queueing, supports Certificate-Based Authentication.
As examples, the ##MS_SQLResourceSigningCertificate## and
##MS_SmoExtendedSigningCertificate## login principals, created
automatically with SQL Server, are certificate-based.

You can list out the server principals, including the certificate-mapped
ones, using the following query:
Click here to view code image

SELECT name, type_desc, is_disabled 
FROM    sys.server_principals 
ORDER BY type_desc;

https://learn.microsoft.com/sql/connect/odbc/linux-mac/connecting-with-sqlcmd


Authentication to SQL Server on Linux
You can connect to SQL Server instances running on Linux by using
Windows Authentication and SQL Server Authentication. Starting with
SQL Server 2022, you can also connect to SQL Server on Linux with
Azure AD authentication, provided that the computer is Azure Arc–
enabled. In the case of SQL Server Authentication, there are no
differences when connecting to a SQL Server instance running on
Linux with SSMS.

Note
There are otherwise very few significant differences between
SQL Server on Linux and SQL Server on Windows Server for
the purposes of the rest of this chapter, and indeed, for most of
the chapters in this book. The biggest differences come with
features that rely on Windows constructs, such as the FileTable
feature.

It is also possible to join the Linux server to the domain (by using the
realm join command), using Kerberos, and then connecting to the
SQL Server instance on Linux just as you would connect to a SQL
Server instance on Windows Server.

 The necessary steps are detailed in the SQL Server on Linux
documentation at https://learn.microsoft.com/sql/linux/sql-
server-linux-active-directory-authentication.

Inside OUT
How do you connect to a SQL Server instance on a Linux
VM in Azure?

https://learn.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication


If you are using a Linux VM running in Azure, you need a
network security group (NSG) inbound security rule to allow
connections to the SQL Server instance. Without it, your
authentication attempt will wait and eventually fail with error
1225, “The remote computer refused the network connection.”

After allowing network connections to your Azure VM, you
must then perform an initial configuration of the SQL Server.
Connecting via bash on Ubuntu or PuTTY on Windows (or a
similar tool), run the following command:

Click here to view code image

sudo /opt/mssql/bin/mssql-conf setup

Bash requires the 64-bit version of Windows and Hyper-V to
be enabled.

You can connect to the Linux operating system (OS) itself via
the Windows built-in bash shell (a feature introduced with the
Windows 10 Creators Update). Since Windows Server 2016
build 1709, the Windows Subsystem for Linux (WSL) feature
is included.

For more information, visit
https://msdn.microsoft.com/commandline/wsl/install-on-server.

Contained database authentication
Contained databases are a partially implemented feature that
encourages the database programmer to think of their on-premises
database in the same way an independent Azure SQL Database
does: as a fully independent container rather than a member of a
collection of databases located on an instance. The idea is to shift
many server-level concepts to the database level to enable
databases to be more mobile between server environments. This has
advantages specific to high availability (HA) and cloud-based

https://msdn.microsoft.com/commandline/wsl/install-on-server


designs, in that other than connectivity to a server, everything else
behaves in the same manner.

We cover containment later in this chapter in the section on
“Database principals.” Suffice it to say that at this point, you can use
this feature to authenticate users to just a single database on the
server. This also gives users some access to the tempdb and master
databases.

There are two types of contained database authentication: contained
users from Windows and contained users with password. Both
behave similarly to their instance cousins Windows Authentication
and SQL Server Authentication, except in how data is stored for
connecting to the server itself.

Grasp security principals
In security terminology, a security principal is an entity that can be
authenticated, and then be given access to some resource. In SQL
Server, a principal is given access through several layers of
abstractions, covered in this section.

After you have decided what authentication mode you are going to
use to authenticate to your server/database, the next step is to start
building your layers of security. For SQL Server and Azure SQL
Managed Instance, that means configuring the security context of the
entity you are authenticating.

Note
There is one concept in database-scoped security that we
initially ignore: containment. Contained databases have users
that can be accessed directly, without a server login to tie back
to. In practice they are rarely used, but it is good to understand
the basics, as some of the metadata you will see in SQL Server
is affected by containment. Contained database users are
discussed later in this chapter.



Given that we’re starting on the ground floor of security, let’s begin by
establishing some important terminology:

Scope. The scope of a principal dictates what kinds of access it
can be given. SQL Server has two scopes of principals:

Server. This enables principals to access SQL Server from
outside the system and use resources at the instance level.
This includes access by people and services.

Database. Once a principal has accessed the server, each
individual database has a security system of its own to
determine what can be done with the contents of the
database.

Login. The primary server principal used to access resources is
commonly called a login.

User. The primary database principal used to access database
resources is commonly called a user.

Role. Another type of principal that is available at either scope is
a role, which enables you to bundle privileges to grant to
another principal (a user or even another role). We cover roles
in detail later in this chapter.

In each database, a user can be associated with a maximum of one
server login. Logins might not be associated with users in all
databases, and it is possible for users to exist without any association
to a login. This usually occurs for testing code or accidentally when a
login is dropped without dropping the user. (We talk more about this
scenario in the “Orphaned SIDs” section later in this chapter.)

Logins and users are given two important identifiers:

An external surrogate key binary value known as a security
identifier (SID) that can link to the external security provider
(Windows Authentication or Azure AD). The SID is a binary
value.



A principal_id column, which is an integer used in some
metadata tables to relate to the principal. For example, role
membership is recorded in the sys.server_role_member catalog
object and has role_principal_id and member_principal_id
columns.

SIDs are used to link users in a database to server logins, thereby
allowing portability if you move/restore the database to a different
server where the login has a different principal_id. You can view the
SID and principal_id for a login in the sys.server_principals view:
Click here to view code image

SELECT name, sid, principal_id 
FROM   sys.server_principals;

Table 12-1 compares the purpose of the database and server
principals.

Table 12-1 Comparison of users and logins

Server login Database user



Server login Database user
Authenticates sessions to a SQL
Server instance

Can be linked to AD (Windows
Authentication mode) or have a
password stored in SQL Server’s
master database

Assigned to server roles to obtain
packaged rights over the server, as
well as to all databases if desired

Not affected by the restore of any user
database (restoring the master
database will affect logins)

Used to allow server operations such
as RESTORE, CONNECT, CREATE DATABASE,
DROP DATABASE, or even to view data in
any database

Identifies the login’s context
within a database

Generally linked to a server
login to access data after
authentication

Does not have a password

Assigned to database roles
to obtain packages of rights
to use the database

Stored in the user database
and brought along with a
user database restore

Used to allow database
operations such as SELECT,
UPDATE, EXECUTE, CREATE
TABLE, and so on

Note
It is important to understand this terminology and the
differences between the different contexts, not just for
interacting with SQL Server, but for communicating with fellow
SQL Server and Azure SQL administrators and developers.

The basics of privileges
Moving deeper into the discussion of setting up and configuring
server and database principals, it’s time to cover the basics of
privileges in SQL Server. Most objects in SQL Server have privileges
that you can assign to a principal to grant or deny rights to do things.
For example, for a table, there are privileges to INSERT, UPDATE,



DELETE, and SELECT, which are typically used, as well as REFERENCES
that allow you to use a FOREIGN KEY constraint against the table.

Then there are privileges that pertain to the entirety of a server or
database, such as ALTER TABLE, CREATE TABLE, BACKUP, and CONTROL.
(Some privileges, like SELECT, can be applied to the entire database
as well. SELECT rights at the database level give the user the right to
read data from all tables, for example.)

 You can see the more complete list of possible permissions at
https://learn.microsoft.com/sql/relational-
databases/security/permissions-database-engine.

Note
We don’t cover most of the permission types, nor are you ever
likely use a great number of them, but it is important to know
they exist in case you have a specific purpose that doesn’t
match the commonly used permissions discussed here.

There are three statements used to give or take away permissions:

GRANT. Gives a user access to a resource if they have not also
been denied access.

DENY. Disallows access to a resource even the user has been
granted access in a different way.

REVOKE. Think of this as the DELETE statement for security.
REVOKE deletes a GRANT or DENY statement that has been applied.

Here is the basic syntax of each of these security statements:
Click here to view code image

GRANT       permission(s) ON objecttype::Securable TO 
principal; 
DENY        permission(s) ON objecttype::Securable TO 
principal; 

https://learn.microsoft.com/sql/relational-databases/security/permissions-database-engine


REVOKE      permission(s) ON objecttype::Securable FROM | TO 
principal;

The ON portion of the permission statement may be optional
depending on whether you are applying permission to a specific
resource or to the entire database or server. For example, you omit
the ON portion to grant a permission to a principal for the current
database by doing this:
Click here to view code image

GRANT EXECUTE TO [domain\kirby.sql];

This statement grants EXECUTE permissions for any stored procedure
in the database, including stored procedures that currently exist and
any stored procedures created in the future.

Permissions get complex when you start having access to a resource
through multiple paths. Roles allow you to group together
permissions. (We discuss roles in more depth later in this chapter.)
You can be a member of multiple roles, and a role can itself be a
member of multiple roles, too. Hence, you might be granted access to
read some data—for example, in a schema named Sales—through
multiple methods. You might also be denied access via another path.

GRANT and DENY oppose each other, with DENY taking precedence. To
demonstrate, consider the following opposing GRANT and DENY
statements run from an administrative account on the
WideWorldImporters sample database:
Click here to view code image

GRANT SELECT on SCHEMA::Sales to [domain\kirby.sql]; 
DENY SELECT on OBJECT::Sales.InvoiceLines to 
[domain\kirby.sql];

Or you can grant [domain\kirby.sql] access to insert, update, and
delete data using:
Click here to view code image



GRANT INSERT, UPDATE, DELETE on SCHEMA::Sales to 
[domain\kirby.sql];

After applying this GRANT statement, the user [domain\kirby.sql] can
query all tables in the Sales schema that exist or are later created,
other that the Sales.InvoiceLines table.

It doesn’t matter how many times you are granted access to a
resource; DENY overrides it. You can delete the DENY using the
following:
Click here to view code image

REVOKE SELECT on OBJECT::Sales.Invoices to 
[domain\kirby.sql];

Then you delete the original GRANT using the following statements
(which can be condensed into one statement, if desired; they needn’t
match the GRANT):
Click here to view code image

REVOKE SELECT on SCHEMA::Sales to [domain\kirby.sql]; 
REVOKE INSERT, UPDATE, DELETE on SCHEMA::Sales to 
[domain\kirby.sql];

Now [domain\kirby.sql] will have no access to the Sales schema,
based on the permissions we originally granted, and will not be
denied either, because we revoked that on the Sales.Invoice table.

Note
You can use the REVOKE permission TO or REVOKE permission
FROM syntax interchangeably. This is to make the syntax a little
easier to write and generate code.

Configure login server principals



This section covers some important topics for configuring the logins
to your SQL Server instance, including authentication mode, special
logins, and server roles (built-in and user-created), and how to best
set up a login for your administrative users.

Server authentication mode
When we discuss server authentication mode in this section, we are
referring to SQL Server on a Windows or Linux instance. There are
two security modes in which your SQL Server can operate: Windows
Authentication mode and Mixed mode (or, as the SSMS UI calls it,
“SQL Server and Windows Authentication Mode”).

The goal is to use Windows Authentication mode for access
whenever possible. If the content of this chapter refers to SQL Server
Authentication as redundant, often unnecessary, and problematic for
administrators, that’s intentional; using SQL Server Authentication (in
other words, configuring the SQL Server instance in Mixed mode)
creates additional administrative overhead and possible security
holes of which DBAs must be aware.

If, however, you are in a situation where this is not possible (for
example, when it is impossible to use Windows-authenticated
accounts due to a certain client API or for network scenarios involving
double-hop authentication when Kerberos is not available), it is
important to configure your server logins properly. Be sure to enforce
password length and password changes, just like you would any login
to any service. You don’t want users to use PASSWORD1 for their SQL
Server login, as it will be one of the first logins attempted in a brute
force attack.

This isn’t to say that standard logins are insecure. Since SQL Server
2005, usernames and passwords for SQL Server–authenticated
logins are no longer transmitted as plain text during the login process.
And, unlike with early versions of SQL Server, passwords are not
stored in plain text in the database. But because passwords are
stored in the database with the server, anyone who gets access to a
backup of your master database could rather easily discover the



passwords for an instance. For these reasons and more, Windows-
authenticated accounts are far more secure.

For the best of both worlds, try using an Azure SQL Managed
Instance. That way, you can use the Azure AD authentication modes
covered earlier in this chapter and pass in an Azure AD login and
password. Azure AD logins are only represented as SID values
locally, so this is a far more secure method of managing users,
because the instance holds no private user information (and neither
do backups and copies of your databases).

Enforcing password policies
As stated, one problem with SQL Server Authentication is that it is a
redundant security system within each SQL Server. Included in each
server configuration, and in each user, is whether a SQL Server login
must adhere to the machine’s password policy. It is not required to be
enforced.

The policies are applied from the machine’s local security policy,
inherited from the domain if applicable, including minimum length and
complexity requirements.

The Enforce Password Policy check box is selected by default when
you open the Login – New dialog box in SSMS (see Figure 12-2), but
you can clear the check box to disable this option. So, with SSMS, it
is possible to create a login with a noncomplex (or even blank)
password.



Figure 12-2 The Login – New dialog box in SSMS.

Caution
If you try to create a login with a blank password in SSMS, it
displays a dialog box that warns you against it and asks you to
confirm that you do indeed want to do it. However, it does
ultimately allow it if you override the good advice from the user
interface.

When you create a login in Transact-SQL (T-SQL) code, the
CHECK_POLICY option is not required, but it defaults to ON if not
provided. According to Microsoft Docs, there is also no default for the
-EnforcePasswordPolicy when using Add-SqlLogin in PowerShell.

 For more information, visit
https://learn.microsoft.com/powershell/module/sqlserver/add-
sqllogin.

Inside OUT

https://learn.microsoft.com/powershell/module/sqlserver/add-sqllogin


Does enabling the CHECK_POLICY option evaluate the
current user password?

No. If you enable the CHECK_POLICY option for an existing login
that did not already have it enabled, the existing password is
not affected. The policy, though, will be enforced the next time
the password is changed. So, applications and end users can
initially sign into the SQL Server instance by using the
existing, potentially noncomplex password, and subsequent
DBAs might assume that the password policy is enforced on
the existing password. Therefore, you should not enable
CHECK_POLICY on a login without then immediately changing
the password, or at least setting the MUST_CHANGE option at the
same time so that the user must change their password on
the next login.

In addition to enforcing password policy, you can enforce a maximum
password age by selecting the Enforce Password Expiration check
box. You also can force a user to change their password on their next
login. Keep in mind, however, that although SSMS has built-in
behavior to allow for this password to be changed with a simple
dialog box, other applications might not allow users to change their
passwords interactively. So, the UI programmer will need to provide
this functionality, or the user will be stuck without the ability to access
the database.

The bar has been raised by Azure SQL Managed Instance, which
does not allow the password policy to be ignored.

Setting the login default database
Each login includes a default database option, which you should set
based on how the login principal is to be used. It is convenient to be
able to simply log in to a server and be in a desired database without
specifying it at login, but it is not without a few concerns.



Authentication of the server principal will fail if its default database is
not accessible, including if the database is restoring, is offline, or has
been dropped from the instance. Authentication to the server will fail
even if it is a member of the sysadmin server role, so you should
rarely if ever change the default database of a known administrator
login except to one of the system databases that must be there for
the server to operate. The sysadmin role has all permissions to the
SQL Server instance. We talk more about the sysadmin role and
other server-level roles later in this chapter.

Note
Selecting the default database for administrator logins involves
an interesting choice between two databases—the master
database (the default) or the tempdb database—each of which
is always present when the server starts up. In our experience,
using tempdb can be a safer choice. Often, when you go to a
server to create some code, it is easy to just execute the code
without checking the database context. This way, if the USE
statement is missed or misspelled, you end up with objects in
your tempdb instead of the master database.

This guidance generally follows even for logins that are not a member
of the sysadmin server role, unless they should be able to connect to
a single database, and connection should be refused otherwise. In
this way, the default database setting might be helpful because the
login will be denied new connections if that single database is
inaccessible, moved to another instance, or dropped from the
instance. In each case, the user receives an error if the database is
inaccessible.

Server level roles
A role in SQL Server is like a group in Windows terminology. It is a
grouping to which other principals, referred to as members of the role,
can be assigned. The role can then have permissions assigned to it,
which every member of the role is granted by membership.



Roles are foundational to a solid security scheme and should be used
to grant almost all rights on a SQL Server instance. When you grant
rights to an individual login or user, over time, permissions can
become so complicated, it becomes seemingly impossible to remove
them. For example, if you have 10 DBAs on your team, and 100
users, you could end up with thousands of individual permissions to
grant, with each user’s permissions ending up slightly different from
everyone else’s over time.

Building a group of roles that match the tasks that your logins and
users need to be able to accomplish, and then giving and taking them
away as needed, allows for security defined in well-defined chunks of
code that can be audited far more easily. If you need a DBA to be
able to manage or back up databases, or view three tables in a
database, you can create a role, give it a name, and test that it does
only what you want it to.

You will work with two kinds of roles: built-in roles, and user-defined
roles.

We start by reviewing server roles built into SQL Server, with a focus
on when and why they should (and should not) be granted. Several
server roles are included in SQL Server, including the one you are
likely most familiar with: the all-powerful sysadmin role. We also cover
how to create your own user-defined server roles if the ones provided
by Microsoft aren’t granular enough for you (and they often are not).

Built-in server roles
Server roles bundle together one or more privileges that you want to
give to a login. Built-in server roles are groups of broad permissions
developed by Microsoft as general roles that people may need. The
built-in server roles are generally used to grant administrative logins
access to do certain tasks. Most of these are quite powerful in nature
and must be given out cautiously, if at all.

In SQL Server 2022, Microsoft has added several new server roles
with a naming standard to help them stand out (prefixed with ##MS



and suffixed with ##). They were designed to be lighter roles than the
previous set were, and should be considered for use before the
classic roles where possible. We’ll review a few of these new server
roles later in this section.

A common concern is that vendor specifications or developers
request that inappropriate permissions be given to end users and
service accounts via fixed server roles to run their applications. It is
essential to understand what you are allowing an application to have
access to. While it is not necessarily our assertation that any
reputable third-party software is malicious, the bigger concern is
whether they can withstand common attacks such as SQL injection.

Server roles are not a feature of Azure SQL Database, though
database roles (covered later in this chapter) are provided. This is
analogous to how a contained user behaves in SQL Server.

To manage the assignment of server roles to a user, SSMS provides
the Membership page in the Login Properties dialog box (see Figure
12-3). By default, only the Public check box is selected, and cannot
be cleared. So, new logins are assigned only the public built-in server
role.



Figure 12-3 The Membership page from the Login Properties
dialog box in SSMS. By default, only the public role is
selected (and cannot be cleared).

You also can use T-SQL to add and remove members from server
roles, as shown in this example:
Click here to view code image

ALTER SERVER ROLE serveradmin ADD MEMBER [domain\kirby.sql] 
GO 
ALTER SERVER ROLE processadmin DROP MEMBER [domain\kirby.sql] 
GO

We recommend that whether you initially create your principals using
the GUI or by script, you generate scripts for your logins and roles
(other than passwords if you are using any SQL Server authenticated
logins, though you may wish to include passwords for system



accounts, provided that the script is stored in a secure location). This
will help you to know what is supposed to be on any server. In many
organizations, controlling security can be one of the more daunting
tasks because getting permissions right in your environments is hard,
and when production issues arise, sometimes maintaining scripts is
the last thing you think of.

Security sprawl frequently happens when multiple administrators
assign rights to users as they ask, but with scripted GRANTs and role
assignments, you can add comments and perhaps reference
documentation as to who authorized access in the script you have
created. Maintaining idempotent (re-executable, not making changes
unless changes are needed) scripts for adding server-/environment-
specific security can help. Recording when that script was last
executed in the script along with a check for principals that were
modified after the last run is one strategy that can detect unscripted
security changes.

Making matters worse, security can get complicated quickly because
a role can be a member of a role, and that role the member of
another role. The key here is to clearly understand what a role can
do, and not just add system roles to user-defined ones without
understanding what they do and why you are doing it.

Inside OUT
After you give privileges to a principal, how can you test
it to make sure it works without asking for the user to try
it, and without their login details?

If you want to test security, all you need is IMPERSONATE rights
to an account. This is sometimes done in an application to let
an application or user account impersonate the other
principal, but the most typical use is to test security for a login
or user. For example, say you have a login named Login1,
and you just granted it access to a table. You can test this
using the EXECUTE AS statement. You can execute this



command as either a login or a database user and have only
the rights of that user (not the login you executed EXECUTE AS
with). Once finished, you can revert to your original context
using the REVERT statement.

Click here to view code image

EXECUTE AS LOGIN = 'Login1'; --For a domain account, do 
not include square brackets 
---or the account will not be found 
SELECT * FROM Demo.TableName; 
REVERT;

For all intents and purposes, you will behave like the security
principal you are impersonating. You can also execute the
EXECUTE AS statement while already executing as another
principal.

This can get confusing, so be careful when doing it, and keep
track of how deep you have nested your EXECUTE AS
statements. You can see who you really are using the
ORIGINAL_LOGIN() function.

Let’s explore the list of built-in server roles, beginning with the
unlimited sysadmin and public roles, then the new roles for SQL
Server 2022, followed by the legacy server roles. The new roles are
prefixed and suffixed with ##.

sysadmin. This server role has unrestricted access to all
operations where there is no code to check for names (for
example, row-level security may exclude sysadmin). It is
appropriate for properly vetted DBA administrative accounts
only. Although software vendors or other accounts can request
membership to the sysadmin server role to simplify their security
configuration, this is not appropriate. A responsible DBA should
push back on granting membership to this role, especially if a
user for a single database is requesting sysadmin role
membership.



When granting the sysadmin role, it is unnecessary to grant
membership to any other server role (unless needed for row-
level security). Granting membership to every server role is
redundant because sysadmin doesn’t just have rights to do
everything; the instance basically ignores security for the
members of sysadmin.
The sysadmin role is also granted certain other permissions,
especially in the SSMS code. The privileges of the sysadmin
role are nearly equivalent to the GRANT CONTROL SERVER
permission, with some slight differences. The most notable of
these is the fact that the sysadmin role is unaffected by any DENY
permissions; for example:

Click here to view code image
USE master; 
GO 
--using standard security for simplicity 
CREATE LOGIN TestSysadminDeny WITH PASSWORD = '<strong 
password>' 
GO 
GRANT CONTROL SERVER TO TestSysadminDeny; 
DENY VIEW SERVER STATE TO  TestSysadminDeny; 
GO 
EXECUTE AS LOGIN = 'TestSysadminDeny'; 
SELECT * FROM sys.dm_exec_cached_plans; 
GO 
REVERT; 
GO

The result is an error:
Click here to view code image
Msg 300, Level 14, State 1, Line 7 
VIEW SERVER STATE permission was denied on object 
'server', database 'master'. 
Msg 297, Level 16, State 1, Line 7 
The user does not have permission to perform this action.

But if you execute the following code to add the user as a
member of the sysadmin role, and then re-execute the



statement, it will succeed:
Click here to view code image
ALTER SERVER ROLE sysadmin ADD MEMBER TestSysadminDeny;

##MS_DatabaseConnector##. Members of this server role can
connect to any database without a user or explicit CONNECT rights
assigned. It provides CONNECT ANY DATABASE rights at the server,
which gives CONNECT rights in every database. The rights
conferred by membership in this role can be overridden by an
explicit DENY CONNECT in any database.

##MS_DatabaseManager##. Service accounts for applications
that generate databases, such as an on-premises Microsoft
SharePoint environment, need permissions to automatically
create databases. These service accounts can be granted
membership to this server role instead of sysadmin. Members
can create new databases directly or by restoring from a
backup.

At the server level, the role has CREATE ANY DATABASE and ALTER
ANY DATABASE permissions. At the database, it has the ALTER
privilege. ALTER ANY DATABASE not only allows the login to alter
databases, but to drop them as well.
It does not provide rights to access the data inside databases it
has created other than running ALTER commands. (If the user
creates a database with itself as the owner, then the user has
unlimited access to it.)
In an Azure SQL Database logical server, use
##MS_DatabaseManager## instead of the dbmanager
database level role that exists in the master.
This is quite a powerful role. For example, consider the following
script. It creates a new database owned by sa, then one by a
new principal named TestDbManager. The only thing this login
cannot do with the database is change the owner, but it can drop
the database and make important setting changes.



Click here to view code image
USE master; 
GO 
--using standard security for simplicity 
CREATE LOGIN TestDbManager WITH PASSWORD = '<strong 
password>'; 
GO 
ALTER SERVER ROLE ##MS_DatabaseManager## ADD MEMBER 
TestDbManager; 
GO

Now, still logged in with the sysadmin-enabled login you are
using to administer your test instance, create a database and
make it owned by the built-in sa login:

Click here to view code image
CREATE DATABASE TestDropSa 
ALTER AUTHORIZATION ON DATABASE::TestDropSa TO sa; 
GO

Next, impersonating the TestDbManager principal, attempt to
create, alter, and drop databases:

Click here to view code image
EXECUTE AS LOGIN = 'TestDbManager';

You should always make sure you are in the right context when
writing test scripts. Too often you think it worked, but in fact you
were in the wrong security context.

Click here to view code image
if SUSER_SNAME() <> 'TestDbManager' 
          THROW 50000,'You are not in the expected 
context',1;

Then test that you can do what you expect, as follows:
Click here to view code image
CREATE DATABASE TestDrop; 
ALTER AUTHORIZATION ON DATABASE::TestDrop TO sa;



This command fails with the following error, indicating that it
does not have permissions to change the owner. The login will
be able to alter authorization to itself or any other account it can
impersonate.

Click here to view code image
Msg 15151, Level 16, State 1, Line 17 
Cannot find the principal 'sa', because it does not exist 
or you do not have 
permission.

You can, however, change very important settings:
Click here to view code image
ALTER DATABASE TestDropSa SET SINGLE_USER; 
ALTER DATABASE TestDropSa SET READ_COMMITTED_SNAPSHOT ON;

And you can drop the databases:
Click here to view code image
DROP DATABASE TestDrop; 
DROP DATABASE TestDropSa; 
GO 
REVERT; --Go back to original, sysadmin role

You must now verify your user context again to make sure you
are back out of the previous context. If you change database
context—for example, to tempdb—you cannot revert.
Note that the ##MS_DatabaseManager## role does not confer
any rights in the databases created. However, if a role member
makes themselves the owner of the database, they will have
access. You can determine this using the following query:

Click here to view code image
SELECT db.name as databaseName 
FROM sys.databases db 
JOIN sys.server_principals sp 
ON db.owner_sid = sp.sid 
WHERE sp.name= 'TestDbManager';



##MS_DefinitionReader##. This server role lets you view the
code and security information for any object on the SQL Server
in any database. It is the same as having the server rights VIEW
ANY DATABASE, VIEW ANY DEFINITITION, and VIEW ANY SECURITY
DEFINITION, which provides VIEW DEFINITION and VIEW
SECURITY DEFINITION permissions in each database. It can be
overridden by an explicit DENY of the server or database
permissions.

##MS_LoginManager##. This allows members to create and
delete logins by giving members CREATE LOGIN and ALTER ANY
LOGIN rights. This new role is very much like the securityadmin
role that has existed for a long time, but with one major
difference: It does not come with the power to execute GRANT
statements. Members of the securityadmin role can create a
new login and grant it CONTROL SERVER, which is almost
equivalent to sysadmin. (More on this later in this chapter.)

As an example, the next set of statements shows the basics of
what this role can do. It starts with a new login and then adds it
to the ##MS_LoginManager## server role.

Click here to view code image
CREATE LOGIN TestLoginManager WITH PASSWORD = '<strong 
password>'; 
GO 
ALTER SERVER ROLE ##MS_LoginManager## ADD MEMBER 
TestLoginManager; 
GO

Change to the security context of the TestLoginManager login:
Click here to view code image
EXECUTE AS LOGIN = 'TestLoginManager';

Now, create a new login. (Be careful to test your security context
when doing these tests. It is easy to get lost and be confused by
something working or not working because you are not actually
in the security context you expect.)



Click here to view code image
CREATE LOGIN WhatCanIDo with PASSWORD = '<strong 
password>';

The next question is, what else can you do to the login? You can
add it to a role of which it is a member:

Click here to view code image
ALTER SERVER ROLE ##MS_LoginManager## ADD MEMBER 
WhatCanIDo;

However, each of the next three statements will fail. The first two
of these will question if the role exists:

Click here to view code image
ALTER SERVER ROLE ##MS_DatabaseConnector## ADD MEMBER 
WhatCanIDo; 
ALTER SERVER ROLE sysadmin ADD MEMBER WhatCanIDo;

And the next statement will fail with the error “Grantor does not
have GRANT permission”:

Click here to view code image
GRANT CONTROL SERVER TO WhatCanIDo;

This is an important distinction between the
##MS_LoginManager## role and the securityadmin role
(covered later in this section). It can only grant new rights for
which it explicitly has the GRANT permission or add users to roles
it is already a member of itself.
If you want your new login to be able to grant rights, you must
give it either the account CONTROL rights over a resource or use
the WITH GRANT OPTION on your GRANT statements to allow the
account to grant the same rights to other principals.
Now, return to your sysadmin level account:
REVERT;



Add the login to the ##MS_DatabaseConnector##, and you will
see that you can now add your WhatCanIDo account to it, too:

Click here to view code image
ALTER SERVER ROLE ##MS_DatabaseConnector## 
          ADD MEMBER TestLoginManager; 
EXECUTE AS LOGIN = 'TestLoginManager'; 
ALTER SERVER ROLE ##MS_DatabaseConnector## 
          ADD MEMBER WhatCanIDo; 
REVERT;

##MS_SecurityDefinitionReader##. This gives the user the
VIEW ANY SECURITY DEFINITION right at the server level plus the
VIEW SECURITY DEFINITION right in any database to which the
user has access. Providing an example of what this gives you
access to is a bit trickier than with other permissions. For
example, if you do not have access to security definitions, and if
you execute SELECT * FROM sys.server_principals; you will
get a list that includes sa, all the built in roles, and your login.
But if you are a member of this role, you will see every login and
role for the server.

 For details on the security catalog views, visit
https://learn.microsoft.com/sql/relational-databases/system-
catalog-views/security-catalog-views-transact-sql.

##MS_ServerStateReader##. This role allows member logins
access to view the state of the server in all the dynamic
management objects (DMOs) and functions, and to view the
database state. The role confers VIEW SERVER STATE, VIEW
SERVER PERFORMANCE STATE, and VIEW SERVER SECURITY STATE
at the server level, and VIEW DATABASE STATE, VIEW DATABASE
PERFORMANCE STATE, and VIEW DATABASE SECURITY STATE at the
database level.

##MS_ServerStateManager##. This is the same as the role in
the previous bullet, with the addition of ALTER SERVER STATE
permission. This allows access to some management
operations, including certain DBCC commands like those that free

https://learn.microsoft.com/sql/relational-databases/system-catalog-views/security-catalog-views-transact-sql


cache (FREEPROCACHE and FREESYSTEMCACHE). It also allows the
login to show performance details using DBCC SQLPERF, a well-
documented command that can view and reset the wait and
latch statistics via DMOs, as well as view space utilization data
from transaction log files.

Note
In Azure SQL Database, resetting wait and latch statistics is
not supported.

Bulkadmin. This server role confers permissions to perform
BULK INSERT operations from local files. It can be suitable for
service accounts for unattended processes that perform
automated mass data movement. Only bulk operations from any
local folders are allowed; this is the main difference between
granting membership to this role and granting the ADMINISTER
BULK OPERATIONS permission, which also allows external sources
via OPENROWSET.

Principals with this permission can use BCP, SQL Server
Integration Services (SSIS), or T-SQL to perform BULK INSERT
statements. Note that for BULK INSERT operations, permissions
to access the target database and INSERT into the destination
tables are also required. ALTER TABLE permissions for the
destination table might also be needed, depending on the exact
settings used, as it can be set to ignore constraints, which is
technically a change to the table.

dbcreator. This role allows members to create and delete
databases. It is analogous to the new
##MS_DatabaseManager## role.

processadmin. This role grants admin-level visibility to
sessions and requests, and allows users to view and reset
server performance information. These permissions can prove
useful to non-administrators who monitor activity.



The role is granted ALTER ANY CONNECTION permissions, allowing
members to view and stop (KILL) sessions. The role is also
granted VIEW and ALTER SERVER STATE, allowing use of the
DMOs.
Any connection can view its own sessions in the
sys.dm_exec_sessions, but with the ALTER ANY CONNECTION
permission, a connection can view all sessions and requests
active on the server, including system sessions below
session_id 50. The ALTER SERVER STATE allows access to DBCC
SQLPERF.

public. This role allows you to give access to any authenticated
user of your server—which is to say that permissions should be
granted to the public server role only in extremely rare
occasions. This role should never be used as an easy-button
solution to a security issue.

Every login is a member of the public server role. So, you should
not grant additional permissions to this role unless you have
considered all the downfalls of doing so, because those
permissions will be granted to all current and future logins and
users. It is also generally not a good idea to deny access to the
public role unless you want to ensure that only sysadmin users
can perform some action.
We don’t want to say “never” in either case, because there are
use cases for every tool, but most of the time, using the public
role is just taking the easy route, much like adding application
logins to the sysadmin role.

securityadmin. This role is as close to sysadmin as it gets. The
ability to create logins at the server level and users in each
database, to grant and revoke permissions at the server and
database level, should not be granted lightly. As with the new
##MS_SecurityAdmin## role, members cannot add principals to
a role they are not in, but they can grant any server permissions,
including CONTROL SERVER, which is analogous to sysadmin in
most ways (other than it being subject to denies, where
sysadmin is not).



Membership in the securityadmin role is required for some
service accounts to delegate the management of security to
applications, especially those that create databases procedurally
and thus must provision security for them—for example, the
setup and farm accounts for Microsoft SharePoint on-premises
installations.
The securityadmin role possesses the ALTER ANY LOGIN
permission and more, including security permissions inside each
database, plus management of account status and passwords
for SQL Server–authenticated logins.

serveradmin. Membership in the serveradmin server role grants
the ability to alter and create endpoints and sp_configure
settings, and execute the SHUTDOWN command to shut down the
SQL Server instance. The role also grants VIEW and ALTER
SERVER STATE permissions allowing for the viewing of a wide
array of helpful DMOs.

ALTER SERVER STATE allows access to DBCC SQLPERF, a well-
documented command that can view and reset wait and latch
statistics as well as view space-utilization data from transaction
log files. As noted, resetting wait and latch statistics is not
supported on Azure SQL Database.
The serveradmin role does not confer access to data or
database-level settings or security-related permissions, and so
is often combined with other roles to provide a subset of
administrative capabilities.

diskadmin. A subset of the serveradmin fixed server role, this
role has rights to affect drive resources—for example, to create
and drop backup devices.

Note
In addition to other permissions, diskadmin has been granted
the ALTER RESOURCES permission, which is limited, poorly
documented, and not recommended for granting on an



individual basis. Instead, grant ALTER RESOURCES only to the
diskadmin role.

setupadmin. This role only grants permissions to deal with
linked servers using T-SQL statements. To use SSMS to set up
linked servers, the sysadmin role is required.

Inside OUT
Should you avoid using any built-in roles?

All the built-in roles have value for certain applications. The
legacy roles have existed for more than two decades, and
have use cases where they make sense. In many cases,
however, they provide more power than desired. So, in SQL
Server 2022, Microsoft has added built-in server roles that in
some cases are similar to existing roles, but with fewer
inherent rights. They also have well-documented rights they
confer to members of the role.

When these roles do what you need, and only what you need,
they are perfectly acceptable. However, we suggest you
scrutinize any security granted via a built-in role to make sure
it does what you want. If it doesn’t do enough, you might use it
and add to it. If it does too much, don’t use it, and find
individual rights or create a custom role. We cover more about
building your own roles and the more common rights you can
grant later, but Microsoft provides way more rights that can be
granted than we can cover in this book.

Security is difficult, but not taking the time to do it right can
lead to much bigger and more difficult problems, like how to
explain how confidential information was accessed by
everyone inside the company—or worse, everyone outside
the company.



User-defined server roles
If the built-in server roles don’t do exactly what you need them to do
—and they rarely will match 1:1 with your needs (other than
sysadmin)—it is useful to create your own roles. First available in
SQL Server 2012, you can create custom server roles to help you
further define the roles that various administrators and non-
administrators can be assigned. This can be especially helpful when
crafting a package of less-than-sysadmin permissions for deployment
managers, security administrators, auditors, developers, integration
testers, or for external access.

Inside a DBA team, we might break down duties and grant
permissions to suit, for example, junior and senior administrators, or
specifically HA administrators, who do not need full sysadmin rights,
but do need advanced rights that are not packaged together in any of
the built-in roles. The key to creating custom server roles is to have a
good understanding of the permissions involved to perform certain
tasks and then divvying up permissions.

You also can make custom server roles to be members of any built-in
server role except for sysadmin, so if one role has almost everything
you need, you can add the custom role as a member of the built-in
role and then grant additional rights to the custom role. Similarly, you
can create custom database roles in each database. We discuss that
later in this chapter.

Following is an example of a potentially useful custom server role.
You can create it to allow read-only access to administrators to an
instance. In the next section, “Logins for the DBA team,” we discuss
separating the Windows credentials used by DBAs into an “everyday”
account and an administrative account. This custom server role is
also useful to provide read-only access to a DBA’s “everyday”
account.
Click here to view code image

--Create a new custom server role 
CREATE SERVER ROLE SupportViewServer; 



GO 
--Grant permissions to the custom server role 
--Run DMOs, see server information 
GRANT VIEW SERVER STATE to SupportViewServer; 
--See metadata of any database 
GRANT VIEW ANY DATABASE to SupportViewServer; 
--Set context to any database 
GRANT CONNECT ANY DATABASE to SupportViewServer; 
--Permission to SELECT from any data object in any databases 
GRANT SELECT ALL USER SECURABLES to SupportViewServer; 
GO 
--Add the DBA team's accounts 
ALTER SERVER ROLE SupportViewServer ADD MEMBER 
[domain\Kirby]; 
ALTER SERVER ROLE SupportViewServer ADD MEMBER 
[domain\Colby]; 
ALTER SERVER ROLE SupportViewServer ADD MEMBER 
[domain\David];

This doesn’t give them complete access to everything, but it does
cover many of the things one needs to do day-to-day DBA work in a
safe manner and to diagnose problems without accidentally making
new problems.

Inside OUT
What level of privileges should database developers
have?

This is a very common question when setting up a
development instance. Typically, a person may have
sysadmin rights on their local machine (this is expected for
most of the examples in this book, for example). This is great
because they are never encumbered by security issues when
trying to write and test code functionality. However, it does
mean they will need to be able to impersonate another user to
test any security that is created as part of the code.



In all cases, the most important thing is to make sure that any
customer data is as safe as possible, and for developers to
have as little access as possible, especially so there is
somewhere to test that security works in a production
environment.

Grant commonly used server privileges
Granting membership to the sysadmin role is appropriate only for
administrator accounts that absolutely need complete control. It is
inappropriate for developers, power users, and analysts. But what
permissions they might need, short of “all of them,” is argued over
more than you might expect.

As a DBA, you should be aware of permissions that your IT
colleagues can be granted. Short of the server sysadmin role or
database db_owner roles, give them access to specific activities they
need. Avoid handing out superpowers except for DBAs and support
personnel who truly need them.

These common securables are server-level and so are not supported
(or necessary) in Azure SQL Database. They are not supported even
when run in the master database of the Azure SQL Database logical
server.

The following subsections present some examples of permissions
that you can grant users to do certain tasks, or in one case, all tasks.
Hence, it is not only important to know what you can do, but also to
understand what privileges mean when you perform an audit of what
privileges users have been given on an existing server.

It is not a simple task to determine exactly how a server principal
obtained the privileges they have, but it is straightforward to
determine what effective rights a user has at the server level with
fn_my_permissions, which you can use at the server or database
level to see what the current security context has access to. If you run
this as a sysadmin, you will see every privilege listed.



Click here to view code image

USE master; 
CREATE LOGIN ListEffectivePermissions WITH PASSWORD = 
'<strong password>'; 
GRANT CONNECT ANY DATABASE TO ListEffectivePermissions;

Next, you can check the login’s effective permissions by passing
SERVER to the function (the first parameter is for the object to check
permissions), which we will use at the database level:
Click here to view code image

EXECUTE AS LOGIN = 'ListEffectivePermissions'; 
SELECT permissions.permission_name 
FROM    fn_my_permissions(NULL, 'SERVER') AS permissions 
REVERT;

From this you will see the following:
Click here to view code image

permission_name 
------------------------------------------------------------ 
CONNECT SQL 
VIEW ANY DATABASE 
CONNECT ANY DATABASE

One of these we granted, but there are two others that we did not
grant. Every login has one privilege granted on creation: CONNECT SQL
(which allows you to connect to the SQL Server). VIEW ANY DATABASE
is inherited from the public group, which allows all server principals to
see all databases in sys.databases, unless you explicitly DENY this
privilege.

VIEW SERVER STATE
Click here to view code image

GRANT VIEW SERVER STATE TO [server_principal]



This permission at the server level allows the principal to view several
server metadata objects, system views, and DMOs, many of which
are essential to a developer who is looking to troubleshoot, analyze,
or performance tune. Most of the DMOs need only the VIEW SERVER
STATE permission.

This is a relatively safe permission to grant in terms of damage that
can be done or data that can be seen. With VIEW SERVER STATE, the
principal still has no access to data (other than some values that
might show up in a query plan), database objects, logins, or
passwords. This is a read-only permission at the server level and
provides a lot of diagnostic information for someone doing support
without the ability to affect major changes.

CONNECT ANY DATABASE
Click here to view code image

GRANT CONNECT ANY DATABASE TO [server_principal]

Introduced in SQL Server 2014, this is a quick way to allow a login to
set its context to any current or future database on the server. It
grants no other permissions, so while the login can execute USE
DatabaseName;, it does not indicate that they can execute a SELECT
statement and see data in the database. Although it does not create a
user in each database for the login, it behaves as if a user had been
granted login permission in each database but has been given no
other rights (similar to what the CONNECT right confers to a user in a
database).

This permission alone doesn’t seem very useful, but it is handy for
setting up a DBA’s “everyday” account or, rather, granting this
securable to a Windows-authenticated group to which all DBA
“everyday” accounts belong. Consider granting this permission as
well as the next, SELECT ALL USER SECURABLES, to grant read-only
access to a server, including each database on the server.

SELECT ALL USER SECURABLES



Click here to view code image

GRANT SELECT ALL USER SECURABLES TO [server_principal]

Introduced in SQL Server 2014, this permission grants the ability to
SELECT from all readable database objects in all user databases. The
object types include tables, views, and table-valued functions. It does
not give the user access to EXECUTE stored procedures. This is a fast
way to give administrators access to read from all current and future
databases and their objects, but is not appropriate for non-
administrative end users or application logins.

Production data could contain sensitive, personally identifiable,
personal information, for instance, so that should not be accessible to
even typical support people. In some regulatory environments,
granting this permission would not be appropriate and might fail
regulatory audit, unless SELECT permission on sensitive tables was
denied, masked, or those tables were encrypted, perhaps with the
Always Encrypted feature.

Similarly, you could also use this permission to DENY read access to
all data on a server by denying this right. This could ensure that
administrators (other than those in the sysadmin role) can accomplish
a variety of other server-level tasks in production systems with safe
assurance that they cannot casually access data using their
“everyday” accounts. Members of the sysadmin server role would not
be affected by any DENY permission.

 For more information on the encryption of sensitive data,
including Always Encrypted, see Chapter 13, “Protect data
through classification, encryption, and auditing.”

CONTROL SERVER
Click here to view code image

GRANT CONTROL SERVER TO [server_principal]



This permission effectively grants all permissions on a server and all
of its databases, and is not appropriate for developers or non-
administrators.

While it is similar, granting the CONTROL permission is different from
granting membership to the sysadmin server role, but it typically has
a very similar effect. Members of the sysadmin role are not affected
by DENY permissions, but owners of the CONTROL SERVER permission
are.

IMPERSONATE
Click here to view code image

GRANT IMPERSONATE ON LOGIN::[server_principal] TO 
[server_principal]

The IMPERSONATE permission allows the server principal to use the
EXECUTE AS statement, the EXECUTE AS clause on a coded object like a
stored procedure, or the EXECUTE statement to execute T-SQL code in
the security context of another server principal.

This permission can create a complicated administrative environment
and should be granted only after you understand the implications and
potential inappropriate or malicious use. With this permission, it is
possible to configure a login to impersonate a member of the
sysadmin role and assume those permissions, so this permission
should be granted in controlled scenarios, and perhaps only
temporarily.

Other than for developers and support persons doing testing, this
permission is commonly granted for applications that use EXECUTE AS
to change their connection security context. You can grant the
IMPERSONATE permission on logins or users at the database scope.

Logins with the CONTROL SERVER permission already have IMPERSONATE
ANY LOGIN permission (unless it has been denied), which should be
limited only to administrators who have to occasionally verify what
permissions a production user has. It is unlikely that any application



that uses EXECUTE AS would need its service account to have
permission to IMPERSONATE any login that currently or ever will exist.
Instead, service accounts should be granted IMPERSONATE
permissions only for known, appropriate, and approved principals that
have been created for the explicit purpose of being impersonated
temporarily.

ALTER ANY EVENT SESSION
Click here to view code image

GRANT ALTER ANY EVENT SESSION TO [server_principal]

A developer might need this permission to trace the SQL Server as
part of a troubleshooting expedition after you tell them about
Extended Events. This will grant them access to create Extended
Events sessions with T-SQL commands but will not give them access
to view server metadata in the New Extended Events Session Wizard
in SSMS. For that, they will need one further commonly granted
developer permission: VIEW SERVER STATE.

Like traces in Profiler (the tool that won’t ever fade away), Extended
Events sessions can capture events on the server from all databases
and processes. You cannot use a trace to capture certain sensitive
events—for example, the T-SQL statement CREATE LOGIN for a SQL
authenticated login.

Note
This is one place where Azure SQL Database differs because
for developers to view Extended Events sessions, you must
grant them an ownership-level permission, CONTROL DATABASE
(discussed later in this chapter in the section “Grant commonly
used database level privileges”). In production environments,
this isn’t recommended for developers or non-administrators.

ALTER TRACE



Click here to view code image

GRANT ALTER TRACE TO [server_principal]

A developer might need this permission to trace the SQL Server as
part of a troubleshooting expedition into the SQL Server instance
(though you should remind them prior to granting this permission that
traces are deprecated, and Extended Events are a much better
diagnostic tool).

 For more information on monitoring SQL Server, see Chapter
8, “Maintain and monitor SQL Server.”

Because ALTER TRACE is a server-level securable, developers can
trace all events on the server, from all databases and processes.
Certain sensitive events cannot be traced; the T-SQL statement of
CREATE LOGIN for a SQL authenticated login is an example.

Special purpose logins
This section discusses some important special logins to be aware of,
including special administrative access, which you should tightly
control.

The sa login
The sa login is a special SQL Server–authenticated login that is,
simply put, all powerful. It is a known member of the sysadmin server
role with a unique SID value of 0x01, and you can (though rarely
should) use it for all administrative access. If your instance is in Mixed
mode (in which both Windows Authentication and SQL Server
Authentication are turned on), and the sa password is known, it can
be used to do anything on the server.

Even if you never use the sa account for authentication, it has utility
as the authorization (in other words, the owner) of databases on a
server for many configurations, such as a general corporate server
where all the databases are used by the same enterprise. In cases



where a server is used for multiple customers, you may wish to have
each customer’s login own their own database(s). When two
databases are owned by the same user, you can enable the
DB_CHAINING database setting to allow cross database queries.

 For more information about cross-database chaining, see
https://learn.microsoft.com/dotnet/framework/data/adonet/sql/
enabling-cross-database-access-in-sql-server.

This known administrator account, however, has obvious potential
consequences if used for typical access, much as any sysadmin level
login does, with the addition of not being able to tell one user of the
account from another. This means it could serve as an anonymous
backdoor for malicious or noncompliant activity by current or former
employees. In the best case, the sa account should have a wickedly
complex password that is locked away for safekeeping.

Applications, application developers, and end users should never use
the sa account. This much should be obvious. The sa account, like
any SQL Server–authenticated account, can potentially have its
password reverse-engineered by a malicious actor who has access to
or a copy of the master database .mdf file.

The sa account is a common vector for brute-force attacks to
compromise a SQL Server. For this reason, if your SQL Server is
exposed to the Internet, we recommend that you rename and/or
disable this account.

The BUILTIN\Administrators Windows group
If you have experience administering SQL Server 2005 or older, you
probably remember the BUILTIN\Administrators group login, which
was created by default to grant access to the sysadmin server role to
any account that is also a member of the local Windows Administrator
group. This was a convenience that might seem logical. But should
anyone who has administrator rights to a server have administrator
rights to everything that server has on it? The answer is no.

https://learn.microsoft.com/dotnet/framework/data/adonet/sql/enabling-cross-database-access-in-sql-server


Beginning with SQL Server 2008, this group was no longer added to
SQL Server instances by default, because it is an obvious and
serious security back door. Although it was potentially convenient for
administrators, it was also targeted by malicious actors. Do not add
the BUILTIN\Administrators group to your SQL Server instance—it is
no longer there by default for a reason.

Service accounts
Chapter 4 discusses service accounts in greater depth, but it is worth
pointing out that service accounts for a server are purely server
logins. They are usually given the minimal permissions needed to run
the services to which they are assigned by SQL Server Configuration
Manager. For this reason, you should not use the Windows Services
(services.msc) to change SQL Server feature service accounts.

It is not necessary to grant additional SQL Server permissions to SQL
Server service accounts. (You might need to grant additional file-
system-level permissions for file locations, however.) The SQL Server
Agent service account likely needs to be a member of the sysadmin
role in a typical configuration. It is technically not necessary, because
you can set credentials that you assign to each job being executed
using credentials and proxies.

You also should never grant the NT AUTHORITY\SYSTEM account,
which is present by default in a SQL Server instance, any additional
permissions. Many Windows applications run under this system
account and should not have any nonstandard permissions.

Inside OUT
What about service accounts for instances in an
availability group?

For SQL Servers in an availability group, the SQL Server
service on each replica instance does not need to have the



same domain service account, though this is the simplest
approach.

If each replica SQL Server service account is different, you
must create a login for each other replica’s domain service
account on each replica.

Though not recommended, if you choose to use nondomain
service accounts for each SQL Server instance, you must
create the database mirroring endpoint (not to be confused
with the deprecated database mirroring feature) using an
encrypted certificate for the instance.

We also recommend that you do not use local or built-in
service accounts, including the machine account, though it is
also possible to do so by granting each machine’s network
service account a login on each other’s replica. This is not a
secure approach.

For more on availability groups, see Chapter 11, “Implement
high availability and disaster recovery.”

Logins for the DBA team
The first logins you need to create when setting up a new server are
for the DBAs so they have access to do everything they need to do.
In all but the most rudimentary IT departments, SQL DBAs need
access to production SQL Server instances, but need their access
governed and constrained to certain uses and privileges—at least
most of the time. By this we mean that during your normal duties, it is
better if you don’t have rights to drop the primary sales database
because you “thought you were on your local machine.” A day of lost
activity (or worse, sales), plus the need to creatively explain to
potential employers why you left your previous employer abruptly, is
not worth avoiding a few extra steps to make changes and apply
upgrades to your production server.



Assuming you are primarily using Windows Authentication for your
server access, this means that SQL Server DBAs will sign into a
Windows instance using the domain credentials they use to access
their email account, timesheet application, and so on. Then, they
connect to the SQL Server instance with Windows Authentication on
that same account and begin their work. DBAs often use this same
method whether they are connecting to a production environment
SQL Server or a preproduction (development/testing) environment
SQL Server, though we’ll talk about using different credentials for
each next.

Inside OUT
What is a “production” environment, and how is it
different?

The upcoming section talks about “production” versus
“preproduction.” These terms mean different things to different
people (even our authors initially had a different definition of
what a preproduction environment was), so let’s look at what
each environment actually is:

Production. This is the main system of record. It might, for
example, connect to actual instruments or machines,
control life-critical systems or customer-facing applications,
or contain the organization’s valuable data. It is subject to
disaster recovery plans, needs high availability, and is “the
server” to which the CEO of your company refers.

Preproduction. This is a class of systems that may
resemble the production environment but isn’t visible to the
actual machinery (physically or metaphorically speaking)
of the business. Preproduction systems go by many
names, including development, test, quality assurance
(QA), user acceptance testing (UAT), business acceptance
testing (BAT), and many others. Very often, this
environment will simply be referred to as dev or test. The



key is that we are not talking about user data on which the
business relies. Preproduction servers should generally
not contain actual customer or patient information, other
than a true testing system, such as a UAT or BAT system,
where the customer must see their actual data in action; in
such cases the system may need to be treated like
production with regard to data access and protection.

Developers, report writers, and QA testers should ideally have
access only to preproduction systems. If they must
troubleshoot a production problem, only trusted developers
should be given access, and even then, only temporarily.

DBAs must have access to SQL Server instances in all
environments, but, still, we need to discuss how best to
arrange for access to production systems.

To illustrate, consider the following scenario: Tasked with backing up
and restoring a database from the production environment to the
development environment, the DBA uses the connections already
open in SSMS, copies the backup to a network share, and then
begins the restore. The restore is 50 percent complete when a user
calls to ask, “Is the SQL Server down?”

Too often, the problem is exceedingly simple: The DBA is working on
the wrong server. In many cases, the development and production
servers may look completely alike except for a few letters in the name
or DNS entry. A DNS naming standard might just differ by
sql.d.company and sql.p.company, and in a query window, it might
not be noticed.

At a conference this author once attended, the speaker asked how
many SQL Server instances people managed. Well over half of the
attendees managed 50+ servers. If one-third of them are production,
the other two-thirds look extremely similar to those servers, just in a
preproduction configuration. For too many DBAs, it is sadly a rite of



passage to muck up a production server, and then repair it with little
or no data loss.

If your DBA team isn’t already using two or more Windows-
authenticated accounts each, you should consider segmenting each
DBA’s production database access from the account they use for the
rest of their day-to-day activities, including preproduction systems,
but also email, office applications, Office 365, and more. Then
consider creating “admin-level” accounts for each DBA that allow no
access to preproduction systems, office applications, Office 365,
virtual private networks (VPNs)—not even the Internet, except for
what is required for the job. The idea is to encourage your DBA team
to use its admin accounts only for administrative activities.

For example, suppose Kirby is a DBA. They use Domain\Kirby to
access tools for “everyday” activities, such as email, instant
messaging, preproduction SQL instances, source control, Office 365,
VPN, and more. However, this domain account has limited access to
production SQL Servers. For example, they can access server-level
DMVs, activity levels, SQL Agent job history, and the SQL Server
Error Log, but they cannot create logins, read or update live
production data, alter databases, and so on. To perform any of those
tasks, Kirby starts SSMS using Run AS another user or opens a
remote desktop session to another server using Domain\admin-Kirby.
This activity is deliberate and requires heightened awareness—the
production databases are important! Starting SSMS from within the
remote desktop session, Domain\admin-Kirby is a member of the
sysadmin server role and can accomplish anything they need to in
the production environment. When they’re done, they log out.
Domain\admin-Kirby also has no VPN access; thus, if it is
compromised, it cannot be used to both gain remote access to the
corporate network and access SQL Servers.

Of course, since the DBA team are employees just like anyone else,
they may have to access the SQL Server as part of their job—for
example, to track projects and enter timesheets. However, access to
the production servers using their admin account in a way that they
have elevated access requires deliberate steps and mental



awareness of the task at hand. So, the risk of accidentally running
intended-for-development tasks in production is considerably
reduced.

After separating the day-to-day from the admin logins for each
member of the DBA team, it’s time to assign permissions to each as
appropriate. If your DBA team has been operating with a single login,
this will likely resolve revoking permissions from their existing account
and creating a new admin account. Refer to the “User-defined server
roles” section, earlier in this chapter, about server roles that you can
use to separate duties among a team of DBAs, and a custom server
role that you can create to set up read-only access to an entire
server.

Database principals
A database security principal is a part of the database and is the
anchor in which you can obtain access to data and coded objects in
the database. There are two major types of database principals:
users and roles.

Each of these is in some way considered the same, in that you can
grant and deny access to database resources using them. Users are
the hook to obtain access to a database, whereas a role is a way to
group one or more users together to give them a common set of
permissions.

Database users
There are four major types of database users: users mapped to
logins and groups, users mapped to Windows Authentication
principals directly, users who cannot authenticate at all, and
contained users.

Users mapped to logins and groups



Users mapped to logins are by far the most common type you will
encounter. For example, suppose you created a standard login
named Bob and a Windows authenticated login named [Domain\Fred]
using the following code:
Click here to view code image

CREATE LOGIN Bob WITH PASSWORD = 'Bob Is A Graat Guy'; 
--Misspellings in passwords can be helpful! 
CREATE LOGIN [Domain\Fred] FROM WINDOWS;

Then, you could create users for these logins using:
Click here to view code image

CREATE USER Bob FOR LOGIN Bob; 
CREATE USER [Domain\Fred] FOR LOGIN [Domain\Fred];

There is nothing stating that the name of the login must match the
domain name, but it is a very typical way to create users, and helps to
document your database users and where they come from. The
following is perfectly legal syntax as well, where you name the user
differently from the Windows security principal:
Click here to view code image

CREATE USER fred FOR LOGIN [Domain\Fred];

The Windows principal that the login and the database user it
references needn’t be a Windows-based login. It can be a Windows
group, for example, which will allow every member of that group to
access the server without being named individually.

You cannot use a \ (backslash) character in a login or database
username unless it is a Windows Authentication based login. Trying
to execute the two following statements:
Click here to view code image

CREATE LOGIN [Domain\Fred] WITH PASSWORD = '$3cure1'; 
CREATE USER [Dog\Gone] FOR LOGIN [Domain\Fred];



results in two error messages saying Domain\Fred and Dog\Gone are
not valid names because they contain invalid characters, and this is
true even if Domain\Fred or Dog\Gone is a valid login.

To use the same login name as the user for a Windows Authenticated
login, the names must be the same. If you execute:
Click here to view code image

CREATE USER [Dog\Gone] FOR LOGIN [Dog\Gone];

Then you will either get an error about Dog\Gone not being a valid
Windows user or group, or you have a really cool domain name!

Users mapped to Windows Authentication
principals directly
In the previous section, we created the login for [Domain\Fred], so the
CREATE USER statement referenced that login. However, a user could
be created for that login regardless of the existence of the explicit
login principal:
Click here to view code image

CREATE USER [Domain\Sam] FOR LOGIN [Domain\Sam];

In a non-contained database, this user can be used by Domain\Sam,
if and only if Domain\Sam can authenticate to the server. So, if Sam
was a member of Domain\DatabaseUsers, and there was a login
mapped to Domain\DatabaseUsers, creating the user Domain\Sam in
the database would not only extend Domain\Sam access to the
database, but it would give all members of Domain\DatabaseUsers
rights to access the server (and as we discussed earlier, rights to see
the existence of the database, but not access it).

Users who cannot authenticate at all
A user does not have to have a login at all, even in a non-contained
database. This means it cannot be authenticated to, but it can still



exist and have rights assigned. In this scenario, the user will not have
a SID assigned at all.

Note
Another way a user can be in a database and not be
authenticated for use at all is from a broken connection to a SID
on the server, often from restoring a database on a new server.
This scenario, and how to handle it, is covered later in this
chapter in the “Orphaned SIDs” section.

While the user principal cannot be authenticated to, it can be
impersonated using EXECUTE AS, and is a very useful tool for testing
security. It will also be used frequently in the “Understand permissions
and authorization” section later in this chapter. The syntax for creating
a login-less user is simply:
Click here to view code image

CREATE USER Sally WITHOUT LOGIN; 
ALTER RoleYouWantToTest ADD MEMBER Sally; 
EXECUTE AS USER = 'Sally';

You can then test the role all you want to without connecting to the
server with a new login or creating an unneeded login. Database
roles are covered in more detail later in this chapter.

Of course, in either case, if you create users and logins for testing, be
sure to drop them when you are finished with them. You don’t want to
leave any test code/data around in your databases when you are
finished, even in your preproduction servers.

Users contained in the database
Databases created or altered on a SQL Server instance by using
CONTAINMENT = PARTIAL allow the creation of database principals
referred to as contained users. Contained users are authenticated
directly to the database in which they are located. They are not used



frequently, but are interesting in how they can show up in the system
metadata.

Contained users can be contained users with password or contained
Windows Authentication users. Contained users with password
behave like SQL Server Authentication principals, and can be used
directly, bypassing the server’s authentication.

Note
Currently, SQL Server 2022 offers only partially contained
databases because some objects still cross the database
boundary, such as management of the SQL Server instance’s
endpoints. If fully contained databases were implemented, they
would have no external dependencies, even for metadata,
temporary objects, configuration, and SQL Agent Jobs. That
level of containment is not available in SQL Server 2022.

You can move contained databases from SQL Server instance to
instance without the need to re-create server-level objects, such as
server-level security (logins). Some features are only partially
contained. Use the catalog views sys.dm_db_uncontained_entities
and sys.sql_modules to return information about uncontained objects
or features. By determining the containment status of the elements of
your database, you can discover what objects or features must be
replaced or altered to promote containment.

A significant security factor to be aware of with contained databases
is that any user with the ALTER ANY USER permission, and of course
any user who is a member of the db_owner fixed database role, can
grant access to the database and therefore the server’s computing
and storage resources. Users with this permission can grant access
to new users and applications independently of the SQL Server
instance’s administrators.

Though the concept of creating databases with the specific
CONTAINMENT option does not exist in Azure SQL Database, contained
databases are specifically developed to assist with the concept of a



cloud-based database as a service, to allow databases in Azure SQL
Database to be mobile between different cloud hosts and to ensure
very high levels of availability.

Table 12-2 compares contained database users to database users
and server logins (previously shown in Table 12-1).

Table 12-2 Comparing users, logins, and contained users

Server login Database user
Contained
database user



Server login Database user
Contained
database user

Authenticates sessions to a
SQL Server

Can be linked to AD
(Windows Authentication)
or have a password stored
in SQL Server’s master
database

Assigned to server roles to
obtain packaged rights over
the server, as well as all
databases if desired

Not affected by the restore
of any user database

Used to allow server
operations such as
RESTORE, CONNECT, CREATE
DATABASE, DROP DATABASE,
or even viewing data in any
database

Identifies the
login’s context
within a database

Generally linked to
a server login to
access data after
authenticated

Does not have a
password

Assigned to
database roles to
obtain packages of
rights to use the
database

Stored in the user
database and
brought along with
a user database
restore

Used to allow
database
operations such as
SELECT, UPDATE,
EXECUTE, CREATE
TABLE, and so on

Authenticates to
a SQL Server
and the database
they are
contained in (plus
tempdb)

May have a
password or be
linked to AD

Assigned to
database roles to
obtain packages
of rights to use
the database

Stored in the user
database and
brought along
with a user
database restore

Cannot be given
access to
external
databases
directly

Database roles
Database roles, much like the server roles discussed in the “Server
level roles” section earlier in this chapter, allow you to provide
packages of permissions to ease the provisioning of database users.



You also can create your own user-defined database roles to
customize the packages of permissions granted to users.

This section reviews the database roles, both built-in and custom,
with a focus on when and why they should be granted. The same list
of roles applies to SQL Server and Azure SQL Database.

Built-in database roles
Let’s first examine the list of built-in database roles, their permissions,
and their appropriate use. These roles have some utility when setting
up your security, but in a well-configured database, most users will
not be a member of any of these roles. Rather, they will be made a
member of a custom role, covered in the next section.

db_owner. This database role’s name is a bit misleading
because it can have many members. It provides unrestricted
access to the database to make any and all changes to that
database and contained objects. This is different from being
identified as the login that owns the database (represented by
the owner_sid in sys.databases). Changing the AUTHORIZATION
for the database to a principal confers the same rights as
db_owner because the server principal will be mapped to the
dbo built-in user when accessing the database, which is a
member of the db_owner role.

The db_owner role does not specifically confer the CONTROL
DATABASE permission to its members, but is equivalent in terms
of what it is allowed to do. Different from the sysadmin server
role, the db_owner role does not bypass DENY permissions. For
example:

Click here to view code image
CREATE USER fred WITHOUT LOGIN; 
ALTER ROLE db_owner ADD MEMBER fred; 
DENY SELECT ON dbo.test TO fred; 
GO 
EXECUTE AS USER = 'fred'; 



SELECT * 
FROM dbo.test;

For a real database, this would return an error message: “The
SELECT permission was denied.” However, while you can deny
members of the db_owner group access to some resource, the
actual owner of the database will not be subject to the DENY.
Moreover, as a member of the db_owner role, the user will be
able to impersonate the dbo user unless you deny them that
ability. (While impersonating dbo, the user can easily revoke any
denied rights, so it is important to audit users with elevated
rights if they have access to any sensitive data.)

Click here to view code image
EXECUTE AS USER = 'dbo' 
SELECT * 
FROM dbo.test; 
GO 
REVERT; REVERT; --Revert twice, once to get back to fred, 
and another to get back 
to your security context.

The only users in the database who can add or remove
members from built-in database roles are members of the
db_owner role or principals that hold AUTHORIZATION rights for
the database. However, a loophole to this is a database role
such as:

Click here to view code image
CREATE ROLE ALLPowerful; 
ALTER ROLE db_owner ADD MEMBER allPowerful;

Unlike the server-level sysadmin role, db_owner can be added
to database roles. This is why the general prescription is to
avoid adding the db_owner database role to custom roles unless
it makes perfect sense for your purposes and you understand
the implications.

 For more on AUTHORIZATION, the equivalent of “ownership”
terminology, see the section “Understand authorization” later in



this chapter.

db_accessadmin. This role has the right not only to create and
manage database users and custom database roles, but also to
create schemas and to grant permissions on all database
objects. Among other permissions, db_accessadmin has the
ALTER ANY LOGIN and CREATE SCHEMA permissions.

Members of the db_accessadmin role can create users with or
without an association to existing logins. However, members of
the db_accessadmin database role cannot fix orphaned users or
change the login to which a user is assigned because they do
not have the CONTROL DATABASE permission.
Even though members of the db_accessadmin role can create
schemas, they cannot change the authorization for schemas,
because they do not have the ALTER ANY SCHEMA permission.
In a contained database, members of the db_accessadmin role
(and the db_owner role) can create users with passwords,
allowing new access to the SQL Server instance. Because of
the high level of control over permissions and membership in the
database, this role should be considered as important as the
db_owner role and not given out lightly, especially for contained
databases.

db_backupoperator. This role has BACKUP DATABASE (including
full and differential backups), BACKUP LOG, and CHECKPOINT
permissions for the database. This role does not have rights to
restore the database, however, because that requires server-
level permissions found in the sysadmin and dbcreator fixed
server roles, as well as the owner of the database. So, while this
is generally safe in terms of harm that can be done to the server,
it does give the user rights to back up the database and do with
it what they want to.

Note
Remember: Security data in your databases is important, but
possibly far more important is making sure someone can’t



take a copy of your database home with them, either
accidentally or on purpose.

db_datareader. This role has rights to execute a SELECT
statement using any object in the database, including tables,
views, and table-valued functions. Other than utility-based
usage, this is a heavy-handed and brute-force way to give
access to application accounts, and it ignores the ability for
views to abstract the permissions necessary to read from tables.
It is preferable to add permissions to individual schemas or
specific objects instead of granting SELECT access to the entire
database. (Note that there is a database level SELECT privilege
that can be granted, which is equivalent to this role in terms of
permissions.) There may come a time when you need to add a
table, view, or function that you don’t want your user to have
access to by default, and placing this in a schema that you have
not granted rights to typical users is an easy way to accomplish
this.

db_datawriter. Members of this role can execute INSERT,
UPDATE, and DELETE statements on any table or view in the
database. Even more than db_datareader, this role can be
dangerous to give to users for it applies to the entire database.
You should instead grant write permissions on specific schemas
or objects to use stored procedures to accomplish writes. In the
same way there was a SELECT database privilege, there are also
full database INSERT, UPDATE, and DELETE privileges, which are
analogous to this role’s offering.

db_ddladmin. This role has the rights to perform DDL
statements to alter objects in the database. It has no permission
to create or modify permissions, users, roles, or role
membership. This role also does not have the permission to
EXECUTE objects in the database—even objects that members of
this role create.

Note



There is no built-in database role that provides EXECUTE
permissions, which you should grant more granularly than at
the database level. There is an EXECUTE privilege at the
database level, however, that will allow you to convey
EXECUTE permission to every object at the database level.

db_denydatareader. The inverse of db_datareader, this role
denies SELECT on all objects. We discuss this later in this chapter
in the “Understand ownership chaining” section, but this is not a
complete “no user can read any data” tool because it does not
stop certain kinds of access, such as access through a stored
procedure.

db_denydatawriter. Like db_denydatareader, this is the
opposite of db_datawriter, in that the db_denydatawriter role
denies INSERT, UPDATE, and DELETE statements on all objects.

db_securityadmin. Members of this role can manage fixed
database roles (but not change the membership of the
db_owner role), and create and manage custom roles, role
membership, and GRANT, REVOKE, and DENY permissions on
database objects in the database. Note that members of the
db_accessadmin role can create and manage users, but
members of the db_securityadmin cannot.

public. Every database user is a member of the public database
role. Under almost all circumstances, you should not grant
additional permissions to the public roles in any database,
because they will be granted to all current and future users.

Inside OUT
What are some common security antipatterns that you
should look out for?

Here are four common worst practices in the wild from
software vendors:



To ensure that all users can execute all stored procedures,
grant EXECUTE on all stored procedures.

To ensure that all users can execute all stored procedures,
grant EXECUTE to public.

To ensure that all users can read data from all views and
tables, add users to db_datareader, or grant SELECT
permissions to public.

Add users to the db_owner database role or sysadmin
server role.

This full database privilege strategy belies a fundamental
arrogance about the relationship between the end user and
the vendor application. Software developers should never
assume that their application’s security apparatus will be the
only way to access the database.

In reality, an enterprise’s power users, analysts, and
developers will access the vendor’s database with other
applications, including but not limited to Azure Data Studio;
SSMS; Microsoft Office applications, including Excel and
Access; and ad hoc business intelligence tools such as
Microsoft Power BI. Users will have unrestricted access to all
data and procedures in the database when connecting to the
database with other tools if you must grant them larger access
for an application.

In this world of multiplatform devices and data access, it’s
wise to assume that users can connect to your data outside of
the primary application. Database security should be enforced
in the database, as well, not solely at the application layer.
Instead of ever granting permissions to public roles, grant only
appropriate EXECUTE|SELECT|INSERT|UPDATE|DELETE
permissions to required objects or schemas to specific
principals (ideally linked to domain security groups).



Custom database roles
You can create custom database roles to define the roles that various
application users or service accounts need for proper data access.
Unlike server roles, custom database roles are not just for
administrative purposes. Ideally, you assign collections of data
access and database object permissions, assign these permissions
only to roles, and then add users to roles. Custom database roles can
own schemas and objects, just like database user principals.

As with server roles, the key to creating custom database roles is to
have a solid understanding of the tasks you want the members of the
role to be able to do and the permission set required to do them. It is
unlikely that all users in a database will need the same data access,
and not all read-only access will be the same.
Click here to view code image

--Create a new custom database role 
USE WideWorldImporters; 
GO 
-- Create the database role 
CREATE ROLE WebsiteExecute AUTHORIZATION dbo; 
GO 
-- Grant access rights to a specific schema in the database 
GRANT EXECUTE ON Schema::Website TO WebsiteExecute; 
GO

Like users, custom database roles can themselves be made
members of other database roles. Be careful putting built-in database
roles as members of custom roles, however, as you may end up
giving users more rights than you intend. It is a very good practice to
use proper naming of roles so you don’t have a role like:
Click here to view code image

CREATE ROLE ReadOneTable AUTHORIZATION dbo;

That ends up with the rights of the db_owner role because someone
later runs the following:



Click here to view code image

ALTER ROLE db_owner ADD MEMBER ReadOneTable;

It’s even worse because while members of the db_securityadmin
built-in role cannot change membership in db_owner, they can
change membership in the ReadOneTable role, which then conveys
db_owner level rights.

In an ideal configuration, you should create security groups for
access roles based around job function, levels of oversight, and
zones of control. So, if you have people who can report on data in the
Warehouse schema, you could create a WarehouseReporting role and
give it all the necessary rights in the database to do that task.
DatabaseManagers might then have their own role. One method that
you may find useful is to create domain groups to match the job
function, for example, Domain\WarehouseReporting,
Domain\WarehouseManagement, and Domain\DatabaseManagers.

Your AD environment might already have different groups for different
job functions, including SQL Server DBAs (for both their “everyday”
and administrative accounts). These existing groups can be assigned
to database roles, so all security is managed outside of database but
still allows for the level of control desired. Security can certainly be
difficult to configure properly, but a well-thought-out list of groups and
database roles can help manage ongoing security in your SQL Server
database and application.

Use role membership to handle environment
differences
Security is one of the most complicated parts of the DBA’s job. Most
code and objects in a database are of the sort where you strive to
ensure that your preproduction servers (development, testing, QA,
and so on) and production servers have the same structures and
security for the same purposes. There is obviously a lifecycle
involved, and the development environment will have changes in
progress, QA will have changes you believe are ready to release, and



production will have the least up-to-date code, because this is the
environment for well-tested code. But over time, version by version,
the code will be the same.

In security, no two environments will look even somewhat alike when
it comes to who uses them. You will not want a salesclerk to have the
same access on your development server as the production server
where they are taking point-of-sale actions (which is likely done in
another security context).

This is where roles come into play. If you only ever grant and deny
privileges to roles, you will be able to put that security code into your
source control system, test it in development and QA, and then apply
it to production. For example, you might create the following role:
Click here to view code image

CREATE ROLE SalesSchemaRead;

And grant it rights:
Click here to view code image

GRANT SELECT ON SCHEMA::Sales TO SalesSchemaRead;

Because you will have tested that the role works, you will be certain
that it works in every environment. In the development environment,
you can test this schema with user [Domain\TestUser], and it will
have the same access as the [Domain\RealUser] does in production
if you make them a member of the SalesSchemaRead group. Then
the only thing you need to manage outside of your code source
control is which users are members of which roles in the different
environments. Of course, it is a good idea to have your environmental
scripts, like security, in source control as well.

Grant commonly used database level privileges
Much like at the server level, it is rare that we want to just give a user
complete db_owner level access to a database. Typically, if you are
being careful not to give users too much access to a database, you



will find that none of the database roles match your desires well
enough. This section discusses several permissions that are
commonly useful to grant to users and programmers at the database
level.

VIEW DEFINITION
Click here to view code image

GRANT VIEW DEFINITION ON schema.objectname TO 
[database_principal];

This provides permission to the developer to view the T-SQL code of
database objects, without the rights to read or change the objects.
This is known as the metadata of the objects.

Developers might need access to verify that code changes have
deployed to production—for example, to compare the code of a
stored procedure in production to what is in source control. This is
also a safe permission to grant developers because it does not confer
any SELECT or any modification permissions.

Instead of going through each object in a database, you might instead
want to GRANT VIEW ANY DEFINITION TO [principal]. This applies
the permission to all objects in the current database context—for
example, to be able to compare the code and structures in the
production environment to prepare a release, without being able to
see what data is stored in the objects.

SHOWPLAN
Click here to view code image

GRANT SHOWPLAN TO [server_principal]

As part of performance tuning, developers almost certainly need
access to view a specific query’s runtime plan for queries against any
database on the server. Seeing the execution plan is not possible



even if the developer has the appropriate SELECT or EXECUTE
permissions on the database objects in the query. This applies to
both estimated and actual runtime plans.

The SHOWPLAN permission, however, is not enough: Developers must
also have the appropriate read or read/write permissions to run the
query that generates the plan.

Non-administrators and developers can still view aggregate cached
runtime plan statistics via several DMVs, such as
sys.dm_exec_cached_plans without the SHOWPLAN permission, if they
have the VIEW SERVER STATE permission.

IMPERSONATE
Click here to view code image

GRANT IMPERSONATE ON USER::[database_principal] TO 
[database_principal]

The IMPERSONATE permission allows the user of the EXECUTE AS
statement and the EXECUTE AS clause on a coded object like a stored
procedure to impersonate another user temporarily. This permission
can create a complicated administrative environment and should be
granted only after you understand the implications and potential
inappropriate or malicious use. With this permission, it is even
possible to impersonate a member of the sysadmin role and assume
those permissions temporarily, so it should be granted only in
controlled scenarios, and perhaps only on a temporary basis.

This permission is often granted for applications that use EXECUTE AS
to change their connection security context. You can grant the
IMPERSONATE permission on logins or users.

Logins with the CONTROL SERVER permission already have IMPERSONATE
ANY LOGIN permission, which should be limited to administrators only.
It is unlikely that any application that uses EXECUTE AS needs its
service account to have permission to IMPERSONATE any login that
currently exists or ever will exist. Instead, service accounts should be



granted IMPERSONATE permissions only for known, appropriate, and
approved principals that have been created for the explicit purpose of
being impersonated temporarily.

CONTROL DATABASE
Click here to view code image

GRANT CONTROL ON DATABASE::[Database_Name] TO 
[database_principal]

This effectively grants all permissions on database and is not
appropriate for most developers or pretty much any non-
administrators.

Granting the CONTROL permission is different from granting
membership to the db_owner database role, but it has a very similar
effect. Members of the sysadmin role or logins mapped to the dbo
database user are not affected by DENY permissions, but members of
a database role (even db_owner) or users who have been granted
CONTROL will still be affected by a DENY.

 For more information about monitoring SQL Server activity,
see Chapter 8.

Understand permissions and
authorization
Let’s examine the basics of SQL Server permissions as they pertain
to creating objects in a database and then giving access to users.
Previously, we covered the basics of using GRANT, REVOKE, and DENY,
as well as setting up database roles. Now we want to discuss giving
users access to do things with database objects.



Permissions for controlling Data Definition
Language and Data Manipulation Language
T-SQL statements, and the permissions that can be applied to them,
can be sorted into two basic categories of actions:

Data Definition Language (DDL). DDL statements are used to
define structures in the database, such as tables, stored
procedures, or functions.

Data Manipulation Language (DML). DML statements are
used to fetch data from a table or to modify the contents of a
table.

Each type of statement has a very different purpose. DDL is typically
used by an administrator or developer in preproduction environments,
and by a select few or automated processes in production (such as a
change management system). It is also not unusual to allow a user to
store results and data permanently in a database, with very tight
control as to where they can create new objects. DML, in contrast, is
used to determine what users can do with the data and code within
the databases.

The goal of a proper security plan is to allow users access to do what
you want them to (create and drop their own tables), but not what
they should not (drop tables of other users, or worse perhaps, the
application).

DDL
Sample DDL statements include things like CREATE TABLE, ALTER
TABLE, UPDATE STATISTICS, CREATE PROCEDURE, CREATE OR ALTER
PROCEDURE, and so on. Pretty much any statement that is used to
modify the code or settings of the database applies.

The security needed to execute these statements include the
following base categories:



ALTER. Grants the ability to change the properties of a specific
named object, or of all objects if used without referencing a
specific object. It is also the permission required to execute the
TRUNCATE statement on a table.

ALTER ANY. Gives a user the right to change any database
securable.

CREATE <securable type>. Gives a user the right to create a
given type of securable.

VIEW DEFINITION. Grants the database principal the right to
look at the code of any object in the database.

As you can tell from this list, you must be careful with these
permissions. Most security concerns will not be programmers doing
things incompetently or perhaps maliciously; rather, they are more
likely to be edge cases that somehow get missed during testing—for
example, an application generating code that drops a different object
than expected, like dbo.Sales instead of temp.Sales, because the
schema was accidentally left off.

DML
DML statements manipulate data in tables. The following statements
access and modify data in tables and are commonly used: DELETE,
INSERT, BULK INSERT, MERGE, SELECT, UPDATE, TRUNCATE TABLE, EXECUTE
PROCEDURE.

The rights given to perform DML include the following:

SELECT, INSERT, UPDATE, DELETE. These four permissions
are the foundational ones. They give the user the right to either
view, change, create, or delete data from a certain securable, or,
if no securable is included in the call, the entire database.

EXECUTE. Used to let a user execute a stored procedure or
scalar function.



Inside OUT
Is TRUNCATE really a DDL command?

To remove all rows from a table, the TRUNCATE TABLE
command accomplishes the task faster than a DELETE
statement without a WHERE clause—if the TRUNCATE TABLE
command is allowed. You cannot use TRUNCATE TABLE if you
have FOREIGN KEY constraints that reference your table or with
a temporal table.

This is because TRUNCATE is a deallocation of data pages, as
opposed to a DELETE, which removes rows from a table.
Individual rows are not logged as deleted; rather, the data
pages are deallocated. The TRUNCATE operation is written to
the transaction log. When inside an explicit transaction,
TRUNCATE can be rolled back because the pages are not fully
deallocated until the transaction commits.

If this sounds like something closer to a DROP than a DELETE,
you’re right! You will find that TRUNCATE TABLE requires rights
to modify the structure of the table.

As of the previous edition of this book, Microsoft had classified
TRUNCATE as a DML statement, but with SQL Server 2022,
TRUNCATE TABLE is listed as DDL. (For more information, see
https://learn.microsoft.com/sql/t-sql/statements/statements.)
Unlike most discussions of semantics, this one really doesn’t
matter that much. Understand that TRUNCATE TABLE is DDL,
which gives it an importance that calling it DML does not.

Three more DML statements are deprecated, but are needed to
modify permissions for the deprecated text, ntext, and image data
types. Do not use them except for legacy support.

READTEXT

https://learn.microsoft.com/sql/t-sql/statements/statements


UPDATETEXT

WRITETEXT

How permissions accumulate
As discussed, when building a complete security solution, it is best to
use roles to provide a security interface that you can keep the same
in all of your environments. Each of these roles should be distinct in
purpose, but in general be able to work together. It is not at all
unreasonable to say you might have two roles: one that allows a user
to view sales data and another to view warehouse data. The purpose
of each of these may overlap slightly—for example, both might need
access to the Sales.Customer table.

Giving two roles similar but different permissions generally makes
perfect sense for a proper security configuration. A database
principal’s access is based on the summation of all the roles of which
they are members and any privileges they are directly given. Order
doesn’t matter, but as noted earlier in this chapter, GRANT and DENY
oppose each other, and even one DENY wins out over any number of
GRANTs.

To demonstrate, consider the following opposing GRANT and DENY
statements run from an administrative account on the
WideWorldImporters sample database, which you can find at
https://learn.microsoft.com/sql/samples/wide-world-importers-oltp-
install-configure.
Click here to view code image

CREATE ROLE SalesSchemaRead GRANT SELECT on SCHEMA::sales to 
SalesSchemaRead; 
DENY SELECT on OBJECT::sales.InvoiceLines to SalesSchemaRead;

Next, create a login-less user to test with.
Click here to view code image

https://learn.microsoft.com/sql/samples/wide-world-importers-oltp-install-configure


CREATE USER TestPermissions WITHOUT LOGIN; 
ALTER ROLE SalesSchemaRead ADD MEMBER TestPermissions;

Assuming the database user TestPermissions is only a member of
this single role, SalesSchemaRead, they would have permission to
execute SELECT statements on every object in the Sales schema
except for the Sales.SalesInvoice table.

If the following code is run as the user TestPermissions:
Click here to view code image

USE WideWorldImporters; 
GO 
EXECUTE AS USER = 'TestPermissions'; 
SELECT TOP 100 * FROM Sales.Invoices; 
SELECT TOP 100 * FROM Sales.InvoiceLines; 
REVERT;

The result is this:
Click here to view code image

Msg 229, Level 14, State 5, Line 4 
The SELECT permission was denied on the object 
'InvoiceLines', 
database 'WideWorldImporters', schema 'sales'.

And 100 rows are returned from the Invoices table. The
Sales.Invoices table was still accessible to TestPermissions
because it was in the Sales schema, even though the user was
denied access to Sales.InvoiceLines.

Now, let’s add another role that has the specific purpose of not
allowing access to the Sales schema:
Click here to view code image

CREATE ROLE SalesSchemaDeny; 
DENY SELECT on SCHEMA::sales to SalesSchemaDeny; 
ALTER ROLE SalesSchemaDeny ADD MEMBER TestPermissions;



This results in the following when TestPermissions runs the same pair
of SELECT statements as before:
Click here to view code image

Msg 229, Level 14, State 5, Line 4 
The SELECT permission was denied on the object 'Invoices', 
database 'WideWorldImporters', schema 'sales'. 
Msg 229, Level 14, State 5, Line 5 
The SELECT permission was denied on the object 
'InvoiceLines', 
database 'WideWorldImporters', schema 'sales'.

The DENY on the entire sales schema overlapped and overruled the
GRANT.

Now, execute the following:
Click here to view code image

REVOKE SELECT on SCHEMA::sales to SalesSchemaDeny;

The REVOKE removed the effective DENY permission on the same
scope. Now, the only thing that will be denied to TestPermissions is
access to InvoiceLines.

Note
In the previous sample code snippets, for simplicity, we’re
granting access to an individual named user, TestPermissions.
As we’ve already said, but is worth repeating, you should avoid
granting rights to individual (users and logins) as a best
practice. As mentioned earlier in the “Use role membership to
handle environment differences” section, you should make roles
for job responsibilities, and keep them the same in
preproduction and production environments. Then, you can
even test with a login-less user like TestPermissions and it will
be no different from using any other user in the system in terms
of their database access.



Understand authorization
This section covers the topic of database ownership and its impact on
the overall security of a database. Beginning with SQL Server 2008,
ownership is redefined as authorization. Ownership is now a casual
term, whereas authorization is the concept that establishes this
relationship between an object and a principal that has primary
responsibility for it.

Changing the AUTHORIZATION for any object, including a database, is
the preferred, unified approach, rather than describing and
maintaining object ownership with a variety of syntax and
management objects. In the case of a database, however, although
authorization over a database does not imply membership in the
db_owner role, it does grant the equivalent highest level of
permissions to the server principal that owns it. For this reason,
named individual accounts (for example, your own
[domain\bookreader]) should generally not be the AUTHORIZATION on a
database. (This may vary for certain types of community/shared
servers with many databases, but for most enterprise servers, it is not
going to be desirable.)

The problem—which many developers and administrators do not
realize—is that when a user creates a database, that user is the
default owner of the database, and that user principal’s SID is listed
as the owner_sid in sys.databases.

First, this gives this user access to everything in this database—
including the ability to drop the database—even if they have no other
server rights. Second, if the database’s owner_sid principal account
were ever to expire or be removed in AD, or you were to move the
database to another server without that principal, you would
encounter problems with IMPERSONATION and AUTHORIZATION of child
objects, which could surface as a wide variety of errors or application
failures. This is because the owner_sid is the account used as the
root for authorization for the database. It must exist and be a valid
principal.



For this reason, DBAs should change the AUTHORIZATION databases
to either a known high-level, noninteractive service account or to the
built-in sa principal (SID 0x01), which likely doesn’t actually get used
as a login to the server. Proper database authorization is a standard
item on any good SQL Server health check.

If there are databases with sensitive data that should not allow any
access from other databases, they should not have the same
owner_sid as less-secure databases, and/or you should not enable
cross database ownership chaining at the server level. (It is not
enabled by default.)

Change database authorization
When ownership was redefined as authorization, the stored
procedure sp_changedbowner was deprecated in favor of the ALTER
AUTHORIZATION syntax. For example:
Click here to view code image

ALTER AUTHORIZATION ON DATABASE::[databasename] TO 
[server_principal];

In SQL Server databases, the new owner can be a SQL Server–
authenticated login or a Windows-authenticated login. To change the
ownership of a database by running the ALTER AUTHORIZATION
statement, the principal that’s running needs the TAKE OWNERSHIP
permission and the IMPERSONATE permission for the new owner.

The new owner of the database must not already exist as a user in
the database. If it does, the ALTER statement will fail with the error
message, “The proposed new database owner is already a user or
aliased in the database.” You will need to drop the user before you
can run the ALTER AUTHORIZATION statement. The login, when they
access the database, will have db_owner rights, because they are the
owner of the database.

For Azure SQL Database, the new owner can be a SQL Server–
authenticated login or a user object federated or managed in Azure



AD, though groups are not supported.

To change the ownership of a database in Azure SQL Database,
there is no sysadmin role of which to be a member. The principal that
alters the owner must either be the current database owner, the
administrator account specified upon creation, or the Azure AD
account associated as the administrator of the database. As with any
permission in Azure SQL Database, only Azure AD accounts can
manage other Azure AD accounts. You can manage SQL Server–
authenticated accounts by SQL Server–authenticated or Azure AD
accounts.

Understand ownership chaining
Views, stored procedures, triggers, and functions abstract the
permissions necessary to read and write from tables and other views.
They do this using a concept called ownership chaining. Ownership
chaining is a name that pre-dates the concept of authorization and
has remained the common term used. Ownership chaining says that
if the owner of a coded object is the same as the owner of all
referenced objects, all a caller needs is access to the coded object.
This section explores how coded objects can simplify the minimum
permissions you must assign.

This is an important concept to understand, so that you, as a DBA,
can follow the principle of least privilege (PoLP) and grant only the
minimum rights necessary for an application or end user to access
data. We could even go as far as to DENY SELECT access on base
table objects to application users and still provide them with data
access via the stored procedures, view, and functions we have
designed for appropriate data access.

Users accessing the database with minimal rights would only need
EXECUTE permissions on stored procedures and scalar functions, and
SELECT permissions on views and table valued functions.

There are several important caveats that can break this ownership
chaining abstraction and require that whoever is accessing data via a



coded object also has permissions for the underlying database
objects:

The procedure cannot perform any ALTER operations, which are
not abstracted by the stored procedure. This includes
IDENTITY_INSERT.

The procedure does not perform any dynamic SQL command
such as sp_executesql or EXEC ('SQL statements') to access
objects. This is one of the built-in safeguards against abuse like
SQL injection attacks. Dynamic SQL doesn’t rule out chaining
for other objects, but it does for any statement executed
dynamically.

The underlying database objects referenced by the coded object
must have the same authorization. User A cannot confer rights
to user B based on what it has access to via privileges, only
rights that have been obtained by being the authorization
principal on the objects.

If the referenced objects are in different databases, the
databases must have the same authorization, and cross
database chaining must be turned on at the server level with
EXEC sp_configure 'cross db ownership chaining'; or at the
database level using ALTER DATABASE <databaseName> SET
DB_CHAINING ON;.

Not violating any of those conditions, thanks to the intact database
permission chain, you can GRANT EXECUTE permission to a principal
and no other permissions, and you can run a stored procedure
successfully that accesses many objects, owned by the same
principal that owns the procedure. Now, the database principal has no
way to access the database objects outside of your stored procedure.

A demonstration of permissions with views,
stored procedures, and functions



The following code demonstrates how to create a testing user and a
testing table in the tempdb database. (You can use any database
where you have rights to create objects.) Run this code while logged
in as a member of the sysadmin role:
Click here to view code image

USE tempdb; 
GO 
CREATE USER TestOwnershipChaining WITHOUT LOGIN; 
GO 
CREATE SCHEMA Demo; 
GO 
CREATE TABLE Demo.Sample ( 
SampleId INT IDENTITY (1,1) NOT NULL CONSTRAINT 
PKOwnershipChain PRIMARY KEY, 
Value NVARCHAR(10) ); 
GO 
INSERT INTO Demo.Sample (Value) VALUES ('Value'); 
GO 2 --runs this batch 2 times so we get two rows

We’ve inserted two rows into the Demo.SampleTable. Now let’s test
various ways to access this table, without granting any permissions to
it.

Inside OUT
When testing with EXECUTE AS, how can you determine
what your current security context is?

The following section uses the EXECUTE AS statement, which
enables you to simulate the permissions of another principal.
If you are using SSMS, this will affect only the current query
window.

You must always follow EXECUTE AS with a REVERT, which stops
the impersonation and restores your own permissions. Each
execution of REVERT affects only one EXECUTE AS.



If you run into issues, you can always find out what principal
you are running by using this statement:

Click here to view code image

SELECT ORIGINAL_LOGIN(), SUSUER_SNAME(), CURRENT_USER;

It will provide you with two values:

ORIGINAL_LOGIN(). The name of the login with which
you connected to the instance. This will not change even
after you use EXECUTE AS USER or EXECUTE AS LOGIN.

SUSER_SNAME(). The login you are executing as. It
could be the name from EXECUTE AS LOGIN or it could be
the login of the user if you executed EXECUTE AS USER.

CURRENT_USER. The name of the user whose security
content you have assumed. This is the equivalent of
USER_NAME(). It can be either the user you have executed
as or the username in the database for a login you are
impersonating.

Test permissions using a view
In this section, we will create a view on the Demo.Sample table and try
to access it. Note that we just created the TestOwnershipChaining
database principal and have not granted it any other permissions.
Outside of what is granted to the public role, TestOwnershipChaining
has no permissions. Execute this and all the following code in this
section while logged in as a member of the db_owner database role
(or with your administrator login that is a member of the sysadmin
role):
Click here to view code image

CREATE VIEW Demo.SampleView 
AS 



        SELECT Value AS ValueFromView 
        FROM Demo.Sample; 
GO 
GRANT SELECT ON Demo.SampleView TO TestOwnershipChaining; 
GO

The TestOwnershipChaining principal now has access to the view
Demo.SampleView, but not to the Demo.Sample table.

Now, attempt to read data from the table:
Click here to view code image

EXECUTE AS USER = 'TestOwnershipChaining'; 
SELECT * FROM Demo.Sample; 
REVERT;

This results in the following error:
Click here to view code image

Msg 229, Level 14, State 5, Line 26 
The SELECT permission was denied on the object 'Sample', 
database 'tempdb', schema 
'Demo'.

Why? Remember that we have granted no permissions to the table
Demo.Sample. This is as intended. However, the user
TestOwnershipChaining can still access the data in Demo.Sample via
the view:
Click here to view code image

EXECUTE AS USER = 'TestOwnershipChaining'; 
SELECT * FROM Demo.SampleView; 
REVERT;

Here are the results:

ValueFromView 
---------------------------- 
Value 
Value



Note also that database principal TestOwnershipChaining has access
only to the columns that the view Demo.SampleView provides (and
rows if desired by using a WHERE clause). Applications can use view
and stored procedure objects to provide appropriate SELECT, INSERT,
UPDATE, and DELETE access to underlying table data by blocking
access to specific rows and columns and not granting SELECT access
(or other rights) directly to the table.

 For more information on techniques to allow appropriate data
access, including Always Encrypted, see Chapter 13.

Note
Single statement table-valued functions (TVFs) behave
essentially like views, and identically when it comes to security.

Test permissions using a stored procedure
Let’s demonstrate the same abstraction of permissions by using a
stored procedure, and then also demonstrate a case when it fails.
Start by creating the stored procedure object:
Click here to view code image

CREATE PROCEDURE Demo.SampleProcedure AS 
BEGIN 
SELECT Value AS ValueFromProcedure 
FROM Demo.Sample; 
END 
GO 
GRANT EXECUTE ON Demo.SampleProcedure to 
TestOwnershipChaining;

Now try to run as the TestOwnershipChaining principal:
Click here to view code image

EXECUTE AS USER = 'TestOwnershipChaining'; 
EXEC Demo.SampleProcedure; 
REVERT;



The output from the procedure shows the rows of the table:

ValueFromProcedure 
---------------------------- 
Value 
Value

Just like the view object, this works without any access to the
Demo.Sample table. The user TestOwnershipChaining was able to
access the data in the table due to ownership chaining.

Now, let’s break a stored procedure’s ability to abstract the
permissions using dynamic SQL:
Click here to view code image

CREATE OR ALTER PROCEDURE Demo.SampleProcedure_Dynamic AS 
BEGIN 
DECLARE @sql nvarchar(max) 
SELECT @sql = 'SELECT Value as ValueFromProcedureDynamic FROM 
Demo.Sample;'; 
EXEC sp_executesql @sql; 
END 
GO 
GRANT EXECUTE ON Demo.SampleProcedure_Dynamic to 
TestOwnershipChaining;

When you execute this version of the procedure:
Click here to view code image

EXECUTE AS USER = 'TestOwnershipChaining'; 
EXEC Demo.SampleProcedure_Dynamic; 
REVERT;

Here are the results:
Click here to view code image

Msg 229, Level 14, State 5, Line 63 
The SELECT permission was denied on the object 'Sample', 



database 'tempdb', schema 
'Demo'.

We used the dynamic SQL command sp_executesql, passing in a
string of T-SQL, which as a security feature automatically breaks the
permission abstraction.

Note
It’s generally not a big issue, but this could be a security risk,
because although running an object might not allow you to
access the data in the table, it does tell the user of the
existence of a table named Demo.Sample in the tempdb
database. To stop this in a procedure, use proper error handling
with a THROW … CATCH block. You cannot use dynamic SQL in a
VIEW object, but if the ownership chain is broken (for example,
the authorization is different on the schemas that you are using
in the query), it would have the same behavior.

It is possible to get around this built-in safety feature by using the
EXECUTE AS setting on the stored procedure. With EXECUTE AS, you
can have the code in the procedure behave as a different principal.
The same can be said of using the AS clause of the EXECUTE
statement:
Click here to view code image

EXECUTE ('<Statements>') AS USER = '<UserName>';

The most common mistake that people make with EXECUTE AS is they
default to the all-powerful dbo user, and then they write a procedure
to let the user pass in any string to execute to a dynamic SQL
statement. It seems fine; it uses stored procedures for access, and
the application can do pretty much what it needs. Then the user finds
it and realizes they can do anything. Or worse, the application doesn’t
deal with SQL injection issues and a hacker exploits this risk to steal
your data.



If you absolutely must use sp_executesql in a stored procedure, a far
safer way is to create a user principal without a login, for which you
can grant access to the specific resource in the specific manner that
they need. So, if the stored procedure should be able to query the
sales table for sales figures, you might grant that user SELECT rights
on the sales object only. Note that this does require the user to be in
all environments with the same rights, so it may require extra scripts
for your general deployment processes, because you want this user
to be checked into your source control with the code and not the
environmental users. If you use a source control tool with decent
filtering capabilities, you could check in only database users that have
no related logins.

In this case, we create a database principal named ElevatedRights,
grant it select rights to Demo.Sample, and then execute the code as
that user:
Click here to view code image

CREATE USER ElevatedRights WITHOUT LOGIN; 
GRANT SELECT ON OBJECT::Demo.Sample TO ElevatedRights; 
GO 
CREATE OR ALTER PROCEDURE Demo.SampleProcedure_Dynamic 
WITH EXECUTE AS 'ElevatedRights' 
AS 
BEGIN 
DECLARE @sql nvarchar(1000) 
SELECT @sql = 'SELECT Value as ValueFromProcedureDynamic FROM 
Demo.Sample;'; 
EXEC sp_executesql @SQL; 
END; 
GO 
GRANT EXECUTE ON OBJECT::Demo.SampleProcedure_Dynamic to 
TestOwnershipChaining;

Now, executing the procedure, access to the data is possible and
data is returned.
Click here to view code image

EXECUTE AS USER = 'TestOwnershipChaining'; 
EXEC Demo.SampleProcedure_Dynamic; 



REVERT;

The ElevatedRights user will not even be able to execute the
procedure, just the SELECT statement. And because the user has no
login, if you don’t grant any user IMPERSONATE permissions on it, it will
be completely benign, security-wise.

Let us reiterate: Security is difficult to do well because there is so
much to it. Not only that, getting it really right means asking, “What
can my system users do?” Too often, though, we think, “Only lock
down the valuables,” and put the key under the mat in the front of the
house. It is going to take a great deal more work for you as an
administrator to make sure security is done right, but keeping
information away from the wrong eyes both inside and outside of your
organization is completely worth all of it.

Note
Multi-statement and scalar table–valued functions behave like
stored procedures when it comes to ownership chaining
security.

Access a table even when SELECT is denied
Let’s take these examples one final step further and DENY SELECT
permissions to TestOwnership Chaining. Will we still be able to
access the underlying table data via a view and stored procedure?
Click here to view code image

DENY SELECT ON Demo.Sample TO TestOwnershipChaining; 
GO 
EXECUTE AS USER = 'TestOwnershipChaining'; 
SELECT * 
FROM   Demo.Sample; --show that the user in fact cannot 
access the table 
GO 
SELECT * FROM Demo.SampleView --test the view 
GO 



EXEC Demo.SampleProcedure; --test the stored procedure 
GO 
EXEC Demo.SampleProcedure_Dynamic; --test the stored 
procedure 
GO 
REVERT; 
GO

Executing this code, you will see four blocks of output: one error
message stating SELECT permission was denied and three more with
column headings ValueFromView, ValueFromProcedure, and
ValueFromProcedureDynamic and two rows of output each. We should
note that this is both a good thing and a bad thing at times. It is,
however, very important to realize that only the dynamic stored
procedure could be affected by a DENY, and only if you deny the user
that is impersonated.

Note
If you want to fully limit access to an object, even being
accessed in a coded object, even by the system administrators
(at least without them changing code), you will need to use row-
level security (RLS). This feature allows you to limit access to
rows in a table by defining a predicate that is like a WHERE clause
added to your query on each execution. Chapter 13 covers
RLS.

Perform common security
administration tasks
Beyond the tasks we have covered so far—namely, creating server
and database security principals such as logins, users, and roles—
there are several other common security tasks that a DBA will need
to handle when something isn’t right. This section covers several
such tasks.



Orphaned SIDs
An orphaned SID is a user who is no longer associated with its
intended login. The user’s SID no longer matches, even if the
username and login name do.

Any time you restore a non-contained database from one SQL Server
to another, the database users transfer, but the server logins in the
master database do not. This causes SQL Server–authenticated
logins and Windows accounts that are local to the host computer to
break. However, Windows-authenticated logins (the ones that have
access to the server, at least) will still work (assuming the login has
CONNECT permissions at the server level).

The most common way a user is orphaned is as follows:

1. A database is restored from one SQL Server instance to
another.

2. Even if there is a login that matches previously existing SQL
Server–authenticated logins by name, the SIDs will be different
on each server (unless you prepare for this ahead of time,
covered in the section “Create login with known SID” later in this
chapter). When restoring the database from one server to
another, the SIDs for the server logins and database users no
longer match. Their names will still match, but data access
cannot be granted to end users. Windows-authenticated logins
and their associated users in the restored database will not be
different, so Windows-authenticated logins will continue to
authenticate successfully and grant data access to end users via
the database users in each database, assuming the login has
access to the servers.

3. The SID must be rematched before SQL Server–authenticated
logins will be allowed access to the restored database.

Note



By default, Windows-authenticated logins have an equal but
opposite issue: If you restore a copy of a database from a
production environment to a development environment, you
might not want the production database principals to have
access. For this, you will need to go in and remove the logins
after restoring the database.

Problem scenario
Suppose a database exists on server1 but does not exist on server2.

Original state

server1

SQL Login = Kirby

SID = 0x5931F5B9C157464EA244B9D381DC5CCC

Database User = Kirby

SID = 0x5931F5B9C157464EA244B9D381DC5CCC

server2

SQL Login = Kirby

SID = 0x08BE0F16AFA7A24DA6473C99E1DAADDC

Then, the database is restored from server1 to server2. Now, we find
ourselves in this problem scenario:

Orphaned SID

server1

SQL Login = Kirby

SID = 0x5931F5B9C157464EA244B9D381DC5CCC



Database User = Kirby

SID = 0x5931F5B9C157464EA244B9D381DC5CCC

server2

SQL Login = Kirby

SID = 0x08BE0F16AFA7A24DA6473C99E1DAADDC

Database User = Kirby

SID = 0x5931F5B9C157464EA244B9D381DC5CCC ← Orphaned
SID

The resolution
The resolution for this problem scenario is to use the following
command to alter the user and tell SQL Server the existing login to
match with:
Click here to view code image

ALTER USER Kirby WITH LOGIN = Kirby;

This changes the SID of the user to match the SID of the login on
server2—in this case,
0x08BE0F16AFA7A24DA6473C99E1DAADDC. Again, the
relationship between the server login and the database user has
nothing to do with the name, so it could be user Bob matched to login
Kirby with the same resolution.

Assuming you are using the same name for user and login, you can
use the following script in the restored database to generate an ALTER
USER script for your SQL Server login–based database principals to
map them to server logins.

If you are accustomed to using sp_change_users_login to fix
orphaned SIDs, that stored procedure has been deprecated, and
replaced by the ALTER USER … WITH LOGIN statement:



Click here to view code image

DECLARE @IncludeUsersWithoutLogin bit = 0; 
SELECT   'ALTER USER ' + QUOTENAME(dp.name COLLATE 
DATABASE_DEFAULT) + 
            CASE WHEN sp.sid IS NOT NULL THEN 
        ' WITH LOGIN = ' + QUOTENAME(dp.name) + '; ' 
            ELSE ' WITHOUT LOGIN;' END AS SQLText, 
            * 
FROM     sys.database_principals AS dp 
         LEFT OUTER JOIN sys.server_principals AS sp 
             ON dp.sid = sp.sid 
WHERE    dp.is_fixed_role = 0 
    AND dp.sid NOT IN ( 0x00 ) --guest 
    AND (sp.name IS NOT NULL or @IncludeUsersWithoutLogin = 
1) 
    AND dp.type_desc = 'SQL_USER' 
    AND dp.name <> 'dbo' 
ORDER BY dp.name;

It is a good practice to run this type of script to handle orphaned SIDs
every time you finish a restore that brings a database from one server
to another.

Create login with known SID
In the case of transferring all the logins for a server, you can prevent
orphaned SIDs by re-creating SQL Server–authenticated logins on
multiple servers, each with the same SID. This is not possible using
the SSMS user interface; instead, you must accomplish this by using
the CREATE LOGIN command, as shown here (or using tools discussed
later in this chapter):
Click here to view code image

CREATE LOGIN [Kirby] WITH PASSWORD=N'<strongpassword>', SID = 
0x5931F5B9C157464EA244B9D381DC5CCC;

Using the SID option, you can manually create a SQL Server login
with a known SID so your SQL Server–authenticated logins on



multiple servers share the same SID. Obviously, the SID must be
unique from other logins’ SID values on each instance.

The previous code example used sys.server_principals to identify
orphaned SIDs. You can also use sys.server_principals to identify
the SID for any SQL Server–authenticated login. Creating SQL
Server–authenticated logins with a known SID is not only helpful to
prevent orphaned SIDs, but it can also save time for migrations
involving large numbers of databases, each with many users linked to
SQL Server–authenticated logins, without unnecessary outage or
administrative effort.

We’ll look more closely at this topic later in this chapter when we
examine SQL Server security migrations.

Migrate SQL Server logins and permissions
Moving SQL Server logins from one SQL Server instance to another
is a common task that a DBA will do when setting up new instances
or migrating instances. It is a very good idea to maintain scripts in
case a server crashes. Or, perhaps more importantly, you must audit
permissions on a server to see if they have changed without
authorization—something that frequently occurs when you have too
many people with sysadmin rights, particularly when a DBA is on call
and must fix a problem at 3 a.m.

Moving logins and all server-level permissions involves multiple
steps. Ideally, as a DBA, you will use SSMS’s dialog boxes as little as
possible for tasks that must be repeated. GUI-driven solutions to
most problems are the most time-consuming and could result in a
disagreeable amount of button-clicking and inconsistencies. Well-built
and tested T-SQL or PowerShell scripts are superior in terms of
manageability, repeatability, and deepening your understanding of the
underlying security objects.

Note



In a server migration, all database-level permissions, database
roles, and users, will be moved with the backup/restore of each
database.

This section discusses various methods of migrating security, some of
which apply to either SQL Server instances or Azure SQL Database
logical servers.

Inside OUT
Should you have scripts of principals and passwords?

It is always good to have scripts available to re-create special
system objects, users, and so on. This is certainly true for
system accounts where you need to be able to re-create the
account with its password.

However, be extra careful to store such data in a very safe
location, ideally itself encrypted with a secure password. What
if, for example, you have a server for which you use a
standard login that has sysadmin rights, and you have a file
on a DBA’s computer with the account name and password in
clear text? If this gets in the wrong hands, it could be the key
to a lot more access than you probably want.

We strongly suggest maintaining login scripts in an encrypted
manner, where only people authorized to use the script can
access it. Consider using Azure Key Vault to store these and
other organization secrets.

Move logins using SQL Server Integration
Services (SQL Server only)
Since SQL Server 2008 R2, SSIS has shipped with a Transfer Logins
task that you can use to move logins from one server to another,



including between different versions of SQL Server.

You use SQL Server Data Tools (SSDT) to create a new SSIS
project. As Figure 12-4 shows, this provides an in-the-box, do-it-
yourself alternative to the steps that follow, which involve custom
scripts to migrate permissions from one server to another. The task is
highly configurable, allowing for the creation of both Windows-
authenticated and SQL Server–authenticated logins on the target
instance, with their original SIDs if desired. A Fail/Replace/Skip option
is provided for login names that already exist on the destination.

Figure 12-4 The Transfer Logins Task Editor dialog box in SSIS.

Logins created by the Transfer Logins task arrive at the destination
disabled. You must enable them again before you can use them.

This SSIS task does not move any of the role memberships or server
permissions that these logins might have been granted on the source
instance. Ideally these should be scripted and stored in source
control to be able to quickly re-create a server (unlike standard
accounts, where you need passwords).



 To read more about moving permissions and roles, see the
sections “Move server role membership using T-SQL (SQL
Server only)” and “Move server permissions using T-SQL
(SQL Server only)” later in this chapter.

Move Windows-authenticated logins using T-SQL
(SQL Server only)
This is the easiest of the steps, assuming the source and target SQL
Server instance are in the same domain. Moving Windows-
authenticated logins is as easy as scripting out the CREATE LOGIN
statements for each login.

You do not necessarily need to use Object Explorer in SSMS for this
operation. The system catalog view sys.server_principals contains
the list of Windows-authenticated logins. (The type is 'U' for
Windows user and 'G' for Windows group.) The
default_database_name and default_language_name columns are
also provided, and you can script them with the login.

Here’s a sample script:
Click here to view code image

--Create windows logins 
SELECT CONCAT('CREATE LOGIN ', QUOTENAME(name) + 
      ' FROM WINDOWS WITH DEFAULT_DATABASE =' + 
QUOTENAME(default_database_name)+ 
      ', DEFAULT_LANGUAGE = '+ 
QUOTENAME(default_language_name))  + ';'AS CreateTSQL_Source 
FROM sys.server_principals 
WHERE type_desc in ('WINDOWS_LOGIN','WINDOWS_GROUP') 
AND name NOT LIKE 'NT SERVICE\%' 
AND is_disabled = 0 
ORDER BY name, type_desc;

As in the previous section, this script does not generate T-SQL for
any of the role memberships or server permissions that these logins
might have been granted on the source instance.



Note
Anywhere you build a script and output names, you can use the
QUOTENAME system function to put square brackets around the
name. Most people don’t like square brackets around names in
their code, but generated scripts should handle any name
thrown at them, including spaces, or even embedded square
brackets.

Move SQL Server–authenticated logins using T-
SQL (SQL Server only)
A time-honored reference for this task has been made available by
Microsoft for years, yet was never implemented with the SQL Server
product itself. Since 2000, DBAs have referenced Microsoft support
article 918992, “Transfer logins and passwords between instances of
SQL Server” (https://support.microsoft.com/help/918992/), which
provides scripts to move standard logins and their hashed passwords
to a different server (which can be a different version or edition of
SQL Server). Doing this requires you to create a pair of stored
procedures on your server as part of the process: sp_hexadecimal
and sp_help_revlogin.

With the aid of these stored procedures, you can generate a hash of
a SQL Server–authenticated password with its login, and then re-
create the SQL Server–authenticated login on another server with the
same password. It is not possible in the strictest terms to reverse-
engineer the SQL Server–authenticated login password, but given
enough time, a hacker can find a password that will hash to that value
—called a hash collision—that will more than likely be the original
password (such is the nature of hash values). Since you have the
hash values, the same password that the user knows will match the
hash that you re-create on the new server.

Once again, these stored procedures only re-create the SQL Server–
authenticated logins; they do not re-create any of the role
memberships or server permissions that those logins might have

https://support.microsoft.com/help/918992/


been granted on the source instance. The next two sections discuss
moving server roles and server permissions.

Move server role membership using T-SQL (SQL
Server only)
If you do not manage your server role memberships in a script, you
ought to. And if you need to build that script or to move accounts to a
new server, you can use the following script instead of working
through the dialog boxes in SSMS for each role. This script retrieves
server role membership via SQL Server catalog views and includes
options to add logins to server roles.
Click here to view code image

--server level roles 
SELECT DISTINCT 
       CONCAT('ALTER SERVER ROLE ', QUOTENAME([r].[name]), ' 
ADD MEMBER ', 
QUOTENAME([m].[name])) AS [createtsql] 
FROM [sys].[server_role_members] AS [rm] 
    INNER JOIN [sys].[server_principals] AS [r] 
        ON [rm].[role_principal_id] = [r].[principal_id] 
    INNER JOIN [sys].[server_principals] AS [m] 
        ON [rm].[member_principal_id] = [m].[principal_id] 
WHERE [r].[is_disabled] = 0 
      AND [m].[is_disabled] = 0 -- ignore disabled accounts 
      AND [m].[name] NOT IN ( 'dbo', 'sa' ); -- ignore built-
in accounts

Move server permissions using T-SQL (SQL
Server only)
Moving server permissions can be extremely time-consuming if you
choose to do it by identifying them on the Securables page of each
SQL Server Login Properties dialog box. Instead, we advise you to
script the permissions to re-create them on the destination server by
using catalog views. Ideally, the output of this script should be placed
in source control. Security should not be given out without some



minimal review process to make sure that security matches what the
agreed-upon security says it should be.

Here is a script that will output a script of your permissions to groups:
Click here to view code image

--SERVER LEVEL SECURITY 
SELECT   RM.state_desc + N' ' + RM.permission_name 
         + CASE WHEN E.name IS NOT NULL THEN 
             'ON ENDPOINT::[' + E.name + '] ' 
              ELSE '' 
              END + N' TO ' 
         + CAST(QUOTENAME(U.name COLLATE DATABASE_DEFAULT) AS 
nvarchar(256)) 
         + ';' AS CREATETSQL 
FROM     sys.server_permissions AS RM 
         INNER JOIN sys.server_principals AS U 
             ON RM.grantee_principal_id = U.principal_id 
         LEFT OUTER JOIN sys.endpoints AS E 
             ON E.endpoint_id = RM.major_id 
                 AND RM.class_desc = 'ENDPOINT' 
WHERE  u.is_fixed_role = 0 
--Note, public is not considered a fixed role because you 
--can grant it permissions 
--NOTE: this ignores many of the built in accounts, 
--but if you have made changes to these 
--accounts you may need to make changes to the WHERE clause 
AND U.name NOT LIKE '##%' -- IGNORE SYSTEM ACCOUNTS 
AND U.name NOT IN ( 'DBO', 'SA', ) -- IGNORE BUILT-IN 
ACCOUNTS 
AND U.name NOT LIKE 'NT SERVICE%' 
AND U.name NOT LIKE 'NT AUTHORITY%' 
ORDER BY RM.permission_name, U.name;

Move Azure SQL Database logins
It is not possible to use sp_hexadecimal and sp_help_revlogin on an
Azure SQL Database server for SQL Server–authenticated logins.
Scripting an Azure SQL Database login from SSMS obfuscates any
password information, just as it does on a SQL Server instance. And,
because you do not have access to sys.server_principals,



sys.server_role_members, or sys.server_permissions, scripting
these server-level permissions in Azure SQL Database isn’t possible.
(The system catalog view sys.server_principals is a dependency of
sp_help_revlogin.) Further, creating a login with a password hash is
not supported in Azure SQL Database.

The solution for migrating Azure SQL Database password-based
logins from one server to another is to have a script for your special
logins, to re-create other logins on the destination server with a new
secure password, and to have the users change the password when
they use them.

The three types of Azure-authenticated principals are stored in the
Azure SQL database, not at the Azure SQL logical server level, and
are administered via the Azure portal. Like other database users and
permissions, you can move these principals to a destination server
along with the database itself.

Move other security objects
Do not forget to move other server-level objects to the destination
server, as appropriate. These objects include linked server
connections and SQL Server Audits, for which you can generate
scripts (albeit without passwords in the case of linked servers). Given
this, it is definitely advantageous to securely store your linked server-
creation scripts with their passwords.

You also should re-create SQL Server credentials and any
corresponding proxies in use by SQL Server Agent on the destination
server, although you cannot script credentials. (Thankfully, in terms of
security, you must re-create them manually.) You can script proxies in
SQL Server Agent by using SSMS, and you should re-create them,
including their assigned subsystems.

Alternative migration approaches
There is no easy way to accomplish this goal within the SSMS dialog
boxes or to “generate scripts” of all SQL Server server–level security.



Some third-party products are available to accomplish the task. There
is also a free package of Windows PowerShell cmdlets, including
some designed to assist with security migrations. You can find these
in the dbatools.io free open source GPL-licensed Windows
PowerShell project, which is available at http://www.dbatools.io.

If your SQL Server resides on a VM, cloning the instance at the VM
level might provide some transportability for the VM from one
environment to another, to bypass the process of rebuilding a SQL
Server instance altogether. For version upgrades, hardware changes,
or partial migrations, however, a VM-level clone is obviously not a
solution.

As has been said, and can’t be repeated enough, the number-one
way of preparing for a migration is to have idempotent (repeatable)
scripts to re-create most of your security at the server level, rather
than trying to re-create a server from the thousands of independent
changes that were made over time. This, along with checks to make
sure no new, unscripted security has been added without being
added to the main script, will save you tons of time.

There is one more potential SQL Server–based method of server
login information migration that is no less complex or troublesome. If
you are moving from one SQL Server to another of the exact same
version, backing up and restoring the master database from one SQL
Server instance to another is a potential, albeit not particularly
recommended, solution. (This obviously does not apply to Azure SQL
Database.) Restoring a master database from one server to another
involves myriad potential configuration changes to server-specific
encryption keys, service accounts, user permissions, and server
identification information, which might not be supported. The process
is not outlined in any support documentation, and we do not
recommend it.

A migration of the master database is advisable only when the
destination server of the restored database has the identical volume
letters and NTFS permissions and access to the same service
accounts, in addition to the same SQL Server version and edition.

http://www.dbatools.io/


Dedicated administrator connection
The dedicated administrator connection (DAC) is an admin-only
reserved connection into the SQL Server instance or Azure SQL
Database for use as an emergency method to authenticate to the
server when some problematic condition otherwise prevents it.
Examples include misconfiguration of security, misconfiguration of the
Resource Governor, misconfiguration of prompts created FOR LOGON,
or other interesting conditions that block even members of the
sysadmin server role.

Only one member of the server sysadmin role at a time can connect
using the DAC, much like a database in single-user mode. Do not
attempt to connect to the DAC via Object Explorer in SSMS. (Object
Explorer cannot connect to the DAC, by design.)

The DAC has resource limitations to curb the impact of DAC
commands. You cannot perform all administrative tasks through the
DAC. For example, you cannot issue BACKUP or RESTORE commands
from the DAC. You should use the DAC only to diagnose and
remediate issues that prevent normal access, and then return to a
normal connection. Do not use the DAC to carry out long-running
queries against user data, DBCC CHECKDB, or to query the
dm_db_index_physical_stats DMV.

When using the DAC to connect to an Azure SQL Database, you
must specify the database name in your connection string or
connection dialog box. Because you cannot change database
contexts with the USE syntax in Azure SQL Database, you should
always make connections directly to the desired database via the
database or initial catalog parameters of the connection string.

There are several ways to sign into a SQL Server instance or Azure
SQL Database using the DAC via a login that is a member of the
sysadmin role:

In SSMS, open a new query or change the connection of a
query by providing the server name as usual, but preceded by
ADMIN. For example:



ADMIN:servername

Or, for a named instance (ensure that the SQL browser is
running):
ADMIN:servername\instancename

From a command prompt, you can connect to the DAC via
SQLCMD with the parameter -A; for example:

Click here to view code image
C:\Users\Kirby>sqlcmd -S servername -A

Or, for a named instance (ensure the SQL Browser service is
running):

Click here to view code image
C:\Users\Kirby>sqlcmd -S servername\instancename -A

In SSMS, change a query window to SQLCMD mode. Then use the
following query:

:CONNECT ADMIN:servername

Or, for a named instance (ensure the SQL Browser service is
running):

Click here to view code image
:CONNECT ADMIN:servername\instancename

In Windows PowerShell, use the
DedicatedAdministratorConnection parameter of the Invoke-
SqlCmd cmdlet to provide a connection to the DAC. For example:

Click here to view code image
Invoke-SqlCmd -ServerInstance servername -Database 
master` 
-Query "SELECT @@SERVERNAME" -
DedicatedAdministratorConnection



Or, for a named instance (ensure the SQL browser is running):
Click here to view code image
Invoke- SqlCmd -ServerInstance servername\instancename` 
-Database master -Query "SELECT @@SERVERNAME" -
DedicatedAdministratorConnection

Allowing remote DAC connections
By default, DAC connections are only allowed locally. You can use
the Surface Area Configuration dialog box in the Facets section of
SSMS (refer to Chapter 1, “Get started with SQL Server tools”) to
allow remote DAC connections via the RemoteDacEnabled setting. You
also can use sp_configure to enable the Remote Admin Connections
option.

We recommend that you do so because it is invaluable to gaining
access to a SQL Server when Remote Desktop Protocol (RDP) or
similar technologies are unable to connect to the Windows host of the
SQL Server instance. Enabling remote DAC does not require a
service restart.

The endpoint port that SQL Server uses to listen to DACs is
announced in the SQL Server Error Log upon startup. For example,
you will see this shortly after the SQL Server service starts:
“Dedicated admin connection support was established for listening
locally on port 1434.” This is the default port for default instances,
whereas named instances use a randomly assigned port that
changes each time the service is started.

Remotely connecting to the DAC with SSMS is also possible by
addressing the port number of the DAC instead of the ADMIN: syntax.
For example, providing a connection string in SSMS to
servername\instancename,49902 connects to the DAC endpoint.



Chapter 13

Protect data through
classification, encryption,
and auditing

Privacy in the modern era
Microsoft Purview overview
Introduction to security principles and protocols
Protect the data platform
Ledger overview
Audit with SQL Server and Azure SQL Database
Secure Azure infrastructure as a service

Security is incredibly important to private industry and the public sector.
The number of leaks and hacks of sensitive information continues to
increase, and data professionals are at the forefront of securing this
information. Along with the technical features built into SQL Server,
Azure SQL Database, and Azure SQL Managed Instance, organizations
should embrace the guidelines in privacy laws worldwide for handling
and managing customer information.

Continuing from Chapter 12, “Administer instance and database security
and permissions,” which focuses on authorization, this chapter covers
features in the Database Engine and the underlying operating system



(OS) that help you to secure your server and the databases that reside
on it.

It begins with privacy and how it guides the responsibilities of the data
professional. Then it gets into the technical details of what it means to
encrypt data and looks at the SQL Server and Azure SQL Database
features that help you achieve and maintain a more secure environment.
It also looks at securing the network, the OS, and the database itself,
right down to the column and row level.

Throughout the chapter, you should be thinking about defense in depth—
that is, combining different features and strategies to protect your data
and minimize the fallout if your data is stolen.

Sample scripts in this chapter, and all scripts for this book, are all
available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/downloa
ds.

Privacy in the modern era
A chapter about protecting your data estate is incomplete without a
discussion of external policies and procedures to ensure that protection.
This section is provided as a reminder to keep abreast of current local
and international legislation, using one particular regulation as a
reference.

Caution
This section does not constitute legal advice. Consult your own
legal counsel for more information.

General Data Protection Regulation (GDPR)
On May 25, 2018, the General Data Protection Regulation (GDPR) came
into effect in the European Union (EU). It provides for the protection of
any personal data associated with data subjects (EU residents) located in

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


the EU. Organizations across the world may be affected if they process
personal data belonging to EU residents.

Whenever your organization deals with an EU resident’s personal data,
you are responsible for ensuring it is managed according to that
legislation. The good news is, this is a business problem, not a technical
one. Your organization must develop policies and procedures to enforce
the requirements of the GDPR; you as a data professional then create
technical solutions to satisfy those procedures. These requirements
include the following:

Pseudonymization

Right of access

Right to erasure

The following subsections list problem statements and proposed
solutions to achieve these requirements as they might apply to data
professionals. (Note that this is not an exhaustive list.)

Pseudonymization
Problem statement. Personal data must be transformed in a way
that the resulting data cannot be attributed to a data subject without
additional information.

Proposed solution. This can be implemented through encryption.
We cover this in detail later in this chapter in the section
“Introduction to security principles and protocols,” including various
methods to ensure that sensitive data is not made available to
privileged users and administrators.

Note
Anonymizing data is different from encrypting or masking data.

Right of access
Problem statement. A data subject may request access to their
personal data.



Proposed solution. This can be achieved through standard
Transact-SQL (T-SQL) queries, assuming you have taken measures
to appropriately handle encryption of the data and authentication of
the data subject. Chapter 2, “Introduction to database server
components,” covers authentication and authorization.

Right to erasure
Problem statement. A data subject may request erasure of their
personal data.

Proposed solution. To erase personal data, you must identify it.
This can become arduous with more than a few databases.
Organizations may not appreciate the numerous environments in
which they store personal data, including scaled-out applications,
data warehouses, data marts, data lakes, and email. Fortunately,
you can catalog and tag sensitive data in SQL Server and Azure
SQL Database.

Inside OUT
Is there an easy way to identify sensitive data?

You can use the Data Discovery and Classification feature in SQL
Server Management Studio (SSMS) to identify columns that
should be encrypted. After the classification engine scans your
database, you can then apply these classifications using Always
Encrypted or dynamic data masking, as well as give columns
persistent labels (such as Confidential).

 Read more about data and classification for SQL Server at
https://learn.microsoft.com/sql/relational-
databases/security/sql-data-discovery-and-classification.
For Azure SQL Database, Azure SQL Managed Instance
and Azure Synapse Analytics, you can read more at
https://learn.microsoft.com/azure/sql-database/sql-
database-data-discovery-and-classification.

https://learn.microsoft.com/sql/relational-databases/security/sql-data-discovery-and-classification
https://learn.microsoft.com/azure/sql-database/sql-database-data-discovery-and-classification


For a much broader and richer set of classification tools and
features, consider Microsoft Purview for your organization
(discussed next).

Microsoft Purview overview
Microsoft has combined several security and compliance products and
services under the name Microsoft Purview.

 You can read more about this change at
https://azure.microsoft.com/blog/azure-purview-is-now-microsoft-
purview/.

Microsoft Purview provides your organization with a unified overview of
its governance and compliance portfolio, including its data estate. You
can register, scan, map, and catalog your data estate, which includes
sources such as SQL Server and Azure SQL, from within the Microsoft
Purview governance portal. While your databases stay where they are,
their metadata is copied into Microsoft Purview.

 For an in-depth look at how Microsoft Purview can help your
organization, see https://learn.microsoft.com/microsoft-
365/compliance/purview-compliance.

Microsoft Purview provides a set of deep categorization and classification
tools for governing your data estate. This means that your SQL Server or
Azure SQL environments might fall under a much broader management
scope. Therefore, you must work with your data governance partners to
register, classify, and manage data assets.

Caution
When dropping and re-creating a table, you may lose any data
classifications associated with that table. This is a similar problem
with setting granular permissions, so it is good practice to store and
maintain your Data Definition Language (DDL) scripts in a source
control system.

https://azure.microsoft.com/blog/azure-purview-is-now-microsoft-purview/
https://learn.microsoft.com/microsoft-365/compliance/purview-compliance


Inside OUT
What’s included in Azure SQL?

As a reminder, when you see the phrase SQL Server alone, it is
assumed to be the user-installed, year-versioned product. It may
also be used in the context of the Database Engine, the common
Query Optimizer and storage engine that all Microsoft SQL
products use. SQL Server can run on-premises or in Azure VMs
and can even be installed as part of a VM image from the Azure
Marketplace.

The phrase Azure SQL refers to a product that includes Azure
SQL Database and Azure SQL Managed Instance. Just because
you see “applies to SQL Server” doesn’t mean it applies to Azure
SQL Database or Azure SQL Managed Instance, but it could.
Various features, like the intelligent query processing (IQP)
features discussed in Chapter 14, “Performance tune SQL
Server,” sometimes arrive in Azure SQL Database and Azure
SQL Managed Instance before appearing in the next version of
SQL Server, or vice versa. For various marketing and
technological reasons, these products are still often grouped
together because the products themselves are still extremely
similar.

Introduction to security principles and
protocols
Information security is about finding a balance between the value of your
data and the cost of protecting it. Ultimately the business and technical
decision makers in your organization make this call, but at least you have
the technical tools available to undertake these measures to protect
yourself. In other words, you should not leave security solely to the IT
department.

SQL Server implements several security principles through cryptography
and other means, which you can use to build up layers of security to



protect your environment.

Computer cryptography is implemented through some intense
mathematics that use very large prime numbers; we won’t delve deeply
into specifics here. Instead, this section explains various security
principles and goes into some detail about encryption. It also covers
network protocols and how cryptography works. This will aid your
understanding of how SQL Server and network security protect your
data. Keep in mind that encryption is not the only way to protect data.

Secure your environment with defense in depth
Securing a SQL Server or Azure SQL environment requires several
protections that work together to make it difficult for an attacker to get in,
snoop around, steal or modify data, and then get out.

Defense in depth is about building layers of protection around your data
and environment. These measures might not be completely effective on
their own, but work well as part of an overall strategy because each layer
helps weaken and isolate an attack long enough to allow you to respond.

Layers involved in defense in depth typically include the following:

Perimeter security. You should install perimeter security in the form
of a firewall and other network defenses to protect against external
network attacks. From a physical aspect, don’t let just anyone plug
a laptop into an unattended network point, or allow them to connect
to your corporate wireless network and have access to the
production environment. Logical and physical segmentation involves
keeping sensitive servers and applications on a separate part of the
network, perhaps off-premises in a separate datacenter or in the
Azure cloud. You then protect these connections—for example, by
using a virtual private network (VPN).

Authentication and authorization. From within the network, you
must implement authentication (who you are) and authorization
(what you can do), preferably through Active Directory (AD), which
is available on both Windows and Linux.

Policies. On the servers themselves, you should ensure that the file
system is locked down with a policy that does at least the following:



Enforces permissions and modern protocols for files, folders,
and network shares

 SMB 1.0 (also known as CIFS) is a deprecated file-sharing protocol
that Microsoft recommends removing from your environment. For
more information about disabling SMB 1.0, see
https://techcommunity.microsoft.com/t5/Storage-at-Microsoft/Stop-
using-SMB1/ba-p/425858. SMB 2.0 and higher are still supported.

Denies access to unauthorized users

Denies access to untrusted storage devices

Ensures service accounts do not have system administrator
privileges

Encrypts the file system (optional but recommended)

Permissions. SQL Server permissions should be set correctly so
that the service account does not have administrative privileges on
the server, and database files, transaction logs, and backups cannot
be accessed by unauthorized users.

Application security. On the application side, you can implement
coding practices that protect against things like SQL injection
attacks, and you can implement encryption in your database (and
backup files).

 The SQL Vulnerability Assessment tool in SSMS can help identify
possible security vulnerabilities. Read more about it at
https://learn.microsoft.com/sql/relational-databases/security/sql-
vulnerability-assessment.

Inside OUT
What is SQL injection?

One of the most prevalent attack vectors for a database is to
manipulate the software application or website to attack the
underlying database.

https://techcommunity.microsoft.com/t5/Storage-at-Microsoft/Stop-using-SMB1/ba-p/425858
https://learn.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment


SQL injection is a technique that exploits applications that do not
sanitize input data. A carefully crafted Uniform Resource Identifier
(URI) in a web application, for example, can manipulate the
database in ways that a naïve application developer might not
expect.

If a web application exposes database keys in the Uniform
Resource Locator (URL), for example, an industrious person can
craft a URL to read protected information from a table by
changing the key value. An attacker might be also able to access
sensitive data or modify the database itself by appending T-SQL
commands to the end of a string to perform malicious actions on
a table or database.

In a worst-case scenario, in just a few seconds, a SQL injection
attack could exfiltrate the entire database (that is, the data
removed without your knowledge), and you might hear about it
only when your organization is blackmailed or sensitive data is
leaked.

You can avoid SQL injection by ensuring that all data input is
escaped, sanitized, and validated. To be very safe, all SQL Server
queries should use parameterization.

 You can read more about defending against SQL injection
attacks at https://learn.microsoft.com/sql/relational-
databases/security/sql-injection. The Open Web Application
Security Project (OWASP) is also an excellent resource to
identify and defend against potential vulnerabilities,
including SQL injection. You can visit the OWASP website
at https://www.owasp.org.

The difference between hashing and encryption
In a security context, data that is converted in a repeatable manner to an
unreadable, fixed-length format using a cryptographic algorithm and that
cannot be converted back to its original form is said to be hashed. In
contrast, data that is converted to an unreadable form that can be

https://learn.microsoft.com/sql/relational-databases/security/sql-injection
https://www.owasp.org/


converted back to its original form using a cryptographic key is said to be
encrypted.

Cryptographic algorithms can be defeated in certain ways, the most
common being brute-force and dictionary attacks. Let’s take a quick look
at each of these:

Brute-force attack. In a brute-force attack, the attacking code
checks every possible combination of a password, passphrase, or
encryption key against the hashing or encryption service until it
finally arrives at the correct value. Depending on the type of
algorithm and the length of the password, passphrase, or key, this
can take anywhere from a few milliseconds to many years.

Dictionary attack. A dictionary attack takes a list of words from a
dictionary (which can include common words, passwords, and
phrases) and uses these against the hashing or encryption service.
Dictionary attacks take advantage of the fact that we are bad at
remembering passwords and tend to use common words. A
dictionary attack is a lot faster to perform, so attackers typically
attempt this first.

As computers become more powerful and parallelized, the length of time
to run a brute-force attack continues to decrease. Countermeasures do
exist to protect against some of these attacks, and some encryption
systems cannot be defeated by a brute-force attack. These
countermeasures are beyond the scope of this book, but it is safe to say
that sufficiently complex algorithms and long encryption keys take
several years to compromise.

 Security expert Bruce Schneier suggests that an algorithm with a
512-bit block and key size and 128 rounds (meaning the
encryption algorithm is applied 128 times with a slightly different
change in each pass) will be sufficiently complex for the
foreseeable future. Schneier’s essay “Cryptography after the
Aliens Land” is available at
https://www.schneier.com/essays/archives/2018/09/cryptography
_after_t.html.

Hashing

https://www.schneier.com/essays/archives/2018/09/cryptography_after_t.html


A cryptographic hash function (algorithm) takes variable-length data
(usually a password) and applies a mathematical formula to convert it to
a fixed size, or hash value.

This is the recommended method of securing passwords. When a
password has been hashed correctly, it cannot be decrypted into its
original form. When used with a random salt (a random string applied
along with the hash function), the result is a password that is impossible
to reconstruct—even if the same password is used by different people.

To validate a password, it must be hashed using the same hash function
again, with the same salt, and compared against the stored hash value.

Because hash values have a fixed size (the length depends on the
algorithm used), there is a chance that two sets of data (two different
passwords) can result in the same hash value. This is called a hash
collision, and it is more likely to occur with shorter hash value lengths.
This is why longer hashes are better.

Note
Use passwords that are at least 15 characters in length and,
preferably, more than 20 characters. You should also employ a
password manager so you don’t have to memorize multiple
passwords. Brute-force attacks take exponentially longer for each
additional character you choose, so don’t be shy about using
phrases or sentences (with spaces), either. Password length
matters more than complexity.

Inside OUT
Why should you use a salt, and what is a rainbow table?

If you don’t use a random salt, the same hash value will be
created each time the hash function is applied against a particular
password. Additionally, if more than one person uses the same
password, the same hash value will be repeated.



Imagine an attacker has a list of commonly used passwords and
knows which hash function you used to hash the passwords in
your database. This person could build a catalog of possible hash
values for each password in that list. This catalog is called a
rainbow table.

It becomes very easy to compare the hash values in your
database against the rainbow table to deduce which password
was used. Thus, you should always use a random salt when
hashing passwords in your database. Rainbow tables become all
but useless in this case.

Encryption
Data encryption is the process of converting human-readable data, or
plain text, into an encrypted form by applying a cryptographic algorithm
called a key (cipher) to the data. This process makes the encrypted data
(ciphertext) unreadable without the appropriate key to unlock it.
Encryption facilitates both the secure transmission and storage of data.

Over the years, many ciphers have been created and subsequently
defeated (cracked). In many cases, this is because both central
processing units (CPUs) and graphics processing units (GPUs) have
become faster and more powerful, reducing the length of time it takes to
perform brute-force and other attacks. In other cases, the implementation
of the cryptographic function was flawed, and attacks on the
implementation itself have been successful.

Inside OUT
Why are GPUs used for cracking passwords?

A GPU is designed to process identical instructions (but not
necessarily the same data) in parallel across hundreds or
thousands of cores, ostensibly for rendering images on a display
many times per second.



This coincides with the type of work required to crack passwords
through brute force, because those thousands of cores can each
perform a single arithmetic operation per clock cycle through a
method called pipelining.

Because GPUs can operate at billions of cycles per second
(GHz), this results in hundreds of millions of hashes per second.
Without a salt, many password hashes can be cracked in a few
milliseconds, regardless of the algorithm used.

A primer on protocols and transmitting data
Accessing a database involves the transmission of data over a network
interface, which must occur in a secure manner. A protocol is a set of
instructions for transmitting that information over a specific network port.
A port is one of 65,535 possible connections per protocol that can be
made to a networked device. The most common protocol for SQL Server
is Transmission Control Protocol (TCP). It is always associated with an IP
address and a port number.

Inside OUT
What’s with all these protocols and ports?

Over the years, the development of official and unofficial
standards has resulted in a set of commonly used protocols and
ports. Along with TCP, another common protocol is User
Datagram Protocol (UDP). Most network traffic uses these two
protocols. For example:

TCP ports 1433 and 1434. SQL Server

TCP ports 2382 and 2383. SQL Server Analysis Services

TCP port 80. HTTP

TCP port 443. HTTPS

TCP port 22. Secure Shell (SSH)



UDP port 53. Domain Name System (DNS)

The Internet Protocol suite
To discuss security on a network, you must understand cryptographic
protocols. To discuss the network itself, you must discuss the biggest
network of them all: the Internet.

The Internet is a network of networks (it literally means “between
networks”) that transmits data using a suite of protocols. These include
TCP, which sits on top of another protocol, called Internet Protocol (IP).
Together, they are called TCP/IP. TCP/IP is the most common network
protocol stack in use today. Most of the services on the Internet, as well
as local networks, rely on TCP/IP.

Note
The full IP suite comprises TCP, IP, Address Resolution Protocol
(ARP), Internet Control Message Protocol (ICMP), UDP, and
Internet Group Management Protocol (IGMP). All these are
required to implement the full TCP/IP stack.

IP is a connectionless protocol, meaning each individual unit of transfer,
also known as a network packet or datagram, contains a payload (the
data itself) and a header that indicates where it came from and where it
needs to go (the routing information).

IP network packets might be delivered out of order, with no delivery
guarantee at all. This low overhead makes the protocol fast and allows
packets to be sent to several recipients at once (multicast or broadcast).
TCP, however, provides the necessary instructions for reliability,
sequencing (the order of packets), and data integrity. If a packet is not
received by the recipient, or a packet is received out of order, TCP can
resubmit the data again using IP as its delivery mechanism.

Versions of IP in use today



Internet Protocol Version 4 (IPv4) has a 32-bit address space, which
provides nearly 4.3 billion addresses (232, or approximately 4.3 × 109).
Unfortunately, when this version was first proposed in September 1981,
very few people could have imagined the Internet would be as large and
important as it is today. With billions of humans online, and billions of
devices connected, the available IPv4 address space is all but depleted.

 You can read the IPV4 specification, known as Internet
Engineering Task Force Request For Comments #791, at
https://tools.ietf.org/html/rfc791.

Techniques like Network Address Translation (NAT), which uses private
IP addresses behind a router with a single valid public IP address
representing that entire network, have held off the depletion over the
years, but time and address space have run out.

Internet Protocol Version 6 (IPv6) has an address space of 128 bits,
which provides more than 340 undecillion (340 trillion trillion) addresses
(2128, or approximately 3.4 × 1038). This number is so staggeringly huge
that, even with networks and devices being added every minute,
including the upward trend in the use of the Internet of Things (IoT), each
of these devices can have its own unique address on the Internet without
ever running out of addresses.

 You can read the IPV6 Specification, known as Internet
Engineering Task Force Request For Comments #8200, at
https://tools.ietf.org/html/rfc8200.

Inside OUT
What is the Internet of Things?

Until a few years ago, computing devices such as servers,
desktop computers, laptops, and mobile devices were the only
devices connected to the Internet. Today, millions of objects
embedded with electronics have found their way online, including
coffee machines, security cameras, home automation systems,
vehicle trackers, heart monitors, industrial measurement devices,

https://tools.ietf.org/html/rfc791
https://tools.ietf.org/html/rfc8200


and many, many more. Together, all these devices comprise the
IoT.

Ignoring the fact that many of these devices should not have
publicly accessible Internet addresses in the first place, the
growth trend is exponential, with IPv6 making this massive growth
possible. Hybrid cloud platforms such as Azure have services
dedicated to managing the communication and data requirements
of these devices, including Azure SQL Database and Azure SQL
Managed Instance. In fact, SQL Server itself can also run on IoT
edge devices.

 For more information about Azure SQL Edge, visit
https://azure.microsoft.com/products/azure-sql/edge/.

Deconstruct an IP address
An IP address is displayed in a human-readable notation but is binary
under the hood:

IPv4. The address is broken into four subclasses of decimal
numbers, each ranging from 0 to 255, and separated by a decimal
point. For example, 52.178.167.109 is a valid IPv4 address.

IPv6. The address is broken into eight subclasses of hexadecimal
numerals, each being four digits wide, and separated by a colon. If
a subclass contains all zeros, it can be omitted. For example,
2001:d74f:e211:9840:0000:0000:0000:0000 is a valid IPv6 address
that can be simplified to 2001:d74f:e211:9840:: with the zeros
omitted (note the double-colon at the end to indicate the omission).

 You can read more about IPv6 address representation at
http://www.ciscopress.com/articles/article.asp?p=2803866.

Note
Hexadecimal is a counting system that uses all the decimal
numbers plus the first six letters of the Latin alphabet to
represent the 16 values between 0 and 15 (10 = A, 11 = B, 12 =

https://azure.microsoft.com/products/azure-sql/edge/
http://www.ciscopress.com/articles/article.asp?p=2803866


C, 13 = D, 14 = E, 15 = F). Using hex is a convenient way to
describe binary values that would otherwise take up a lot of
space to display.

Adoption of IPv6 across the Internet is taking decades, so a hybrid
solution is currently in place, by which IPv4 and IPv6 traffic is shared
across compatible devices. If that doesn’t sound like enough of a
headache, let’s add routing into the mix.

Find your way around the Internet
Routing between networks on the Internet is performed by the Border
Gateway Protocol (BGP), which sits on top of TCP/IP. BGP is necessary
because there is no map of the Internet. Devices and entire networks
appear and disappear all the time.

BGP routes billions of network packets through millions of routers based
on a best-guess scenario. Packets are routed based on trust: routers
provide information to one another about the networks they control, and
BGP implicitly trusts that information.

BGP is therefore not secure, because it was designed solely to address
the scalability of the Internet, which was (and still is) growing
exponentially. It was a “quick fix” that became part of the fabric of the
infrastructure long before security was a concern.

Efforts to secure BGP have been slow. It is therefore critical to assume
that your own Internet traffic will be hijacked at some point. When this
happens, proper cryptography can prevent third parties from reading your
data.

A brief overview of the World Wide Web
The World Wide Web (the web) is a single component of the greater
Internet, along with email and other services that are still very much in
use today, such as File Transfer Protocol (FTP) and Voice over IP (VoIP).

The web uses the Hypertext Transfer Protocol (HTTP), which sits on top
of TCP/IP. A web server provides mixed media content (text, graphics,
video, and other media) in Hypertext Markup Language (HTML) format,



which is transmitted using HTTP and then interpreted and rendered by a
web browser. Modern web browsers include Microsoft Edge, Google
Chrome, Mozilla Firefox, and Apple Safari.

Note
The modern web browser is hugely complex, doing a lot more than
rendering HTML, but for the purposes of this discussion and in the
interest of brevity, we gloss over those extras.

How does protocol encryption fit into this?
The explosive adoption of the web in the 1990s prompted public-facing
organizations to start moving their sales online for electronic commerce
(e-commerce) ventures, which created the need for secure transactions.
Consumers wanted to use their credit cards safely and securely so they
could shop and purchase goods online.

Remember that the Internet is built on IP, which is stateless and has
routing information in the header of every single packet. This means
anyone can place a hardware device (or software) in the packet stream,
do something with the packet, and then pass it on (modified or not) to the
destination without the sender or recipient having any knowledge of this
interaction. Because this is a fundamental building block of a packet-
switching network, it’s very difficult to secure properly.

As discussed, encryption transforms your data into an unreadable format.
Now, if someone connected to the same network were to intercept
encrypted packets, that person couldn’t see what you’re doing. The
payload of each packet would appear garbled and unreadable unless this
person had the key to decrypt it.

Netscape Communications created a secure version of HTTP in 1994
called HTTPS, which stands for HTTP Secure or HTTP over Secure
Sockets Layer (SSL). Over the years, the moniker of HTTPS has
remained, but as standards improved, it came to be known as HTTP over
Transport Layer Security (TLS).

Understand symmetric and asymmetric encryption



When we talk about data moving over the network, that usually means
TCP/IP is involved, and we must transmit that data securely, through
encryption. You can encrypt data in two ways: symmetric and
asymmetric. Each has its advantages and disadvantages.

Symmetric encryption (shared secret)
A secret key—usually a password, passphrase, or random string of
characters—is used to encrypt data with a particular cryptographic
algorithm. This secret key is shared between the sender and the
recipient, and both parties can encrypt and decrypt all content using this
secret key.

If the key is accidentally leaked to a third party, the encrypted data could
be intercepted, decrypted, modified, and re-encrypted—again, without
either the sender or recipient being aware of this. This type of attack is
known as a man-in-the-middle attack.

Asymmetric encryption (public key)
Also known as public key encryption (PKE), asymmetric encryption
generates a key-pair composed of a public key (used to encrypt data)
and a private key (used to decrypt that data). The public key can be
widely distributed.

The private key never needs to be shared. Therefore, this method is far
more secure, because only you can use your private key to decrypt the
data. Unfortunately, however, asymmetric encryption requires a lot more
processing power, and both parties need their own key-pairs.

Inside OUT
What encryption method should you use for SQL Server?

For practical purposes, SQL Server manages the keys internally
for both symmetric and asymmetric encryption. Owing to the
much larger overhead of asymmetric encryption, however, you
should use symmetric encryption to encrypt any data at rest in



SQL Server that you want to protect. Using the encryption
hierarchy, layers above the data can be protected using
passwords or asymmetric keys. (We discuss this shortly).

Digital certificates
Public keys require discoverability, which means that they must be made
publicly available. If a sending party wants to sign a message for the
receiving party, the burden is on the sender to locate the recipient’s
public key to sign a message. For small-scale communications between
two private entities, this might be done by sharing their public keys with
each other.

For larger-scale communications with many senders and one recipient
(such as a web or database server, for example), a certificate authority
(CA) can provide the public key through a digital certificate, which the
recipient (the website or database administrator) can install directly on
the server. This certificate serves as an electronic signature for the
recipient, which includes its public key. The CA is trusted by both the
sender and the recipient, and the sender can verify that the recipient is
indeed who it claims to be.

Digital certificates, also known as public key certificates, are defined by
the X.509 standard. Many protocols use this standard, including TLS and
its predecessor, SSL.

 You can read more about how digital certificates and TLS relate to
SQL Server and Azure SQL Database later in this chapter. The
X.509 standard is available at https://www.itu.int/rec/T-REC-
X.509.

Inside OUT
What is a certification authority?

A certification authority (CA) is an organization or entity that
issues digital certificates, which include the name of the owner,

https://www.itu.int/rec/T-REC-X.509


the owner’s public key, and start and expiration dates. The
certificate is automatically revoked after it expires, and the CA
can revoke any certificate before then.

For the certificate to be trusted, the CA itself must be trustworthy.
It is the responsibility of the CA to verify the owner’s identity so
that any certificates issued in that owner’s name can be trusted.

In recent years, several CAs have lost their trustworthy status,
either because their verification process was flawed or their
signing algorithms were weak. Take care when choosing a CA for
your digital certificates.

Protect the data platform
You use multiple layers of defense as you go down the stack of your data
environment. Even if you use virtual machines (VMs) and containers in a
cloud environment, the same principles apply.

Each layer protects the layer below it using a combination of encryption
keys (asymmetric and symmetric), certificates, and other obfuscation
techniques. SQL Server provides features that protect sensitive data
from unauthorized users, even if they manage the data. Azure SQL
services share a lot in common with SQL Server, and have unique
protections, which we call out where applicable.

This section breaks down each layer into network, OS, the SQL Server
instance, and finally the database itself, including columns and rows.
Much of this hierarchy is encrypted by SQL Server, starting at the OS
layer and working all the way down to individual cells in a table. Figure
13-1 shows this hierarchy.



Figure 13-1 The SQL Server encryption hierarchy.

Secure the network with TLS
Data is in motion from the moment it is read from, or written to, the buffer
pool in SQL Server, Azure SQL Database, and Azure SQL Managed
Instance. Data in motion is data that the Database Engine provides over
a network interface. Protecting data in motion requires several
considerations, from perimeter security to cryptographic protocols for the
communication itself, and the authorization of the application or process
accessing the data.

SQL Server 2022 protects data by default during transmission over a
network connection, using Transport Layer Security (TLS). Any network
protocols and APIs involved must support encrypting and decrypting the
data as it moves in and out of the buffer pool.

Note
You may have a network storage device connected to the
underlying OS and encrypted using TLS. However, SQL Server is
not aware of this encryption. See Chapter 2 for more information.

As mentioned, TLS is a security layer on top of a transport layer, or
cryptographic protocol. Most networks use the TCP/IP stack and TLS is
designed to secure traffic on TCP/IP-based networks.

How TLS works



With TLS protection, before two parties can exchange information, they
must mutually agree on which encryption key and cryptographic
algorithm to use. This is called a key exchange or handshake. TLS works
with both symmetric and asymmetric encryption, which means the
encryption key could be a shared secret or a public key (usually with a
certificate).

After the key exchange, the handshake is complete, and a secured
communication channel allows traffic between the two parties to flow.
This is how data in motion is protected from external attacks.

Note
Remember that longer keys mean better security. Public keys of
1,024 bits (128 bytes) are considered short these days, so some
organizations now prefer 2,048-bit or even 4,096-bit public key
certificates for TLS.

A brief history of TLS
Just as earlier cryptographic protocols have been defeated or considered
weak enough that they will eventually be defeated, so too have SSL and
TLS had their challenges:

The prohibition of SSL 2.0 is covered at
https://tools.ietf.org/html/rfc6176.

Known attacks on TLS are available at
https://tools.ietf.org/html/rfc7457.

TLS 1.2 was defined in 2008 and is the most widely available public
version.

Note
TLS 1.3 is supported for SQL Server 2022 on Windows, but is not
supported in all client libraries at the time of this writing. TLS 1.3 is
not yet supported for SQL Server on Linux.

https://tools.ietf.org/html/rfc6176
https://tools.ietf.org/html/rfc7457


Like its predecessors, TLS 1.2 is vulnerable to certain attacks, but as
long as you don’t use older encryption algorithms (for instance 3DES,
RC4, and IDEA), it is good enough while we wait for TLS 1.3 to
propagate. You should use TLS 1.2 or TLS 1.3 wherever possible. Once
support is available in client libraries, however, you should switch to TLS
1.3. SQL Server ships with older versions of TLS, so you must disable
1.0 and 1.1 at the OS level to ensure you use at least TLS 1.2.

 You can see how to disable older versions of TLS in the Microsoft
Knowledge Base article at
https://support.microsoft.com/help/3135244.

Inside OUT
How does TLS 1.3 work with the TDS protocol?

Client libraries use the Tabular Data Stream (TDS) protocol to
connect to SQL Server. In previous versions of SQL Server, the
initial portion of the TDS connection was not secure by default.
With SQL Server 2022, TDS has been updated to version 8.0,
and the connection negotiation process can now be secured
using TLS. If you are using updated versions of the ODBC and
OLE DB client libraries, your client connection string needs
Encrypt=strict to take advantage of this improved security. All
TDS traffic will then be protected by TLS encryption. TDS 8.0 is
fully compatible with both TLS 1.2 and TLS 1.3.

 You can read more about how TDS and TLS interact at
https://learn.microsoft.com/sql/relational-
databases/security/networking/tds-8-and-tls-1-3.

Data protection from the OS
At the top of a server’s encryption hierarchy, protecting everything below
it, is the OS. Windows Server provides an application programming
interface (API) for system-level and user-level processes to take
advantage of data protection (encryption) on the file system. SQL Server

https://support.microsoft.com/help/3135244
https://learn.microsoft.com/sql/relational-databases/security/networking/tds-8-and-tls-1-3


and other applications can use this data protection API to configure
Windows to automatically encrypt data on the drive without having to
encrypt data through other means. SQL Server uses the Data Protection
API (DPAPI) for transparent data encryption (TDE).

Inside OUT
How does data protection work for SQL Server on Linux?

The mechanism that Microsoft created to enable SQL Server to
run on Linux and inside containers is called the Platform
Abstraction Layer (PAL). It aligns all code specific to the OS in
one place, forming a bridge with the underlying platform. The PAL
includes all APIs, including file system and DPAPIs. This makes
SQL Server 2022 platform-agnostic.

 To read more about the PAL, visit the official SQL Server Blog at
https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-
on-linux-how-introduction.

The encryption hierarchy in detail
As mentioned, each layer of the hierarchy protects the layer below it
using a combination of keys (asymmetric and symmetric) and certificates.
(Refer to Figure 13-1.) Individual layers in the hierarchy can be accessed
by a password at the very least unless an extensible key management
(EKM) module is being used. The EKM module is a standalone device
that holds symmetric and asymmetric keys outside of SQL Server.

The database master key (DMK) is protected by the service master key
(SMK), and both are symmetric keys. The SMK is created when you
install SQL Server and is protected by the DPAPI.

If you want to use TDE on your database (see the “Configure TDE on a
user database” section later in this chapter), it requires a symmetric key
called the database encryption key (DEK), which is protected by an
asymmetric key in the EKM module or by a certificate through the DMK.

https://cloudblogs.microsoft.com/sqlserver/2016/12/16/sql-server-on-linux-how-introduction


This layered approach helps to prevent your data from falling into the
wrong hands.

Note
Although we do not recommend 3DES for TLS, you can still use
3DES lower in the SQL Server security hierarchy to secure DEKs
because these are protected by the SMK, the DMK, and a
certificate, or entirely by an HSM/EKM module like Azure Key Vault.
(See the next section, “Use EKM modules with SQL Server,” for
more information.)

There are two considerations when deciding how to secure a SQL Server
environment, which you can implement independently:

Data at rest. In the case of TDE, data is encrypted as it is persisted
to the storage layer from the buffer pool and decrypted as it is read
into memory. You can also encrypt your storage layer independently
from SQL Server, but this does not form part of the encryption
hierarchy.

Data in motion. This refers to data being transmitted over a
network connection. Any network protocols and APIs involved must
support encrypting and decrypting the data as it moves in and out of
the buffer pool.

As mentioned, data is in motion from the moment it is read from or
written to the buffer pool. Between the buffer pool and the underlying
storage, data is at rest.

Note
TDE encrypts database backup files along with the data and
transaction log files. TDE is available with SQL Server Enterprise
and Standard editions, and is enabled by default in Azure SQL.



Inside OUT
How do you import certificates into SQL Server?

Since SQL Server 2019, you can import your TLS certificates
using SQL Server Configuration Manager.

To do so, open Configuration Manager and expand the SQL
Server Network Configuration branch for your instance. Then
right-click Protocols for <InstanceName> and select
Properties. Next, select Import to open the Certificate Import
Wizard. Follow the prompts and enter the appropriate credentials,
confirm the addition of the certificate, and restart the instance.

After the restart, reopen the Properties dialog box to see your
imported certificate. To view the certificate details, select View. To
force all traffic to use this certificate, select the Force Encryption
option on the Flags tab. Remember that changing the flag
requires another SQL Server restart.

 For more information about installing certificates in an availability
group, including a step-by-step guide, see
https://learn.microsoft.com/sql/database-engine/configure-
windows/manage-certificates.

Use EKM modules with SQL Server
Organizations might choose to take advantage of a separate security
appliance called a hardware security module (HSM) or extensible key
management (EKM) device to generate, manage, and store encryption
keys for the network infrastructure outside a SQL Server environment.
The HSM/EKM device can be a hardware appliance, a USB device, a
smart card, or even software, as long as it implements the Microsoft
Cryptographic Application Programming Interface (MCAPI) provider. SQL
Server can use these keys for internal use.

EKM is an advanced SQL Server setting and is disabled by default. To
use the key or keys from an HSM/EKM device, you must enable EKM by

https://learn.microsoft.com/sql/database-engine/configure-windows/manage-certificates


using the sp_execute 'EKM provider enabled' 1; command. Then, the
device must be registered as an EKM module for use by SQL Server.
After the HSM/EKM device creates a key for use by SQL Server (for
TDE, for instance), the device exports it securely into SQL Server via the
MCAPI provider.

The module might support different types of authentication (Basic or
Other), but only one of these types can be registered with SQL Server for
that provider. If the module supports Basic authentication (a username
and password combination), SQL Server uses a credential to provide
transparent authentication to the module.

The extensible key management feature of SQL Server is only supported
in Standard and Enterprise editions, and is not available for SQL Server
on Linux.

Inside OUT
What is a credential?

In SQL Server, a credential is a record of authentication
information that the Database Engine uses to connect to external
resources. Credentials provide security details for processes to
impersonate Windows users on a network, though they can also
be used to connect to other services like Azure Storage and, of
course, an HSM/EKM device.

You can create credentials for use by all databases in the master
database using the CREATE CREDENTIAL command, or per
individual database using the CREATE DATABASE SCOPED
CREDENTIAL command. Chapter 12 contains more information on
logins. Chapter 8, “Maintain and monitor SQL Server,” goes into
more detail about credentials.

 To read more about EKM in SQL Server, visit
https://learn.microsoft.com/sql/relational-
databases/security/encryption/extensible-key-management-ekm.

https://learn.microsoft.com/sql/relational-databases/security/encryption/extensible-key-management-ekm


Cloud security with Azure Key Vault
You can use Azure Key Vault in addition to, or as a drop-in replacement
for, a traditional HSM/EKM device. For this to work, your SQL Server
instance (whether on-premises or on a VM in the cloud) requires Internet
access to the Key Vault.

Key Vault is implemented as an EKM provider inside SQL Server, using
the SQL Server Connector (a standalone Windows application) as a
bridge between Key Vault and the SQL Server instance. To use Key
Vault, you must create the vault and associate it with a valid Azure Active
Directory (Azure AD).

Begin by registering the SQL Server service principal name in Azure AD.
Then you install the SQL Server Connector and enable EKM in SQL
Server.

 You can read more about service principal names and Kerberos in
Chapter 2.

You must then create a login for SQL Server to use to access Key Vault,
and map that login to a new credential that contains the Key Vault
authentication information.

 A step-by-step guide for this process is available at
https://learn.microsoft.com/sql/relational-
databases/security/encryption/setup-steps-for-extensible-key-
management-using-the-azure-key-vault.

Master keys in the encryption hierarchy
Since SQL Server 2012, both the SMK and DMK are symmetric keys
encrypted using the Advanced Encryption Standard (AES) cryptographic
algorithm. AES is faster and more secure than Triple Data Encryption
Standard (3DES), which was used in SQL Server before 2012. Starting
with SQL Server 2022, you can back up and restore your master key
using Azure Blob Storage instead of the local file system, by using the
URL argument and pointing it to an Azure Blob Storage location.

https://learn.microsoft.com/sql/relational-databases/security/encryption/setup-steps-for-extensible-key-management-using-the-azure-key-vault


 For more information on using Azure Blob Storage to back up and
restore your master key, see https://learn.microsoft.com/sql/t-
sql/statements/backup-master-key-transact-sql.

Note
When you upgrade from an older version of SQL Server that was
encrypted using 3DES, you must regenerate both the SMK and
DMK to upgrade them to AES.

Inside OUT
What is the difference between DES, 3DES, and AES?

Data Encryption Standard (DES) is a symmetric key algorithm
developed in the 1970s, with a key length of 56 bits. It has been
considered cryptographically broken since 1998. In 2012 it was
possible to recover a DES key in less than 24 hours if both a
plain-text and cipher-text pair were known.

Its successor, the Triple Data Encryption Standard (3DES),
applies the DES algorithm three times (each time with a different
DES key) to each block of data being encrypted. However, with
current consumer hardware, the entire 3DES key space can be
searched, making it cryptographically weak.

Advanced Encryption Standard (AES) uses keys that are 128,
192, or 256 bits in length. Longer keys are much more difficult to
crack using brute-force methods, so AES is considered safe for
the foreseeable future. It also happens to be much faster than
3DES.

The SMK
In SQL Server, the SMK is at the top of the encryption hierarchy. It is
automatically generated the first time the SQL Server instance starts, and
it is encrypted by the DPAPI in combination with the local machine key

https://learn.microsoft.com/sql/t-sql/statements/backup-master-key-transact-sql


(which itself is created when Windows Server is installed). The key is
based on the Windows credentials of the SQL Server service account
and the computer credentials. (On Linux, the local machine key is part of
the PAL used by SQL Server.)

Note
You will get a new SMK if you change the service account that runs
SQL Server, but it is considered “self-healing”—meaning you don’t
have to do anything else once it has changed.

If you need to restore or regenerate an SMK, you first must decrypt the
entire SQL Server encryption hierarchy, which is a resource-intensive
operation. You should perform this activity only in a scheduled
maintenance window. If the key has been compromised, however, you
shouldn’t wait for the maintenance window.

Caution
It is essential that you back up the SMK to a file and then copy it
securely to an off-premises location. Losing this key will result in
total data loss if you need to recover a database or environment.

To back up the SMK, you can use the following T-SQL script, but be sure
to choose a randomly generated password. The password will be
required for restoring or regenerating the key at a later stage. Keep the
password separate from the SMK backup file so they cannot be used
together if your secure backup location is compromised. Ensure that the
folder on the drive is adequately secured. You can also use an Azure
Blob Storage URL instead of a local file path. After you back up the key,
transfer and store it securely in an off-premises location.
Click here to view code image

BACKUP SERVICE MASTER KEY TO FILE = 
'c:\SecureLocation\service_master_key' 
   ENCRYPTION BY PASSWORD = '<UseAReallyStrongPassword>'; 
GO



The DMK
The DMK is used to protect asymmetric keys and private keys for digital
certificates stored in the database. A copy of the DMK is stored in the
database for which it is used as well as in the master database. The copy
is automatically updated by default if the DMK changes. This allows SQL
Server to automatically decrypt information as required. A DMK is
required for each user database that will use TDE. Refer to Figure 13-1
to see how the DMK is protected by the SMK.

Caution
Remember to back up the DMK to a file, as well, and copy it
securely to an off-premises location.

It is considered a security best practice to periodically regenerate the
DMK to protect the server from brute-force attacks. The idea is to ensure
that it takes longer for a brute-force attack to break the key than the
length of time for which the key is in use. For example, suppose you
encrypt your database with a DMK in January and regenerate it in July,
causing all keys for digital certificates to be re-encrypted with the new
key. If anyone has begun a brute-force attack on data encrypted with the
previous DMK, all results from that attack will be rendered useless by the
new DMK.

You can back up the DMK using the following T-SQL script. The same
rules apply as with backing up the SMK (choose a random password,
store the file off-premises, and keep the password and backup file
separately). You can also use an Azure Blob Storage URL instead of a
local file path. This script assumes the master key exists.
Click here to view code image

USE WideWorldImporters; 
GO 
BACKUP MASTER KEY TO FILE = 
'c:\SecureLocation\wwi_database_master_key' 
    ENCRYPTION BY PASSWORD = '<UseAReallyStrongPassword>'; 
GO



 You can read more about the SMK and DMK at
https://learn.microsoft.com/sql/relational-
databases/security/encryption/sql-server-and-database-
encryption-keys-database-engine.

Encrypt data with TDE
Continuing with our defense-in-depth discussion, an additional way to
protect your environment is to encrypt data at rest—namely the database
files and, when TDE is enabled, all backups of that database.

Third-party providers, including storage vendors, provide excellent on-
disk encryption for your direct-attached storage (DAS) or storage area
network (SAN) as a file-system solution or at the physical storage layer.
Provided your data and backups are localized to this solution, and no
files are copied to machines that are not encrypted at the file-system
level, this might be an acceptable solution for you.

Note
If files in this scenario are copied to another device, they may not
be encrypted. Consult with your storage vendor to discuss options
for broader protection.

If you have either the Enterprise or Standard edition of SQL Server, you
can use TDE, which encrypts data, transaction log, and backup files at
the file-system level by using a DEK. Should someone manage to
acquire these files via a backup server or Azure Storage archive, or by
gaining access to your production environment, that person will not be
able to attach the files or restore the database without the DEK.

The DEK is a symmetric key (shared secret) that is secured by a
certificate stored in the master database. If using HSM/EKM or Azure
Key Vault, the DEK is protected by an asymmetric key in the EKM
module, instead. The DEK is stored in the boot record of the protected
database (page 0 of file 1) so that it is easily available during the
recovery process.

Note

https://learn.microsoft.com/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine


Because it is implemented within the Database Engine, TDE is
invisible to any applications that access TDE-encrypted data. No
application changes are required to take advantage of TDE for the
database.

In the data file, TDE operates at the page level, because all data files are
stored as 8-KB pages. Before being flushed from the buffer pool, the
contents of the page are encrypted, the checksum is calculated, and then
the page is written to the drive. When reading data, the 8-KB page is
read from the drive, decrypted, and then the contents are placed into the
buffer pool.

Note
Even though encryption might to some degree increase the
physical size of the data it is protecting, the size and structure of
data pages is not affected. Instead, the number of pages in the data
file might increase.

For log files, the contents of the log cache are also encrypted before
writing to and reading from the drive.

 To read more about checkpoint operations and active virtual log
files (VLFs) in the transaction log, refer to Chapter 3, “Design and
implement an on-premises database infrastructure.”

Backup files constitute the contents of the data file, plus enough
transaction log records to ensure that the database restore is consistent
(redo and undo records of active transactions when the backup is taken).
Practically speaking, this means the contents of new backup files are
encrypted by default after TDE is enabled.

Note
Files associated with the buffer pool extension are not encrypted if
you use TDE. To encrypt buffer pool extension files, you should use
a file-system encryption method such as BitLocker or EFS. To read
more about BitLocker, visit



https://learn.microsoft.com/windows/security/information-
protection/bitlocker/bitlocker-overview.

Configure TDE on a user database
To use TDE on SQL Server, you must create a DMK if you don’t have
one already. Verify that it is safely backed up and securely stored off-
premises. If you have never backed up the DMK, the Database Engine
will warn you after you use it that the DMK has not yet been backed up. If
you don’t know where that backup is, back it up again. This is a crucial
detail to using TDE (or any encryption technology).

Next, you create a digital certificate or use one that you have acquired
from a CA. In the next example, the certificate is created on the server
directly. Then, you create the DEK, which is signed by the certificate and
encrypted using a cryptographic algorithm of your choice.

 To read more about managing database encryption keys in SQL
Server, visit https://learn.microsoft.com/sql/relational-
databases/security/encryption/sql-server-and-database-
encryption-keys-database-engine.

Although you do have a choice of algorithm, we recommend AES over
3DES for performance and security reasons. Additionally, you can
choose from three AES key sizes: 128, 192, or 256 bits. Remember that
larger keys are more secure, but will add additional CPU overhead when
encrypting data. If you plan to rotate your keys every few months, you
can safely use 128-bit AES encryption because no brute-force attack
(using current computing power) can compromise a 128-bit key in the
months between key rotations.

After you create the DEK, you enable encryption on the database. The
command completes immediately, but the process takes place in the
background because each page in the database must be read into the
buffer pool, encrypted, and persisted to the drive.

Inside OUT

https://learn.microsoft.com/windows/security/information-protection/bitlocker/bitlocker-overview
https://learn.microsoft.com/sql/relational-databases/security/encryption/sql-server-and-database-encryption-keys-database-engine


How does TDE affect tempdb?

Enabling TDE on a user database automatically enables TDE for
the tempdb system database as well (if it is not already enabled).
This can add overhead that adversely affects performance for
unencrypted databases that use tempdb. If you want to disable
TDE on tempdb, all user databases must have it disabled first.

The following script provides a summary of the steps to enable
TDE:

Click here to view code image

USE master; 
GO 
-- Remember to back up this database master key once it is 
created 
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 
'<UseAReallyStrongPassword>'; 
GO 
CREATE CERTIFICATE WideWorldServerCert WITH SUBJECT = 'WWI 
DEK Certificate'; 
GO 
USE WideWorldImporters; 
GO 
CREATE DATABASE ENCRYPTION KEY 
   WITH ALGORITHM = AES_128 
   ENCRYPTION BY SERVER CERTIFICATE WideWorldServerCert; 
GO 
ALTER DATABASE WideWorldImporters SET ENCRYPTION ON; 
GO

Verify whether TDE is enabled for a database
To determine which databases are encrypted with TDE, issue the
following T-SQL query:
Click here to view code image

SELECT name, is_encrypted FROM sys.databases;



If a user database is encrypted, the is_encrypted column value for that
database is set to 1. tempdb will also show a value of 1 in this column.

Manage and monitor the TDE scan
Enabling TDE on a database requires each data page to be read into the
buffer pool before being encrypted and written back out to the drive. If the
database instance is under a heavy workload, you can pause the scan
and resume it at a later stage.

To pause the scan on the WideWorldImporters sample database, issue
the following T-SQL command:
Click here to view code image

ALTER DATABASE WideWorldImporters SET ENCRYPTION SUSPEND;

To resume the scan on the same database, issue the following T-SQL
command:
Click here to view code image

ALTER DATABASE WideWorldImporters SET ENCRYPTION RESUME;

You can also check the progress of the TDE scan using the
encryption_scan_state column in the
sys.dm_database_encryption_keys DMV. To see when the state was last
modified, refer to the encryption_scan_modify_date column in the same
DMV.

Protect sensitive columns with Always Encrypted
Although TDE is useful for encrypting the entire database at the file-
system level, it doesn’t prevent database administrators and other users
from having access to sensitive information within the database.

The first rule of storing sensitive data is that you should avoid storing it
altogether when possible. For example, credit-card information makes
sense in a banking system, but not in a sales database, so it should not
be stored in one.



Note
Many third-party systems can encrypt your data securely but are
beyond the scope of this chapter. Keep in mind that there is a small
but inherent risk in storing encryption keys with data, as SQL
Server does. Your organization must balance that risk against the
ease of managing and maintaining those keys.

If you must store sensitive data, Always Encrypted protects how data is
viewed at the column level. It works with applications that use specific
connection types (client drivers; see the next section) to interact with
SQL Server. These client drivers are protected by a digital certificate so
that only specific applications can view the protected data.

 To learn about column-level encryption, which uses a symmetric
key, see https://learn.microsoft.com/sql/relational-
databases/security/encryption/encrypt-a-column-of-data.

Always Encrypted was introduced in SQL Server 2016 and has been
available on all editions since SQL Server 2016 with Service Pack 1.
Since SQL Server 2019, Always Encrypted can also be combined with
hardware-level secure enclaves to provide additional functionality.
Secure enclaves leverage virtualization-based security (VBS) to isolate a
region of memory inside the SQL Server process. SQL Server 2022
improves performance in the secure enclave with multi-threading and key
caching.

To use Always Encrypted, the database employs two types of keys:
column encryption keys and column master keys (discussed shortly).

The encryption used by Always Encrypted is one of two types.

Deterministic. This is the same as generating a hash value without
a salt. The same encrypted value will always be generated for a
given plain-text value. Without secure enclaves, this is useful for
joins, indexes, searching, and grouping, but makes it possible for
people to guess what the hash values represent.

Randomized. This is the same as generating a hash value with a
salt. No two of the same plain-text values will generate the same

https://learn.microsoft.com/sql/relational-databases/security/encryption/encrypt-a-column-of-data


encrypted value. Without secure enclaves, this does not permit
joins, indexes, searching, and grouping for those encrypted
columns. SQL Server 2022 supports nested loop, hash, and merge
joins, as well as GROUP BY and ORDER BY clauses.

As you can see in Table 13-1, secure enclaves provide a much richer
experience when protecting data with Always Encrypted.

Table 13-1 Functionality available with Always Encrypted encryption

Operation Without enclave With enclave
 Randomized Deterministic Randomized Deterministic
In-place
encryption

No No Yes Yes

Equality
comparison

No Yes (external) Yes (internal) Yes (external)

Beyond
equality

No No Yes No

LIKE
predicate

No No Yes No

Joins No No Yes No
GROUP
BY clause

No No Yes No

ORDER
BY clause

No No Yes No

Without secure enclaves, you can use randomized encryption for values
that are not expected to participate in joins or searches, while
deterministic encryption is useful for values like social security numbers
and other government-issued values because it helps for searching and
grouping. With secure enclaves, randomized encryption is useful for both
scenarios.

Inside OUT



What is a secure enclave?

Before SQL Server 2019, operations on Always Encrypted data
were limited to certain equality operations inside the Database
Engine, and only with data protected by deterministic encryption.
Any other operations required that the data be moved out of the
database and operated on at the client side.

A secure enclave, which requires SQL Server to be installed on
physical hardware, is a trusted region of memory inside the SQL
Server process. It is not possible to view the data inside the
enclave, even with a debugger. Now operations can be performed
on encrypted data without moving the data outside of the
Database Engine.

 To read more about the virtualization-based security underlying
secure enclaves, visit
https://www.microsoft.com/security/blog/2018/06/05/virtualization-
based-security-vbs-memory-enclaves-data-protection-through-
isolation.

Because Always Encrypted is meant to prevent unauthorized persons
from viewing data (including database administrators), you should
generate the keys elsewhere and store them in a trusted key store (in the
operating system’s key store for the database server and the application
server, or an EKM module such as Azure Key Vault), away from the
database server. To maintain the chain of trust, the person who
generates the keys should not be the same person who administers the
database server.

Client application providers that support Always
Encrypted
The following providers currently support Always Encrypted:

Microsoft .NET Data Provider for SQL Server

Microsoft JDBC Driver 6.0 or higher

https://www.microsoft.com/security/blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-data-protection-through-isolation


ODBC Driver 13.1 for SQL Server or higher

Microsoft Drivers 5.2 for PHP for SQL Server or higher

The connection between the Database Engine and application is made
using a client-side encrypted connection. Each provider has its own
appropriate method to control this setting:

.NET. Set ColumnEncryptionSetting in the connection string to
Enabled or configure the
SqlConnectionStringBuilder.ColumnEncryptionSetting property
as SqlConnectionColumnEncryptionSetting.Enabled.

JDBC. Set columnEncryptionSetting to Enabled in the connection
string or configure the SQLServerDataSource() object with the
setColumnEncryptionSetting("Enabled") property.

ODBC. Set the ColumnEncryption connection string keyword to
Enabled and use the SQL_COPT_SS_COLUMN_ENCRYPTION pre-
connection attribute or set it using the Data Source Name (DSN)
with the SQL_COLUMN_ENCRYPTION_ENABLE setting.

PHP. Set the ColumnEncryption connection string keyword to
Enabled. Note that PHP drivers use ODBC drivers for encryption.

Additionally, the application must have the VIEW ANY COLUMN MASTER KEY
DEFINITION and VIEW ANY COLUMN ENCRYPTION KEY DEFINITION database
permissions to view the column master key and column encryption key
(see next section).

The column master key and column encryption key
The column master key (CMK) protects one or more column encryption
keys (CEKs). The CEK is encrypted using AES encryption and is used to
encrypt the actual column data. You can use the same CEK to encrypt
multiple columns, or you can create a CEK for each column that needs to
be encrypted.

Inside OUT



Can you add indexes to columns protected by a secure
enclave?

Indexes are permitted on enclave-enabled columns protected with
randomized encryption. The enclave needs access to the CEK for
all operations involving the index.

Microsoft recommends that your database has accelerated
database recovery (ADR) enabled before creating your first index
on an enclave-enabled column using randomized encryption. This
ensures that your encrypted data is immediately available after a
database is restored.

 You can read more about ADR in Chapter 3.

Metadata about the keys (but not the keys themselves) is stored in the
database’s system catalog views:

sys.column_master_keys

sys.column_encryption_keys

This metadata includes the type of encryption and location of the keys,
plus their encrypted values. Even if a database is compromised, the data
in the protected columns cannot be read without access to the secure
key store.

 To read more about considerations for key management, visit
https://learn.microsoft.com/sql/relational-
databases/security/encryption/overview-of-key-management-for-
always-encrypted.

Use the Always Encrypted Wizard
The easiest way to configure Always Encrypted is to use the Always
Encrypted Wizard in SSMS. As noted, you must have the following
permissions before you begin:

VIEW ANY COLUMN MASTER KEY DEFINITION

https://learn.microsoft.com/sql/relational-databases/security/encryption/overview-of-key-management-for-always-encrypted


VIEW ANY COLUMN ENCRYPTION KEY

If you plan to create new keys, you also need the following permissions:

ALTER ANY COLUMN MASTER KEY

ALTER ANY COLUMN ENCRYPTION KEY

In SSMS, in Object Explorer, right-click the name of the database that
you want to configure, select Tasks, and choose Encrypt Columns. This
opens the Always Encrypted wizard.

On the Column Selection page, choose the column you want to encrypt,
and then select the encryption type (deterministic or randomized). If you
want to decrypt a previously encrypted column, you can choose
Plaintext.

On the Master Key Configuration page, you can create a new key
using the local OS certificate store or using a centralized store like Azure
Key Vault or an HSM/EKM device. If you already have a CMK in your
database, you can use it instead. Also choose the master key source—
either Current User or Local Machine.

Note
Memory-optimized and temporal tables are not supported by this
wizard, but you can still encrypt them using Always Encrypted.

Limitations in Always Encrypted
Certain column types are not supported by Always Encrypted, including:

image, (n)text, xml, sql_variant, timestamp or rowversion data
types

string columns with non-BIN2 collations (reduced features are
available with non-BIN2 collations, but for best results, use a BIN2
collation)

FILESTREAM columns



Columns with IDENTITY or ROWGUIDCOL properties

Columns with default constraints or referenced by check constraints

 You can read the full list of limitations and find out more about Always
Encrypted at https://learn.microsoft.com/sql/relational-
databases/security/encryption/always-encrypted-database-engine.

Configure Always Encrypted with secure enclaves
Always Encrypted with secure enclaves requires a complex environment
to guarantee the security it offers. This includes the following:

Host Guardian Service (HGS). Install HGS in a Windows Server
2022 failover cluster with three computers in its own AD forest.
These computers must not be connected to an existing AD, and
none of them can be used for the SQL Server installation. Microsoft
suggests that this cluster be isolated from the rest of your network,
and that different administrators manage this environment. The only
access to HGS will be through HTTP (TCP port 80) and HTTPS
(TCP port 443).

SQL Server 2022. Install SQL Server 2022 on Windows Server
2022, on its own physical hardware. VMs do not support the
recommended Trusted Platform Module (TPM) enclave attestation,
which is hardware-based.

 You can read more about TPM attestation at
https://learn.microsoft.com/windows-server/identity/ad-
ds/manage/component-updates/tpm-key-attestation.

Tools for client and development. Install the requisite tools on
your client machine:

Microsoft .NET Data Provider for SQL Server 2.1.0 or later

SSMS (SSMS) 19.0 or later

SQL Server PowerShell module version 21.1 or later

Visual Studio 2017 or later

https://learn.microsoft.com/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://learn.microsoft.com/windows-server/identity/ad-ds/manage/component-updates/tpm-key-attestation


Developer pack (SDK) for .NET Standard 2.1 or later

Microsoft.SqlServer.Management.AlwaysEncrypted.EnclaveP
roviders NuGet package

Microsoft.SqlServer.Management.AlwaysEncrypted.AzureKey
VaultProvider NuGet package version 2.2.0 or later, if you
plan to use Azure Key Vault for storing your column master
keys

Configured enclave. From the client/development machine, you
use SSMS to enable the enclave. Rich computations are disabled
by default for performance reasons. If you want to use this feature,
you must enable it after every SQL Server instance restart using
Trace Flag 127. Make sure you test the performance impact on your
environment before enabling this feature in production.

Enclave-enabled keys. This works in a similar way to regular
Always Encrypted keys, except the CMKs provisioned through HGS
are marked as enclave-enabled. You can use SSMS or PowerShell
to provision these keys, and store them either in the Windows
Certificate Store or Azure Key Vault.

Encrypted sensitive columns. You use the same methods to
encrypt data as before.

 A step-by-step walkthrough of this process is available at
https://learn.microsoft.com/sql/relational-
databases/security/encryption/configure-always-encrypted-enclaves.

Row-level security
Protecting the network and database instance is good and proper.
However, this does not protect assets within the environment from, say,
curious people snooping on salaries in the human resources database.
Or perhaps you have a customer database, and you want to restrict the
data those customers can access.

Row-level security, which does not use encryption, operates at the
database level to restrict access to a table through a security policy,
based on group membership or execution context. Access to the rows in

https://learn.microsoft.com/sql/relational-databases/security/encryption/configure-always-encrypted-enclaves


a table is protected by an inline table-valued function, which is invoked
and enforced by the security policy. It is functionally equivalent to a WHERE
clause.

The function checks whether the user is allowed to access a particular
row, while the security policy attaches this function to the table. So, when
you run a query against a table, the security policy applies the predicate
function.

Row-level security supports two types of security policies, both of which
you can apply simultaneously:

Filter predicates, which limit the data that can be seen

Block predicates, which limit the actions a user can take on data

Hence, a user might be able to see rows, but will not be able to insert,
update, or delete rows that look like rows they can see. This concept is
covered in more detail in the next section.

Caution
There is a risk of information leakage if an attacker writes a query
with a specially crafted WHERE clause and, for example, a divide-by-
zero error, to force an exception if the WHERE condition is true. This
is known as a side-channel attack. It is wise to limit the ability of
users to run ad hoc queries when using row-level security.

Filter predicates for read operations
You can silently filter rows that are available through read operations.
The application then has no knowledge of the other data that is filtered
out.

Filter predicates affect all read operations. This list is taken directly from
the official documentation at https://learn.microsoft.com/sql/relational-
databases/security/row-level-security:

SELECT. Cannot view rows that are filtered.

https://learn.microsoft.com/sql/relational-databases/security/row-level-security


DELETE. Cannot delete rows that are filtered.

UPDATE. Cannot update rows that are filtered. It is possible to
update rows that will be subsequently filtered. (The next section
covers ways to prevent this.)

INSERT. No effect (inserting is not a read operation). Note,
however, that a trigger could cause unexpected side effects in this
case.

Block predicates for write operations
These predicates block access to write (or modification) operations that
violate the predicate. Block predicates affect all write operations:

AFTER INSERT. Prevents the insertion of rows with values that
violate the predicate. Also applies to bulk insert operations.

AFTER UPDATE. Prevents the updating of rows to values that
violate the predicate. Does not run if no columns in the predicate
were changed.

BEFORE UPDATE. Prevents the updating of rows that currently
violate the predicate.

BEFORE DELETE. Blocks DELETE operations if the row violates the
predicate.

Dynamic data masking
Data masking works on the principle of limiting exposure to data by
obfuscation. It does not use encryption. Without requiring too many
changes to the application or database, you can mask portions of
columns to prevent lower-privilege users from seeing them, such as with
full credit-card numbers and other sensitive information.

You define the mask in the column definition of the table using the MASKED
WITH (FUNCTION = [type]) syntax. You can add masking after table
creation using the ALTER COLUMN syntax.



Note
One of the limitations for dynamic data masking before SQL Server
2022 was the lack of granular security. In SQL Server 2019 and
earlier, the UNMASK privilege was available only at the database
level. In SQL Server 2022, UNMASK can be granted at the database,
schema, table, and even the column level to a database principal,
as well as conferred via ownership chaining.

Four types of masks are available:

Default. The column is masked according to the data type (not its
default value). Strings use XXXX (fewer if the length is less than four
characters); numeric values use a zero value; dates use midnight
on January 1, 1900; and binary uses a single byte binary equivalent
of zero. If a string is too short to complete the entire mask, part of
the prefix or suffix will not be exposed.

Email. Only the first letter and the trailing domain suffix is not
masked—for example, aXXX@XXXXXXX.com.

Random. This replaces a numeric data type with a random value
within a range you specify.

Custom string. Only the first and last letters are not masked. There
is a custom padding string in the middle, which you specify.

 You can read more about dynamic data masking, including samples
of how to set it up, at https://learn.microsoft.com/sql/relational-
databases/security/dynamic-data-masking.

Limitations with masking data
Dynamic data masking has some limitations. It does not work on Always
Encrypted columns, nor on FILESTREAM or COLUMN_SET column types.
Computed columns are also excluded, but if the computed column
depends on a masked column, the computed column inherits that mask
and returns masked data.

https://learn.microsoft.com/sql/relational-databases/security/dynamic-data-masking


If a column has dependencies, you cannot perform dynamic data
masking on it without removing the dependency first, adding the dynamic
data mask, and then re-creating the dependency. Finally, a masked
column cannot be a used as a FULLTEXT index key.

Caution
It is possible to expose masked data with carefully crafted queries.
This can be done using a brute-force attack or using inferences
based on the results. If you are using data masking, you should
also remove the ability of the user to run ad hoc queries and ensure
their permissions are sound. For more on permissions, see Chapter
12.

Protect Azure SQL Database with Microsoft
Defender for SQL
All security features discussed thus far work equally on SQL Server,
Azure SQL Database, and Azure SQL Managed Instance. These include
TDE, Always Encrypted, row-level security, and dynamic data masking.

That’s great if you’re just comparing SQL Server to its Azure SQL
siblings. But there are some features unique to Azure SQL under the
Microsoft Defender for SQL offering that are worth looking at. We cover
these in the subsections that follow. Keep in mind that because Azure
features and products are always evolving, this is only a brief overview,
and is subject to change.

Inside OUT
How do you protect an Azure SQL Managed Instance?

In Azure SQL Managed Instance, each managed instance is
isolated on their own independent virtual network (VNet), so they
can only be accessed through Azure AD, and not Windows
Authentication. Aside from that, Azure SQL Managed Instance



shares all the same protections and security features as SQL
Server and Azure SQL Database.

Vulnerability assessment
You can enable vulnerability assessments on your Azure SQL Database
and Azure SQL Managed Instance subscriptions for a monthly fee. This
provides a basic monthly overview of your Azure SQL environment and
includes steps to mitigate any vulnerabilities it finds.

 For more information about vulnerability assessments and how to
subscribe to the service, visit
https://learn.microsoft.com/azure/azure-sql/database/sql-
vulnerability-assessment.

Azure SQL Advanced Threat Protection (ATP)
The risks of having a publicly accessible database in the cloud are
numerous. To help protect against attacks, you can activate SQL
Advanced Threat Protection (ATP), which runs 24 hours a day on each of
your Azure SQL databases, for a monthly fee. This service notifies you
by email whenever it detects atypical behavior.

Note
ATP includes protection for Azure SQL Database, Azure SQL
Managed Instance, Azure Synapse Analytics, SQL Server on Azure
VMs, and Azure Arc–enabled SQL Server instances.

Some interesting threats include SQL injection attacks, potential
vulnerabilities, and unfamiliar database access patterns, including
unfamiliar logins or access from unusual locations. Each notification
includes possible causes and recommendations to deal with the event.
ATP ties into the Azure SQL audit log (discussed later in this chapter);
thus, you can review events in a single place and decide whether each
one was expected or malicious.

https://learn.microsoft.com/azure/azure-sql/database/sql-vulnerability-assessment


Although this does not prevent malicious attacks (over and above your
existing protections), you are given the necessary tools to mitigate and
defend against future events. Given how prevalent attacks like SQL
injection are, this feature is very useful in letting you know if that type of
event has been detected. You can enable ATP using the Azure portal,
PowerShell, or the Azure CLI.

 To read an overview on Azure SQL ATP, visit
https://learn.microsoft.com/azure/azure-sql/database/threat-
detection-overview.

Built-in firewall protection
Azure SQL is secure by default. All connections to your database
environment pass through a firewall. No connections to the database are
possible until you add a rule to the firewall to allow access.

To provide access to all databases on an Azure SQL Database server,
you must add a server-level firewall rule through the Azure portal (or
PowerShell or Azure CLI) with your IP address as a range. This does not
apply to Azure SQL Managed Instance, because you access the instance
through a private IP address inside the VNet.

 To read more about protecting your Azure SQL Database, see
Chapter 17, “Provision Azure SQL Database.”

Ledger overview
The ledger feature, introduced in Azure SQL Database and now available
in SQL Server 2022, provides an additional layer of auditing in your
database. Ledger is based on the same underlying technology as
temporal tables, along with an offsite cryptographic attestation feature,
which gives you a transparent layer of tamper evidence for sensitive data
without requiring changes to your applications.

Ledger does not prevent database tampering; rather, it provides evidence
that tampering has occurred. You should use the ledger feature in
combination with other security and auditing features as part of your
defense-in-depth strategy.

https://learn.microsoft.com/azure/azure-sql/database/threat-detection-overview


Ledger generates a SHA-256 hash of modified rows for each transaction,
and these hashes are combined with previous hashes to form a chain of
dependent hashes known as a blockchain. A block of these hashes is
called a database digest, which is a cryptographic hash that represents
the state of the database at the time hash was computed. Database
digests combine to form a database ledger.

Immutable storage
Although these hashes are stored internally, they must also be copied
and stored outside the database in tamper-proof storage so you can
compare the state of the database at a point in time with a known
external hash value. The ledger feature pushes database digests to
immutable storage when a block is closed, and these digests can be sent
offsite to Azure Blob Storage or on-premises to an Azure confidential
ledger or third-party immutable storage device. You choose the external
storage when setting up the ledger feature.

A block is closed after 30 seconds, or when 100,000 transactions have
occurred, whichever happens sooner. You can also manually trigger this
event using the sys.sp_generate_database_ledger_digest stored
procedure.

Ledger verification
To verify whether tampering has occurred, the external database digest
can be compared against the hashes stored in the database. During the
ledger verification process, all hashes are recalculated using the
sys.sp_verify_database_ledger_from_digest_storage stored
procedure. Depending on the size of the database and the number of
transactions, this can take a significant amount of time.

If any data has been tampered with, these recomputed hashes will not
match the database digests stored in the external database ledger. This
proves that tampering has occurred. You can then use additional auditing
methods to identify when and how the tampering occurred.



Inside OUT
What does “tampering” mean?

SQL Server uses transactions to ensure consistency in a
database, meaning that every modification is atomic, consistent,
isolated, and durable (the ACID compliance model). An attacker
might tamper with the database files—for example, by directly
modifying the underlying pages with a hex editor or re-creating a
table or even an entire database with an entirely new history to
replace the original. This type of tampering would not be evident
unless an external digest is kept separate from the attacker.

Ledger considerations and limitations
The external database ledger must be placed in secure, tamper-proof
storage, with different permissions and access levels than your database
administrators. An attacker with access to both the SQL Server instance
and the external database ledger can bypass any system checks and
render the protections useless.

Updateable ledger tables are fully compatible with system-generated
temporal tables.

 You can read more about temporal tables in Chapter 7,
“Understand table features,” in the section “Special table types.”

Note
You cannot use an existing history table when enabling the ledger
feature on an updateable ledger table.

Data storage requirements
Ledger is based on the same underlying technology as temporal tables.
Depending on the type of ledger table used, you might need to monitor
your database storage usage closely. An append-only ledger table will



not permit the deletion of rows, while an updateable ledger table must
maintain a full history of database modifications. In both these types of
ledger tables, the metadata columns require storage as well.

Once you enable the ledger feature for a table, you cannot disable it. For
practical reasons, this means you can’t delete data from your database
while the ledger feature is enabled. Enabling the ledger feature for an
entire database is not recommended. You should restrict usage to
sensitive data only.

You can define a custom history table when creating an updateable
ledger table as long as it mirrors the schema of the ledger table. You can
create the history table in its own schema, which means it can be stored
in a separate filegroup. You can also enable data compression on this
history table. Keep in mind, though, that not all data types compress well.

 For more information about the types of data compression, see
Chapter 3.

Types of ledger tables
There are two types of ledger tables:

Append-only tables

Updateable ledger tables

A history table is also created for updateable ledger tables. You cannot
modify the schema of a ledger table.

As with temporal tables, a ledger table needs two GENERATED ALWAYS
columns to represent when data was created and the sequence in which
it occurred. However, because the ledger feature operates at the
transactional level, these columns store transaction information instead
of dates and times. You can choose your own names for the GENERATED
ALWAYS columns when creating a new ledger table or when altering an
existing table to enable the ledger feature. For updateable ledger tables,
there are two additional columns that store when a row version was
deleted and the sequence in which it occurred.



Append-only ledger table
As the name implies, you cannot delete rows from append-only ledger
tables. This type of table is useful for security event information and
system logs. Because it only allows INSERT operations, an append-only
ledger table doesn’t have a history table.

The system-generated names for the GENERATED ALWAYS columns are as
follows, and are used for transaction information about when the row
version was generated:

ledger_start_transaction_id (bigint)

ledger_start_sequence_number (bigint)

Updateable ledger table
Updateable ledger tables work in much the same way as temporal tables,
providing a history of changes to the table, and have the same schema
as the ledger table. As noted in the “Data storage requirements” section,
you can store the history in a different filegroup with its own storage if
you choose to define the history table yourself.

The system-generated names for the GENERATED ALWAYS columns are as
follows, and are used for transaction information about when the row
version was generated or modified.

ledger_start_transaction_id (bigint)

ledger_end_transaction_id (bigint)

ledger_start_sequence_number (bigint)

ledger_end_sequence_number (bigint)

Although similar in some respects, temporal tables and ledger tables
provide different querying features, so you can create an updateable
ledger table that is also a temporal table. Take care with your storage
requirements if you choose this combination, however, because the
history must be retained in two separate history tables.



 For more information about updateable ledger tables, see
https://learn.microsoft.com/sql/relational-
databases/security/ledger/ledger-updatable-ledger-tables.

The following CREATE TABLE script demonstrates the creation of an
updateable ledger table with an anonymous (system-generated) history
table. The use of LEDGER = ON is for illustration purposes because each
table in a ledger table is updateable by default.
Click here to view code image

CREATE TABLE dbo.Products ( 
    ProductId INT NOT NULL PRIMARY KEY CLUSTERED 
    , ProductName VARCHAR(50) NOT NULL 
    , CategoryId INT NOT NULL 
    , SalesPrice MONEY NOT NULL 
) 
    WITH ( 
    SYSTEM_VERSIONING = ON, 
    LEDGER = ON 
);

Ledger view
For every table on which you enable the ledger feature, the database
creates a ledger view, which shows all the rows that were created and/or
modified and the sequence in which these changes took place. You can
customize the names of the columns in the ledger view if you want, but if
you don’t, these are the system-generated names.

ledger_transaction_id (bigint). This column displays the ID of the
transaction for the creation or modification of a row in the ledger
table, and references the ledger_start_transaction_id and
ledger_end_transaction_id values.

ledger_sequence_number (bigint). This column displays the
sequence number in which the creation and/or modification took
place. This references the ledger_start_sequence_number and
ledger_end_sequence_number values in the ledger table.

ledger_operation_type (tinyint). This column displays 1 for insert
operations or 2 for delete operations. Modifying a row in the ledger

https://learn.microsoft.com/sql/relational-databases/security/ledger/ledger-updatable-ledger-tables


table generates a delete operation followed by an insert operation.

ledger_operation_type_desc (nvarchar(128)). This column
displays a text value for the ledger_operation_type, which will either
be INSERT or DELETE.

The ledger_operation_type and ledger_operation_type_desc columns
have limited use in append-only ledger tables, and are there for
consistency with updateable ledger table views.

Find the names of system-generated ledger objects
If you don’t choose custom values for the names of the ledger history
table and ledger view, you can use the following query to return the
names of the system-generated objects:
Click here to view code image

SELECT ts.[name] + '.' + t.[name] AS [ledger_table] 
    , hs.[name] + '.' + h.[name] AS [history_table] 
    , vs.[name] + '.' + v.[name] AS [ledger_view] 
FROM sys.tables AS t 
INNER JOIN sys.tables AS h ON h.object_id = t.history_table_id 
INNER JOIN sys.views v ON v.object_id = t.ledger_view_id 
INNER JOIN sys.schemas ts ON ts.schema_id = t.schema_id 
INNER JOIN sys.schemas hs ON hs.schema_id = h.schema_id 
INNER JOIN sys.schemas vs ON vs.schema_id = v.schema_id; 
GO

Audit with SQL Server and Azure SQL
Database
Auditing is the act of tracking and recording events that occur in the
Database Engine. Since SQL Server 2016 with Service Pack 1, the SQL
Server Audit feature is available in all editions, as well as in Azure SQL
Database.

 Chapter 17 covers configuring auditing in Azure SQL Database in
depth.



SQL Server Audit
There is a lot going on in the Database Engine. SQL Server Audit uses
Extended Events to give you the ability to track and record those actions
at both the instance and database level.

Note
Although Extended Events carry minimal overhead, it is important
that you carefully balance auditing against performance impact.
Use targeted auditing by capturing only those events that are
necessary to fulfill your audit requirements.

 You can read more about Extended Events in Chapter 8.

Audits are logged to event logs or audit files. An event is initiated and
logged every time the audit action is encountered, but for performance
reasons, the audit target is written to asynchronously. The permissions
required for SQL Server auditing are complex and varied because of the
different requirements for reading from and writing to the Windows event
log, the file system, and SQL Server itself.

Requirements for creating an audit
To keep track of events (called actions), you must define a collection, or
audit. The actions you want to track are collected according to an audit
specification. Recording those actions is done by the target (destination).
The following list explains these terms in more depth:

Audit. The SQL Server audit object is a collection of server or
database actions (which might also be grouped together). Defining
an audit creates it in the off state. After it is enabled, the destination
receives the data from the audit.

Server audit specification. This audit object defines the actions to
collect at the instance level or database level (for all databases on
the instance). You can have multiple server audits per instance.



Database audit specification. You can monitor audit events and
audit action groups. Only one database audit can be created per
database per audit. Server-scoped objects must not be monitored in
a database audit specification.

Target. You can send audit results to the Windows Security event
log, the Windows Application event log, or an audit file on the file
system. You must ensure there is always sufficient space for the
target. If you are using the Windows Application event log, keep in
mind that the permissions required to read the Windows Application
event log are lower than those required to read the Windows
Security event log.

An audit specification can be created only if an audit already exists.

 To read more about audit action groups and audit actions, visit
https://learn.microsoft.com/sql/relational-
databases/security/auditing/sql-server-audit-action-groups-and-
actions.

Inside OUT
What if an audit shuts down the instance or prevents SQL
Server from starting?

SQL Server can be shut down by a failure in the audit. If it does,
you will find an entry in the log saying
MSG_AUDIT_FORCED_SHUTDOWN. You can start SQL Server in single-
user mode using the -m option at the command line, which writes
an entry to the log saying MSG_AUDIT_SHUTDOWN_BYPASSED.

An audit initiation failure also can prevent SQL Server from
starting. In this case, you can use the -f command line option to
start SQL Server with minimal configuration (which is also single-
user mode). In minimal configuration or single-user mode, you
can then remove the offending audit that caused the failure.

https://learn.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions


Creating a server audit in SQL Server Management
Studio (SSMS)
Verify that you are connected to the correct instance in SSMS. Then, in
Object Explorer, expand the Security folder. Next, right-click the Audits
folder and select New Audit on the shortcut menu that opens.

The Create Audit dialog box opens. (See Figure 13-2.) You can
configure the settings to your requirements or leave the defaults as is.
Just be sure to enter a valid file path if you select File in the Audit
Destination list box. We also recommend that you choose an
appropriate name to enter into the Audit Name box (the default name is
based on the current date and time).



Figure 13-2 Creating an audit in SSMS.

Remember to enable the audit after it is created. It will appear in the
Audit folder, which is inside the Security folder in Object Explorer. To do
so, right-click the newly created audit and select Enable Audit on the
shortcut menu.

Create a server audit using T-SQL



The server audit creation process can be quite complex, depending on
the destination, file options, audit options, and predicates. As
demonstrated in the preceding section, you can use SSMS to configure a
new audit and create a script of the settings before selecting OK to
produce a T-SQL script. You can also do this manually.

 To read more about creating a server audit in T-SQL, visit
https://learn.microsoft.com/sql/t-sql/statements/create-server-
audit-transact-sql.

To create a server audit in T-SQL, verify that you are connected to the
appropriate instance. Then run the following code sample, changing the
audit name and file path as needed. Note that this code also sets the
audit state to ON; it is created in the OFF state by default. Also, this audit
will not have any effect until an audit specification and target are also
created.
Click here to view code image

USE master; 
GO 
-- Create the server audit. 
CREATE SERVER AUDIT Sales_Security_Audit 
     TO FILE (FILEPATH = 'C:\SalesAudit'); 
GO 
-- Enable the server audit. 
ALTER SERVER AUDIT Sales_Security_Audit 
    WITH (STATE = ON); 
GO

Create a server audit specification in SSMS
In Object Explorer, expand the Security folder. Then, right-click the
Server Audit Specification folder and select New Server Audit
Specification on the shortcut menu.

In the Create Server Audit Specification dialog box (see Figure 13-3), in
the Name box, type a name of your choosing for the audit specification.
Then, in the Audit list box, select the previously created server audit. If
you type a different value in the Audit box, a new audit will be created by
that name. Now you can choose one or more audit actions or audit action

https://learn.microsoft.com/sql/t-sql/statements/create-server-audit-transact-sql


groups. Remember to use the context menu to enable the server audit
specification after you create it.

Figure 13-3 Creating a server audit specification in SSMS.

Remember to turn on the server audit specification after you create it by
using the context menu.

 A full list of audit actions and audit action groups is available at
https://learn.microsoft.com/sql/relational-
databases/security/auditing/sql-server-audit-action-groups-and-
actions.

Note
If you have selected an audit group action, you cannot select
Object Class, Object Schema, Object Name, or Principal Name,
because the group represents multiple actions.

Create a server audit specification using T-SQL
In much the same way you create the audit itself, you can create a script
of the configuration from a dialog box in SSMS or you can do it manually,

https://learn.microsoft.com/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions


as shown in the following script. Note that the server audit specification
refers to a previously created audit.
Click here to view code image

USE [master]; 
GO 
-- Create the server audit specification. 
CREATE SERVER AUDIT SPECIFICATION Server_Audit 
FOR SERVER AUDIT Sales_Security_Audit 
     ADD (SERVER_OPERATION_GROUP), 
     ADD (LOGOUT_GROUP), 
     ADD (DATABASE_OPERATION_GROUP) 
WITH (STATE = ON); 
GO

Creating a database audit specification with SSMS
As you would expect, the location of the database audit specification is
under the database security context.

In Object Explorer, expand the database on which you want to perform
auditing, and then expand the Security folder. Then right-click the
Database Audit Specifications folder and select New Database Audit
Specification in the shortcut menu. Remember again to use the context
menu to turn it on. Figure 13-4 shows an example of capturing SELECT
and INSERT operations on the Sales.CustomerTransactions table by the
dbo user.



Figure 13-4 Creating a database audit specification in SSMS.

Creating a database audit specification with T-SQL
Again, verify that you are in the correct database context. Then create
the database audit specification by referring to the server audit that was
previously created. Next, specify which database actions you want to
monitor, as demonstrated in the following code. The destination is
already specified in the server audit, so as soon as this is enabled, the
destination will begin logging the events as expected.
Click here to view code image

USE WideWorldImporters; 
GO 
-- Create the database audit specification. 
CREATE DATABASE AUDIT SPECIFICATION Sales_Tables 
    FOR SERVER AUDIT Sales_Security_Audit 
    ADD (SELECT, INSERT ON Sales.CustomerTransactions BY dbo) 
    WITH (STATE = ON); 
GO

Viewing an audit log
You can view audit logs in SSMS or in the Security Log in the Windows
Event Viewer. This section describes how to do it using SSMS.



Note
To view audit logs, you must have CONTROL SERVER permission.

In Object Explorer, expand the Security folder, and then expand the
Audits folder. Then, right-click the audit log you want to view and select
View Audit Logs on the shortcut menu.

Figure 13-5 shows two audit events that have been logged, with the
Event Time showing the most recent events first. In the first event
(second row), the audit itself has been changed (it was enabled). The
second event is a SELECT statement that was run against the table
specified in the database audit specification example presented earlier.
Note that the Event Time is in UTC format. This is to avoid issues
regarding time zones and daylight saving time.

Figure 13-5 File Viewer dialog box for viewing a SQL Server audit.

There are many columns in the audit that you cannot see in Figure 13-5.
Notable among them are Server Principal ID (SPID), Session Server
Principal Name (the logged-in user), and Statement (the command that
was run). The point here is that you can capture a wealth of information.

Note



You can also view the audit log in an automated manner using the
built-in T-SQL system function sys.fn_get_audit_file, though the
data is not formatted the same way as it is through the File Viewer
in SSMS. For more information, see
https://learn.microsoft.com/sql/relational-databases/system-
functions/sys-fn-get-audit-file-transact-sql.

Auditing with Azure SQL
With Azure SQL Database and Azure SQL Managed Instance auditing,
you can track database activity and write it to an audit log in a storage
container in your Azure Storage account. (You are charged for storage
accordingly.) This helps you to remain compliant with auditing regulations
as well as to see anomalies to gain greater insight into your Azure SQL
environment, as discussed earlier in the section “Protect Azure SQL
Database with Microsoft Defender for SQL.”

Auditing enables you to retain an audit trail, report on activity in each
database, and analyze reports, which include trend analysis and security-
related events. You can also define server-level and database-level
policies. Server policies automatically cover new and existing databases.

If you enable server auditing, that policy applies to any databases on the
server. Thus, if you also enable database auditing for a particular
database, that database will be audited by both policies. You should
avoid this unless retention periods are different or you want to audit for
different event types.

 You can read more about Azure SQL Database auditing in
Chapter 17.

Secure Azure infrastructure as a service
You secure SQL Server running on an Azure VM, which is an example of
infrastructure as a service (IaaS), in much the same way you secure the
on-premises product. Depending on the edition, you can use TDE,
Always Encrypted, row-level security, and dynamic data masking. You
can also enable Microsoft Defender for SQL for an additional fee.

https://learn.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql


 You can read more about designing an Azure database
infrastructure in Chapter 16, “Design and implement hybrid and
Azure database infrastructure.”

With Azure IaaS, setting up a VM in a resource group is secure by
default. If you want to allow connections from outside your Azure VNet,
you must not only allow the connection through the OS firewall (which is
on by default in Windows Server), but you can also control connections
through a network security group (NSG). In addition, you can control
access through a network appliance such as a firewall or NAT device.
This provides finer-grained control over the flow of network traffic in your
VNet, which is needed to set up Azure ExpressRoute, for example.

Network security groups
A network security group (NSG) controls the flow of traffic in and out of
the entirety (or part) of an Azure VNet subnet.

Inside OUT
What is a subnet?

A subnet, short for subnetwork, is a logical separation of a larger
network into smaller sections, making the network easier to
manage and secure. Subnetting can be complex and is beyond
the scope of this book. If you are subnetting yourself, there are
subnet calculators online to which you should refer. Because
Azure VNets use subnets, this is a high-level overview.

Subnets are identified by a network ID, which is rendered in
network prefix notation (also known as Classless Inter-Domain
Routing, or CIDR). You will recognize this as a network address in
IPv4 format followed by a slash and a decimal value—for
example /8, /16, /24, and so on. This suffix is confusingly known
as the network prefix. The lower (shorter) the prefix, the more
addresses are available.

This is a shorthand for the IP addresses that are available in that
subnet, with the network address as the starting value. For



example, 192.168.1.0/24 means there are 256 possible
addresses, starting at 192.168.1.1, up to and including
192.168.1.254. All subnets reserve the first address (in this case,
192.168.1.0) for the network identifier, and the last address (in
this case, 192.168.1.255) for the broadcast address.

An NSG provides security for an entire subnet by default, which affects
all the resources in that subnet (see Figure 13-6). If you require more
control, you can associate the NSG with an individual network interface
card (NIC), thus further restricting traffic.

Figure 13-6 A typical VNet, with each subnet secured by an NSG.

Note
When you create a VM using Azure Resource Manager, it comes
with at least one virtual NIC, which you manage through an NSG.
This is important, because individual NICs can belong to different
NSGs, which provides finer control over the flow of network traffic
on individual VMs.

As with typical firewalls, the NSG has rules for incoming and outgoing
traffic. When a packet hits a port on the VNet or subnet, the NSG



intercepts the packet and checks whether it matches one of the rules. If
the packet does not qualify for processing, it is discarded (dropped).

Rules are classified according to source address (or range) and
destination address (or range). Depending on the direction of traffic, the
source address can refer to inside the network or outside, on the public
Internet.

This becomes cumbersome with more complex networks, so to simplify
administration and provide flexibility, you can use service tags to define
rules by service name instead of IP address. You can also use default
categories—namely VirtualNetwork (the IP range of all addresses in the
network), AzureLoadBalancer (the Azure infrastructure load balancer),
and Internet (the IP addresses outside the range of the Azure VNet).

 You can read more about Azure VNet security and get a full list of
service tags at https://learn.microsoft.com/azure/virtual-
network/security-overview.

User-defined routes and IP forwarding
As a convenience for Azure customers, all VMs in an Azure VNet can
communicate with one another by default, irrespective of the subnet in
which they reside. This also holds true for VNets connected to your on-
premises network by a VPN and for Azure VMs communicating with the
public Internet (including those running SQL Server).

In a traditional network, communication across subnets like this requires
a gateway to control (route) the traffic. Azure provides these system
routes for you automatically.

You might decide that this free-for-all communication is against your
network policy and that all traffic from your VMs should first be channeled
through a network appliance such as a firewall or NAT device. Virtual
appliances are available in the Azure Marketplace at an additional cost,
or you could configure a VM yourself to run as a firewall. A user-defined
route with IP forwarding facilitates this. With a user-defined route, you
create a subnet for the virtual appliance and force traffic from your
existing subnets or VMs through the virtual appliance.

https://learn.microsoft.com/azure/virtual-network/security-overview


You must enable IP forwarding for the VM for that VM to receive traffic
addressed to other destinations. This is an Azure setting, not a setting in
the guest OS. (See https://learn.microsoft.com/azure/virtual-
network/virtual-network-scenario-udr-gw-nva.) You might also need to
enable IP forwarding in the VM itself in certain circumstances.

Caution
With user-defined routes, you cannot control how traffic enters the
network from the public Internet. User-defined routes only control
how traffic leaves a subnet. This means that your virtual appliance
must be in its own subnet. If you want to control traffic flow from the
public Internet as it enters a subnet, use an NSG.

Until you create a routing table (by user-defined route), subnets in your
VNet rely on system routes. A user-defined route adds another entry in
the routing table, so a technique called longest prefix match (LPM) kicks
in to decide which is the better route to take by selecting the most
specific route (the one with the longest prefix). As you saw in Figure 13-
6, a /24 prefix is longer than a /16 prefix, and a route entry with a higher
prefix takes precedence.

If two entries have the same LPM match, the order of precedence is as
follows:

User-defined route

BGP route

System route

Remember BGP? It’s used for ExpressRoute. ExpressRoute is a VPN
service by which you can connect your Azure VNet to your on-premises
network, without going over the public Internet. You can specify BGP
routes to direct traffic between your network and the Azure VNet.

Additional Azure networking security features
There are additional features worth discussing here to improve the
management and security of an Azure VNet as it relates to SQL Server

https://learn.microsoft.com/azure/virtual-network/virtual-network-scenario-udr-gw-nva


or Azure SQL Database.

VNet service endpoints
Service endpoints make it possible for you to restrict access to certain
Azure services that were traditionally open to the public Internet so they
are available only to your Azure VNet. (See Figure 13-7.)

Figure 13-7 A service endpoint protecting an Azure Storage account.

Configurable through the Azure portal, PowerShell, or the Azure CLI, you
can block public Internet access to your Azure Storage and Azure SQL
Database resources. Additional service endpoints are available, and
more will be introduced in the future.

 To read more about VNet service endpoints, visit
https://learn.microsoft.com/azure/virtual-network/virtual-network-
service-endpoints-overview.

https://learn.microsoft.com/azure/virtual-network/virtual-network-service-endpoints-overview


Distributed-denial-of-service protection
Azure provides protection against distributed-denial-of-service (DDoS)
attacks for VNets. This is helpful, given that attacks against publicly
accessible resources are increasing in number and complexity.

The basic service included in your subscription provides real-time
protection using the scale and capacity of the Azure infrastructure to
mitigate attacks (see Figure 13-8). For an additional cost, you can take
advantage of built-in machine learning algorithms to protect against
targeted attacks, with added configuration, alerting, and telemetry.

Figure 13-8 Azure DDoS protection defending a VNet against
attacks.

You can also use the Azure Application Gateway web application firewall
to protect against more sophisticated attacks. Combined with Azure SQL
Database auditing and NSGs, these features provide a comprehensive
suite of protection from the latest threats.

 To read more about Azure DDoS protection, see
https://azure.microsoft.com/services/ddos-protection.

https://azure.microsoft.com/services/ddos-protection


Part V

Performance



Chapter 14

Performance tune SQL Server

Understand isolation levels and concurrency
Understand durability settings for performance
How SQL Server executes a query
Use advanced engine features to tune queries

This chapter reviews the database concepts and objects most associated with tuning the performance
of queries and coded objects within the Database Engine for SQL Server, Azure SQL Database, and
Azure SQL Managed Instance. Much of this content also applies to dedicated SQL pools in Azure
Synapse Analytics, though that product is not a focus of this book.

The first two sections of this chapter look at isolation levels and durability, including the ACID properties
of a relational database management system (RDBMS). These correspond to settings and
configurations that affect performance.

As you might have learned in an introductory database class, ACID properties are as follows:

Atomicity. A transaction is committed as an all or nothing operation and cannot leave the
database in an incomplete state.

Consistency. A transaction brings the entire database from one state to another—not just a shard
of a database.

Isolation. Transactions, though handled concurrently, are processed sequentially and
independently. Incomplete transactions should not be visible to other transactions.

Durability. In the event of hardware failure, committed data survives. The data must exist in non-
volatile memory.

It’s important to understand the principals of ACID not just from an academic or theoretical standpoint.
Various features of modern database systems violate ACID principles in creative and advantageous
ways to increase performance. You should be aware of the tradeoffs. For example:

Globally scalable databases like Azure Cosmos DB violate consistency in important, controlled,
and well-documented ways. The database systems behind many global websites rely on eventual
consistency. This is typically a design decision related to the application architecture from
inception. For more about consistency, refer to Chapter 7, “Understand table features.”

If you want a data layer without isolation, try designing a multiuser application to write data to a flat
file, where there is no serialization of concurrent writers. Similarly, the READ UNCOMMITTED isolation
level in SQL Server violates isolation, allowing the changes of an uncommitted transaction to be
read.

SQL Server’s in-memory OLTP functionality, introduced in SQL Server 2014, can be configured to
violate durability. Similarly, data changes cached by applications in memory, but not immediately



committed to the database, violate Durability.

This chapter covers various features that tweak SQL Server defaults to improve performance for certain
scenarios. It is important to understand both your application performance needs and how SQL Server
features and configuration options can meet them.

It also explores the process of how SQL Server executes queries, including the execution plans that the
query processor creates to execute your query. It discusses how execution plans are captured,
analyzed, reported on, and manipulated by the Query Store feature. It covers execution plans in some
detail, what to look for when performance tuning, and how to control when query execution plans go
parallel, meaning SQL Server can use multiple processors to execute your query without the code
changing at all.

Inside OUT
Is this all there is to performance tuning?

Entire books have been written on this topic! We can’t go into that degree of detail in a single
chapter, but we do provide a deep-enough discussion to jumpstart and accelerate your learning
on SQL Server performance tuning, especially in the role of an administrator. This includes the
newest features added in SQL Server 2022, of which some are quite amazing, and many of
which leverage the rich query history data collected by the Query Store.

Optimizing queries is not the ultimate solution to every performance issue. Look for opportunities
to make changes in tables (better data types, indexes, partitions) as well as data architectures.
Consider the use of PolyBase to read data in place, in its native source, as opposed to ETL
solutions that copy data into SQL Server.

The Query Store in particular has a powerful payload of new features in SQL Server 2022. Both
Microsoft and the authors of this book recommend enabling and configuring Query Store on all
databases. In fact, Query Store will be enabled by default on new databases in SQL Server
2022, and this change has come to Azure SQL Database as well.

Some of SQL Server 2022’s best new performance features require Query Store to be enabled
in each database. Look into new passive features like degree of parallelism (DOP) feedback,
cardinality estimation (CE) feedback, and new interactive features like Query Store hints.

One of the best new features of SQL Server 2022 is Parameter Sensitive Plan (PSP)
optimization, which attempts to all but solve the problem of bad execution plans due to
parameter sniffing. PSP optimization doesn’t require Query Store to be enabled, only that you
are in database compatibility level 160.

Performance tuning can be a daunting task as organizations want to process more and more
data, but Microsoft is adding new features to the product in every version.

The examples in this chapter behave identically in SQL Server instances and databases in Azure SQL
Managed Instance and Azure SQL Database unless otherwise noted. All sample scripts in this book are
available for download at https://MicrosoftPressStore.com/SQLServer2022InsideOut/downloads.

Understand isolation levels and concurrency
When working on a multiuser system, the fundamental problem is how to handle scenarios in which
users need to read and write the same data, concurrently. So, if there is a row—say row X—and user 1
and user 2 both want to do something with this row, what are the rules of engagement? If both users

https://microsoftpressstore.com/SQLServer2022InsideOut/downloads


want to read the row, one set of concerns exists. If one user wants to read the row and the other wants
to write to it, this is another set of issues. Finally, if both users want to write to the row, still another set of
concerns arises. This is where the concept of isolation comes in, including how to isolate one
connection from the other.

This is all related to the concept of atomicity, and as such, to transactions containing one or more
statements, because we need to isolate logical atomic operations from one another. Even a single
statement in a declarative programming system like Transact-SQL (T-SQL) can result in hundreds and
thousands of steps behind the scenes.

Isolation isn’t only a matter of physical access to resources (a disk drive is fetching data from a row, so
the next reader must wait for that to complete). This is a different problem for the hardware. Instead,
while one transaction is doing its operations, other transactions need to be just as isolated from the data
the user has affected. The performance implications are large, because the more isolated the operations
need to be, the slower processing must be. However, the freer and less isolated transactions are, the
greater the chance for loss of data.

Here are some the phenomena that can occur between two transactions:

Dirty read. Reading data that another connection is in the process of changing. The problem is
much like trying to read a paper note that someone else is scribbling on. You might see an
incomplete message, or even see words that the writer will scratch out in the future.

Non-repeatable read. Reading the same data over again that has changed or gone away. This
problem is like when you open a box of doughnuts and see there is one left. While you are
standing there, in control of the box, no one can take that last doughnut. But step away to get
coffee, and when you come back, that doughnut might have a bite taken out of it. A repeatable
read always gives you back rows with the same content as you first read (but might include more
rows that did not exist when you first read them).

Phantom read. When you read a set of data, but then come back and read it again and get new
rows that did not previously exist. In the previous doughnut example, this is the happiest day of
your life, because there are now more doughnuts. However, this can be bad if your query needs to
get back the same answer every time you ask the same question.

Reading a previously committed version of data. In some cases, you might be able to eliminate
blocking by allowing connections to read a previously committed version of data that another
connection is in the process of changing after your transaction started. A real-world example of this
regularly happens in personal banking. You and your partner see you have $50 in your account,
and you both attempt to withdraw $50, not realizing the intentions of the other. Without transaction
serialization and a fresh version of the row containing your balance, your ATM might even say you
have $0 after both transactions, using stale information. This does not change the cruel overdraft
fees you will be receiving, of course.

Where this gets complicated is that many operations in a database system are bundled into multistep
operations that need to be treated as one atomic operation. Reading data and getting back different
results when executing the same query again, during what you expect to be an atomic operation, greatly
increases the likelihood of returning incorrect results.

These phenomena can be understood by how they are bundled by the isolation levels that allow them to
occur. For example, the default isolation level, READ COMMITTED, is subject to nonrepeatable reads and
phantom rows, but not dirty reads. This provides adequate protection and performance in most
situations, but not all.

You need a fundamental understanding of these effects. These aren’t just arcane keywords you study
only when it is certification time; they can have a profound effect on application performance, stability,
and—absolutely the most important thing for any RDBMS—data integrity.



For example, suppose you are writing software to control trains using track A. Two trains traveling in
opposite directions need to use track A, so both conductors ask if the track is vacant, and are assured
that it is. So, both put their trains on the track heading toward each other. Not good.

Understanding the differing impact of isolation levels on locking and blocking, and therefore on
concurrency, is the key to understanding when you should use an isolation level different from the
default of READ COMMITTED. Table 14-1 presents the isolation levels available in the Database Engine
along with the phenomena that are possible in each.

Table 14-1 Isolation levels and phenomena that can be incurred

Isolation level
Dirty
reads

Nonrepeatable
reads

Phantom
rows

Reading a previously committed
version of data

READ UNCOMMITTED X X X  
READ COMMITTED  X X  
REPEATABLE READ   X  
SERIALIZABLE     
READ COMMITTED
SNAPSHOT (RCSI)

 X X X

SNAPSHOT    X

Inside OUT
Should you always just use SERIALIZABLE to be safe?

At this point in the process, it probably seems like you should protect your data with the
SERIALIZABLE isolation level in every case. Safety first, right? However, this approach hinders
performance. It’s a bit like wearing a full-body enclosure explosive ordnance disposal suit to
mow your lawn.

Most real-world scenarios you deal with will not require strict isolation between connections. In
fact, the SQL Server default READ COMMITTED isolation level will suffice for many applications.

However, software development frameworks do take a “safety first” approach, including using
SERIALIZABLE by default. For example, the .NET System.Transactions infrastructure creates
Serializable isolation level transactions by default. While safe, as we detail in this chapter, in
many application scenarios you can understandably achieve far greater scalability and
performance with virtually no danger by stepping IsolationLevel to RepeatableRead or
ReadCommitted.

 For more information, see
https://learn.microsoft.com/dotnet/api/system.transactions.isolationlevel.

When you choose an isolation level for a transaction in an application, you should consider primarily the
transactional safety and business requirements of the transaction in a highly concurrent multiuser
environment. The performance of the transaction should be a distant second priority (yet still a priority)
when choosing an isolation level.

Locking, which SQL Server uses for the normal isolation of processes, is not the issue. It is the way that
every transaction in SQL Server cooperates with others when dealing with disk-based tables.

https://learn.microsoft.com/dotnet/api/system.transactions.isolationlevel


The default isolation level of READ COMMITTED is generally safe because it only allows connection to
access data that has been committed by other transactions. Dirty reads are generally the only
modification phenomenon that is almost universally bad. With READ COMMITTED, modifications to a row
will block reads from other connections to that same row. This is especially important during multi-
statement transactions, such as when parent and child rows in a foreign key relationship must be
created in the same transaction. In that scenario, reads should not access either row in either table until
both changes are updated.

Since the READ COMMITTED isolation level allows non-repeatable reads and phantom rows, it does not
ensure that row data and row count won’t change between two SELECT queries on the same data in a
transaction. READ COMMITTED isolation levels allow SQL Server to release locks from objects it has read
and lets other users have any access, holding only locks on resources that it has changed.

For some application scenarios, this might be acceptable or even desired, but not for others. To avoid
these two problematic scenarios (which we talk more about soon), you need to choose the proper, more
stringent isolation level for the transaction.

For scenarios in which transactions must have a higher degree of isolation from other transactions,
escalating the isolation level of a transaction is appropriate. For example, if a transaction must write
multiple rows, even in multiple tables and statements, it cannot allow other transactions to change data
it has read during the transaction, where escalating the isolation level of a transaction is appropriate.

For example, the REPEATABLE READ isolation level blocks other transactions from changing or deleting
rows needed during a multistep transaction. Unlike READ COMMITTED, REPEATABLE READ has the effect of
holding locks on resources and preventing any other readers from changing them until it has completed,
thus avoiding non-repeatable reads.

If the transaction in this example needs to ensure that the same exact rows in a result set are returned
throughout a multistep transaction, the SERIALIZABLE isolation is necessary. It is the only isolation level
that prevents other transactions from inserting new rows inside of a range of rows. It prevents other
connections from adding new rows by not only locking rows it has accessed, but also ranges of rows
that it would have accessed had they existed. For example, say you queried for rows LIKE 'A%' in a
SERIALIZABLE transaction and got back Apple and Annie. If another user tries to insert Aardvark, it is
prevented until the LIKE 'A%' transaction is completed.

Lastly, it is essential to understand that every statement is a transaction. UPDATE TableName SET column
= 1; operates in a transaction, as does a statement like SELECT 1;. When you do not manually start a
transaction, it is referred to as an implicit transaction. An explicit transaction is one where you start with
BEGIN TRANSACTION and end with COMMIT TRANSACTION or ROLLBACK TRANSACTION. The REPEATABLE READ
and SERIALIZABLE isolation levels can gather a lot of locks, more so with explicit transactions of multiple
statements, if they are not quickly closed. The more locks are present, the more likely your connection
might be stuck indefinitely waiting or participate in a deadlock where one session must be terminated.

 For more on monitoring database locking and blocking, see Chapter 8, “Maintain and monitor
SQL Server.”

Inside OUT
When blocked, do your connections wait indefinitely? Can you control this?

By default, the timeout for a request being blocked in SQL Server is indefinite, and it is rarely set
to anything different. This is not to be confused with an application connection provider that
implements a timeout limitation. Applications that time out are receiving an application-layer
timeout, not a timeout from the Database Engine.

You can determine the current setting of the lock timeout using the global variable
@@LOCK_TIMEOUT. The default is -1, indicating there is no limit to the time a request will wait if



blocked by another request’s locks. When the value is positive, and a connection waits on a lock
longer than the timeout, error 1222 is raised, with the following message: “Lock request time out
period exceeded. The statement has been terminated.” This is different from the timeout error
generated by an application connection provider, which is just a duration of execution.

You can change the SQL Server timeout from the default for the current session by using the
following statement,

SET LOCK_TIMEOUT n;

where n is the number of milliseconds before a request is cancelled by SQL Server. This might
be handy in niche scenarios—perhaps when queries execute in a loop and regularly poll a table
for reporting, or for first-in, first out (FIFO) or last-in, first-out (LIFO) purposes. Many business
processes use FIFO queues. For example, fast food restaurants process tickets more or less
sequentially, or FIFO, as food orders arrive.

Take caution in implementing this change to SQL Server’s default lock timeout. Try to first
understand the cause of the blocking. If you change the lock timeout in code, ensure that any
applications creating the sessions are prepared to handle the errors gracefully. Similar to
deadlock detection, applications should detect these errors and automatically retry.

SQL Server does have a configuration setting for a timeout for outgoing remote connections
called Remote Query Timeout, which defaults to 600 seconds. This timeout applies only to
connections to remote data providers, not to requests run on the SQL Server instance. It
specifies the number of seconds that the query can execute, not how long it can be blocked,
before it is terminated.

The most complex of the phenomena concerns reading data that is not the committed version that was
initially accessed. There are two main places where this becomes an issue.

Reading previous versions of data. When you use SNAPSHOT or READ COMMITTED SNAPSHOT
(RCSI), your query will see how data looked when first accessed within the transaction. This
means the data later in the transaction might not match the current state of the database.

A side effect of this is that in SNAPSHOT isolation level, if two transactions try to modify or delete the
same row, you will get an update conflict, requiring you to restart the transaction.

Reading new versions of data. In any isolation level that allows phantoms and non-repeatable
reads, running the same statement twice can return entirely different results. This becomes
important in multistep transactions with multiple SELECT statements that access the same data. This
might be desirable or problematic; the application developer should understand the difference.

Isolation levels are important to understand. It can be tricky to test your code to see what happens when
two connections simultaneously try to make incompatible reads and modifications to data. Mature
application performance testing always incorporates simulated concurrent users’ sessions accessing the
same data.

Understand how concurrent sessions become blocked
This section reviews a series of examples of how concurrency works in a multiuser application
interacting with SQL Server tables. First, it discusses how to diagnose whether a request is being
blocked or if it is blocking another request. Note that these initial examples assume that SQL Server has
been configured in the default manner for concurrency. We will adjust that later in this chapter to give
you more ways to tune performance.

What causes blocking?



We have alluded to it already, and the answer is that when you use resources, they are locked. These
locks can be on several different levels and types of resources, as seen in Table 14-2.

Table 14-2 Lockable resources (not every type of resource)

Type of Lock Granularity
Row or row
identifier (RID)

A single row in a heap (a table without a clustered index).

Key A single value in an index. (A table with a clustered index is represented as an index
in all physical structures.)

Key range A range of key values (for example, to lock rows with values from A–M, even if no
rows currently exist). Used for SERIALIZABLE isolation level.

Extent A contiguous group of eight 8-KB pages.
Page An 8-KB index or data page.
HoBT An entire heap or B-tree structure.
Object An entire table (including all rows and indexes), view, function, stored procedure, and

so on.
Application A special type of lock that is user-defined.
Metadata Metadata about the schema, such as catalog objects.
Database An entire database.
Allocation unit A set of related pages that are used as a unit.
File A data or log file in the database.

Locks on a given resource are of a mode. Table 14-3 lists the modes that a data object might be in. Two
of the most important ones are shared (indicating a row is being read only) and exclusive (indicating a
row should not be accessible by any other connection.)

Table 14-3 Lock modes

Lock
Mode

Definition

Shared Grants access for reads only. This mode is generally used when users are looking at but
not editing data. It’s called “shared” because multiple processes can have a shared lock on
the same resource, allowing read-only access. However, sharing resources prevents other
processes from modifying the resource.

Exclusive Gives exclusive access to a resource and is also used during data modification. Only one
process might have an active exclusive lock on a resource.

Update Used to inform other processes that you’re planning to modify the data. Other connections
might also issue shared locks, but not update or exclusive locks, while you’re still preparing
to do the modification. Update locks are used to prevent deadlocks (covered later in this
section) by marking rows that a statement will possibly update rather than upgrading
directly from a shared lock to an exclusive one.

Intent Communicates to other processes that taking one of the previously listed modes might be
necessary. It establishes a lock hierarchy with existing locks. You might see this mode as
intent shared, intent exclusive, or shared with intent exclusive.

Schema Used to lock the structure of a resource when it’s in use so you cannot alter a structure (like
a table) when a user is reading data from it. (Schema locks show up as part of the mode in
many views.)



As queries are performing different operations, such as querying data, modifying data, or changing
objects, resources are locked in a given mode. Blocking comes when one connection has a resource
locked in a certain mode, and another connection needs to lock a resource in an incompatible mode.
You can see the compatibility of different modes in Table 14-4.

Note
To read this table, pick the lock mode in one axis; an X will be displayed in any compatible column
in the other axis. For example, an update lock is compatible with an intent shared and a shared
lock, but not with another update lock, or any of the exclusive variants.

Table 14-4 Lock modes and compatibility

Mode IS S U IX SIX X
Intent shared (IS) X X X X X  
Shared (S) X X X    
Update (U) X X     
Intent exclusive (IX) X      
Shared intent exclusive (SIX)  X     
Exclusive (X)       

If a connection is reading data, it will take a shared lock, allowing other readers to also take a shared
lock, which will not cause a blocked situation. However, if another connection is modifying data, it will
get an exclusive lock, which will prevent the connection (and any other connections) from accessing the
exclusively locked resources in any manner (other than ignoring the locks, discussed later in this
section).

How to observe locks and blocking
You can find out in real time whether a request is being blocked. The dynamic management object
(DMO) sys.dm_db_requests, when combined with sys.dm_db_sessions on the session_id column,
provides data about blocking and the state of sessions on the server. This provides much more
information than the legacy sp_who or sp_who2 commands, as you can see in this query:
Click here to view code image

--This query will return a plethora of information 
--in addition to just the session that is blocked 
SELECT r.session_id, r.blocking_session_id, * 
FROM sys.dm_exec_sessions s 
LEFT OUTER JOIN sys.dm_exec_requests r ON r.session_id = s.session_id; 
--note: requests represent actions that are executing, sessions are connections, 
--hence LEFT OUTER JOIN

You can see details of what objects are locked by using the sys.dm_tran_locks DMO, or what locks are
involved in blocking by using this query:
Click here to view code image

SELECT 
        t1.resource_type, 
        t1.resource_database_id, 
        t1.resource_associated_entity_id, 
        t1.request_mode, 
        t1.request_session_id, 
 



        t2.blocking_session_id 
    FROM sys.dm_tran_locks as t1 
    INNER JOIN sys.dm_os_waiting_tasks as t2 
        ON t1.lock_owner_address = t2.resource_address;

The output of this query reveals the type of resource that is locked (listed in Table 14-3) and the mode
listed in Table 14-4, with a few exceptions.

 You can find more details about locks and sys.dm_tran_locks at
https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-
dm-tran-locks-transact-sql.

Now, let’s review some scenarios to detail exactly why and how requests can block one another in the
real world when using disk-based tables. This is the foundation of concurrency in SQL Server and helps
you understand why the NOLOCK query hint appears to make queries perform faster.

Change the isolation level
As mentioned, by default, connections use the READ COMMITTED isolation level. If you need to change that
for a session, there are two methods: using the SET TRANSACTION ISOLATION LEVEL statement and using
hints. In this manner, the isolation level can be changed for an entire transaction, one statement, or one
object in a statement.

Use the SET TRANSACTION ISOLATION LEVEL statement
You can change the isolation level of a connection any time, even when already executing in the context
of a transaction that is uncommitted. You are not allowed to swap to and from the SNAPSHOT isolation
level because, as we’ll discuss later in this chapter, this isolation level works very differently.

For example, the following code snippet is technically valid to change from READ COMMITTED to
SERIALIZABLE isolation levels. If one statement in your batch required the protection of SERIALIZABLE, but
not others, you can execute:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
BEGIN TRAN; 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 
SELECT...; 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
COMMIT TRAN;

This code snippet is trying to change from the READ COMMITTED isolation level to the SNAPSHOT isolation
level:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
BEGIN TRAN; 
SET TRANSACTION ISOLATION LEVEL SNAPSHOT; 
SELECT...

Attempting this results in the following error:
Click here to view code image

Msg 3951, Level 16, State 1, Line 4 
Transaction failed in database 'databasename' because the statement was run under 
snapshot isolation but the transaction did not start in snapshot isolation. You cannot 
change the isolation level of the transaction after the transaction has started.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-tran-locks-transact-sql


In .NET applications, you should change the isolation level of each transaction when it is created, as it
might not be in READ COMMITTED by default, which offers far better performance.

Use table hints to change isolation
You also can use isolation level hints to change the isolation level at the individual object level. This is
an advanced type of coding that you shouldn’t use frequently, because it generally increases the
complexity of maintenance and muddies architectural decisions with respect to concurrency. Just as in
the previous session, however, you might want to hold locks at a SERIALIZABLE level for one table but
not others in the query. For example, you might have seen developers use NOLOCK at the end of a table,
effectively (and dangerously) dropping access to that table into the READ UNCOMMITTED isolation level:
Click here to view code image

SELECT col1 FROM dbo.Table (NOLOCK);

Note
Aside from the inadvisable use of NOLOCK in the preceding example, using a table hint without WITH
is deprecated syntax (since SQL Server 2008). It should be written like this, if you need to ignore
locks:
Click here to view code image

SELECT col1 FROM dbo.TableName WITH (READUNCOMMITTED);

In addition to the (generally undesirable) NOLOCK query hint, there are 20-plus other table hints that can
be useful, including the ability for a query to use a certain index, to force a seek or scan on an index, or
to override the Query Optimizer’s locking strategy. We discuss how to use UPDLOCK later in this chapter—
for example, to force the use of the SERIALIZABLE isolation level.

In almost every case, table hints should be considered for temporary and/or highly situational purposes.
Table hints can make maintenance of these queries problematic, and could even cause surprise errors
in the future. For example, using the INDEX or FORCESEEK table hint could result in poor query
performance or even cause the query to fail if the table’s indexes are changed.

 For detailed information on all possible table hints, see https://learn.microsoft.com/sql/t-
sql/queries/hints-transact-sql-table.

Inside OUT
What value is the READPAST table hint for concurrency?

Isolation is generally a matter of keeping one connection from corrupting or seeing another
connection’s changes. Sometimes though, you might want to just get any row (or rows) that no
other user has a hold on. READPAST is a table hint, not an isolation level, that will allow you to
return only the rows that meet a filter condition without becoming blocked.

READPAST can be useful in very specific circumstances, limited to when there are SQL Server
tables used as a stack or queue, with a loose FIFO architecture. READPAST allows a query to
ignore rows that are currently being locked—it skips them. User transactions can fetch the first
row in the stack that isn’t locked in an incompatible lock mode.

The process typically works like this: Each process looks for rows that need attention, and
updates one row that it will work on, claiming and locking it from other processes. Now, other
READPAST processes can’t read that row, but they can claim and update the next row. When they

https://learn.microsoft.com/sql/t-sql/queries/hints-transact-sql-table


are complete with the task, they update the row with a status of done, so the next user doesn’t
see that row when reading from the stack. In this way, a multithreaded process that is regularly
selecting rows from a table can afford to skip the rows currently being worked on, and read them
on the next pass.

Outside these limited scenarios, READPAST is not appropriate because it will likely return
incomplete data.

Understand and handle common concurrency scenarios
Here we look at some common concurrency scenarios and discuss and demonstrate how SQL Server
processes the rows affected by the scenario.

Note
Chapter 7 covers memory-optimized tables. Their concurrency model is very different from disk-
based tables, though similar to how row-versioned concurrency is implemented, particularly the
SNAPSHOT isolation level. The differences for memory-optimized tables are discussed later in this
chapter.

Understand two requests updating the same rows
Two users attempting to modify the same resource is possibly the most obvious concurrency issue. As
an example, suppose one user wants to add $100 to a total, and another wants to add $50. If both
processes happen simultaneously, only one row may be modified—or if we take it to the absurd
extreme, data corruption could occur to the physical structures holding the data if pointers are mixed up
by multiple modifications.

Consider the following steps involving two writes, with each transaction coming from a different session.
The transactions are explicitly declared using the BEGIN/COMMIT TRANSACTION syntax. In this example,
the transactions use the default isolation level READ COMMITTED.

All examples have these two rows, simply so it isn’t just a single row—though we do only manipulate the
row where Type = 1. When testing more complex concurrency scenarios, it is best to have large
quantities of data to work with, as indexing, server resources, and so on do come into play. These
examples illustrate fundamental concurrency examples.

1. A table contains only two rows with a column Type containing values of 0 and 1.

Click here to view code image

CREATE SCHEMA Demo; 
GO 
CREATE TABLE Demo.RC_Test (Type int); 
INSERT INTO Demo.RC_Test VALUES (0),(1);

2. Transaction 1 begins and updates all rows from Type = 1 to Type = 2.

Click here to view code image
--Transaction 1 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
BEGIN TRANSACTION; 
UPDATE Demo.RC_Test SET Type = 2 
WHERE  Type = 1;



3. Before transaction 1 commits, transaction 2 begins, and issues a statement to update Type = 2 to
Type = 3. Transaction 2 is blocked and waits for transaction 1 to commit.

Click here to view code image

--Transaction 2 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
UPDATE Demo.RC_Test SET Type = 3 
WHERE  Type = 2;

4. Transaction 1 commits.

--Transaction 1 
COMMIT;

5. Transaction 2 is no longer blocked and processes its update statement. Transaction 2 then
commits.

The resulting table will contain a row of Type = 3, and one of Type = 0, as the second transaction will
have updated the row after the block was ended. This is because when transaction 2 started, it waited
for the exclusive lock to be removed after transaction 1 committed.

Inside OUT
When two users try to update the same data, which connection’s changes are actually
saved?

Consider the case where two SQL Server sessions start transactions, read in the same row, then
try to update the same row simultaneously. The reads can be done simultaneously, but one
update is blocked until the other completes. Then the second update executes and completes,
potentially overwriting the changes from the first update (assuming they are updating the same
columns).

This is what is known as a lost update problem. In the default isolation level of READ COMMITTED,
the rows would be overwritten. Using REPEATABLE READ, the second transactions would be unable
to change the data the other connection had read in, preventing lost data but causing a
deadlock.

To avoid this, consider making UPDATE statements idempotent. This is a rather academic term
that nonetheless is important to know. Idempotent describes functions that only take effect once,
and are harmless if executed more than once. For example:

UPDATE dbo.Employee 
SET Salary = Salary * 1.05 
WHERE EmployeeID = 5;

The previous query is not idempotent. Execution of the previous UPDATE statement would
increase salary by 5 percent each time it is executed. The following statement is idempotent, and
is safer to execute because it changes data only once, and only for the intended original state of
the row. If executed again, the UPDATE statement would safely affect 0 rows.

Click here to view code image

UPDATE dbo.Employee 
SET Salary = Salary * 1.05 
WHERE EmployeeID = 5 and Salary = 100000;

The previous query is idempotent, and safer to execute.



Understand how a write blocks a read
One of the most painful parts of blocking comes when users are trying to write data that other users are
blocked from reading. What can even be more problematic is that some modification statements actually
lock rows in the table even if they don’t make any changes (typically due to poorly written WHERE clauses
or a lack of indexing causing full table scans).

Consider the following steps involving a write and a read, with each transaction coming from a different
session. In this scenario, an uncommitted write in transaction 1 blocks a read in transaction 2. The
transactions are explicitly started using the BEGIN/COMMIT TRANSACTION syntax. In this example, the
transactions do not override the default isolation level of READ COMMITTED:

1. A table with a column Type contains only two rows, with values of 0 and 1.

Click here to view code image

CREATE SCHEMA Demo AUTHORIZATION dbo; 
CREATE TABLE Demo.RC_Test_Write_V_Read (Type int); 
INSERT INTO Demo.RC_Test_Write_V_Read VALUES (0),(1);

2. Transaction 1 begins and updates rows with Type = 1 to Type = 2.

Click here to view code image

--Transaction 1 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
BEGIN TRANSACTION; 
UPDATE Demo.RC_Test_Write_V_Read SET Type = 2 
WHERE  Type = 1;

Note that transaction 1 has not committed or rolled back.

3. Before transaction 1 commits, in another session, transaction 2 begins and issues a SELECT
statement for rows WHERE Type = 2. Transaction 2 is blocked and waits for transaction 1 to commit.

Click here to view code image

--Transaction 2 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
SELECT Type 
FROM   Demo.RC_Test_Write_V_Read 
WHERE  Type = 2;

4. Transaction 1 commits.

--Transaction 1 
COMMIT;

5. Transaction 2 is no longer blocked and processes its SELECT statement.

6. Transaction 2 returns one row where Type = 2. This is because when transaction 2 started, it saw
only one row where Type = 2, but still waited for committed data until after transaction 1 committed.

Understand nonrepeatable reads
There are certain scenarios where you need to have the same row values returned every time you issue
a SELECT statement, or read data in any data manipulation language (DML). A prime example is the case
where you look for the existence of some data before allowing some other action to occur. For example:
Insert an order row, but only if a payment exists. If that payment is changed or deleted while you are
creating the order, free products might be shipped!



Consider the following steps involving a read and a write. In this example, the transactions do not
override the default isolation level of READ COMMITTED, and each transaction is started from a different
session. The transactions are explicitly declared using the BEGIN/COMMIT TRANSACTION syntax. In this
scenario, transaction 1 will suffer a nonrepeatable read when it reads rows that are changed by a
different connection because the default READ COMMITTED does not offer any protection against phantom
or nonrepeatable reads.

1. A table contains only two rows with a column Type value of 0 and 1.

Click here to view code image

CREATE TABLE Demo.RR_Test (Type int); 
INSERT INTO Demo.RR_Test VALUES (0),(1);

2. Transaction 1 starts and retrieves rows where Type = 1. One row is returned for Type = 1.

Click here to view code image

--Transaction 1 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
BEGIN TRANSACTION 
SELECT Type 
FROM   Demo.RR_Test 
WHERE  Type = 1;

3. Before transaction 1 commits, transaction 2 starts and issues an UPDATE statement, setting rows of
Type = 1 to Type = 2. Transaction 2 is not blocked and is immediately processed.

Click here to view code image
--Transaction 2 
BEGIN TRANSACTION; 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
UPDATE Demo.RR_Test 
SET  Type = 2 
WHERE Type = 1;

4. Transaction 1 again selects rows where Type = 1 and is blocked.

--Transaction 1 
SELECT Type 
FROM   Demo.RR_Test 
WHERE  Type = 1;

5. Transaction 2 commits.

--Transaction 2 
COMMIT;

6. Transaction 1 is immediately unblocked. No rows are returned, because no committed rows now
exist where Type = 1. Transaction 1 commits.

--Transaction 1 
COMMIT;

The result set from transaction 1 contains a row where Type = 2, because the second transaction has
modified the row. When transaction 2 started, transaction 1 had not placed any locks on the data,
allowing for writes to happen. Because it is doing only reads, transaction 1 does not place exclusive
locks on the data. Transaction 1 suffered from a nonrepeatable read: The same SELECT statement
returned different data during the same multistep transaction.



Inside OUT
Can the application efficiently verify data hasn’t changed during a transaction?

For some scenarios, you might want to consider an additional application-based verification of
data on top of the database’s isolation protection. To ensure data hasn’t changed during a
transaction, add a column of type rowversion, which changes each time the row is changed.

When the application fetches data and eventually updates a row, the application should
remember the initial value of the rowversion column, and later include the rowversion column
value in the filter of the eventual update. If it doesn’t match, the row must have changed during
your transaction, so the update will affect zero rows. (See the Inside OUT earlier in this chapter
about idempotency.) When the application detects zero row updates, it should prompt the user
with the latest data.

Prevent a nonrepeatable read
Consider the following steps involving a read and a write, with each transaction coming from a different
session. This time, we protect transaction 1 from dirty reads and nonrepeatable reads by using the
REPEATABLE READ isolation level. A read in the REPEATABLE READ isolation level will block a write. The
transactions are explicitly declared using the BEGIN/COMMIT TRANSACTION syntax:

1. A table contains only rows with a column Type value of 0 and 1.

Click here to view code image

CREATE TABLE Demo.RR_Test_Prevent (Type int); 
INSERT INTO Demo.RR_Test_Prevent VALUES (0),(1);

2. Transaction 1 starts and selects rows where Type = 1 in the REPEATABLE READ isolation level. One
row with Type = 1 is returned.

Click here to view code image
--Transaction 1 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 
BEGIN TRANSACTION; 
SELECT Type 
FROM   Demo.RR_Test_Prevent 
WHERE  TYPE = 1;

3. Before transaction 1 commits, transaction 2 starts and issues an UPDATE statement, setting rows of
Type = 1 to Type = 2. Transaction 2 is blocked by transaction 1.

Click here to view code image
--Transaction 2 
BEGIN TRANSACTION; 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
UPDATE Demo.RR_Test_Prevent 
SET  Type = 2 
WHERE Type = 1;

4. Transaction 1 again selects rows where Type = 1. The same rows are returned as in step 2.

5. Transaction 1 commits.

--Transaction 1 
COMMIT TRANSACTION;



6. Transaction 2 is immediately unblocked and processes its update. Transaction 2 commits.

--Transaction 2 
COMMIT TRANSACTION;

Transaction 1 returned the same rows each time and did not suffer a nonrepeatable read. The resulting
table contains two rows, one where Type = 2, and the original row where Type = 0. This is because
when transaction 2 started, transaction 1 had placed read locks on the data it was selecting, blocking
writes until it committed. Transaction 2 processed its updates only when it could place exclusive locks
on the rows it needed.

Understand phantom rows
Phantom rows cause issues for transactions when you expect the exact same result back from a query.
Say you’re writing a value to a table that sums up 100 other values (flaunting the fundamentals of
database design’s normalization rules!)—for example, a financial transactions ledger table that
calculates the current balance. You sum the 100 rows, then write the value. If it is important that the total
of the 100 rows matches perfectly, you cannot allow nonrepeatable reads or phantom rows.

Consider the following steps involving a read and a write, with each transaction coming from a different
session. In this scenario, we describe a phantom read:

1. A table contains only two rows, with Type values 0 and 1.

Click here to view code image

CREATE TABLE Demo.PR_Test (Type int); 
INSERT INTO Demo.PR_Test VALUES (0),(1);

2. Transaction 1 starts and selects rows where Type = 1 in the REPEATABLE READ isolation level. Rows
are returned.

Click here to view code image

--Transaction 1 
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ; 
BEGIN TRANSACTION; 
SELECT Type 
FROM   Demo.PR_Test 
WHERE  Type = 1;

3. Before transaction 1 commits, transaction 2 starts and issues an INSERT statement, adding another
row where Type = 1. Transaction 2 is not blocked by transaction 1.

Click here to view code image

--Transaction 2 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
INSERT INTO Demo.PR_Test(Type) 
VALUES(1);

4. Transaction 1 again selects rows where Type = 1. An additional row is returned compared to the
first time transaction 1 ran the SELECT.

--Transaction 1 
SELECT Type 
FROM   Demo.PR_Test 
WHERE  Type = 1;

5. Transaction 1 commits.



--Transaction 1 
COMMIT TRANSACTION;

Transaction 1 experienced a phantom read when it returned a different number of rows the second time
it selected from the table inside the same transaction. Transaction 1 had not placed any locks on the
range of data it needed, allowing for writes in another transaction to happen within the same dataset.
The phantom read would have occurred to transaction 1 in any isolation level, except for SERIALIZABLE.
Let’s look at that next.

Prevent phantom reads
Consider the following steps involving a read and a write, with each transaction coming from a different
session. In this scenario, we protect transaction 1 from a phantom read.

1. A table contains two rows with Type values of 0 and 1.

Click here to view code image
CREATE TABLE Demo.PR_Test_Prevent (Type int); 
INSERT INTO Demo.PR_Test_Prevent VALUES (0),(1);

2. Transaction 1 starts and selects rows where Type = 1 in the SERIALIZABLE isolation level. The one
row where Type = 1 is returned.

Click here to view code image

--Transaction 1 
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE; 
BEGIN TRANSACTION; 
SELECT Type 
FROM   Demo.PR_Test_Prevent 
WHERE  Type = 1;

3. Before transaction 1 commits, transaction 2 starts and issues an INSERT statement, adding a row of
Type = 1. Transaction 2 is blocked by transaction 1.

Click here to view code image

--Transaction 2 
SET TRANSACTION ISOLATION LEVEL READ COMMITTED; 
INSERT INTO Demo.PR_Test_Prevent(Type) 
VALUES(1);

4. Transaction 1 again selects rows where Type = 1. The same result set is returned as it was in step
2—the one row where Type = 1.

--Transaction 1 
SELECT Type 
FROM   Demo.PR_Test_Prevent 
WHERE  Type = 1;

5. Transaction 1 executes COMMIT TRANSACTION.

--Transaction 1 
COMMIT TRANSACTION;

6. Transaction 2 is immediately unblocked and processes its insert. Transaction 2 commits.

If you query the table again, you will see there are now two rows where Type = 1.



Transaction 1 did not suffer from a phantom read the second time it selected from the table because it
had placed a lock on the range of rows it needed. The table now contains additional rows where Type =
1, but they were not inserted until after transaction 1 had committed.

The case against the READ UNCOMMITTED isolation level
If locks take time, ignoring those locks will make things go faster. While this is true, the tradeoffs are
often not worth it.

Note
This section also pertains to using the NOLOCK hint on your queries.

Locks coordinate our access to resources, allowing multiple users to do multiple things in the database
without crushing the other users’ changes. The READ COMMITTED isolation level (and an extension we will
discuss in the section on the SNAPSHOT isolation level called READ COMMITTED SNAPSHOT) does the best to
balance locks with performance. Locks are still held for dirty resources (exclusively locked data that has
been changed by the user). But they are held only long enough to perform reads on a row and are then
released after resources are read. The process is as follows:

1. Grab a lock on a resource.

2. Read that resource.

3. Release the lock on the resource.

4. Repeat until you are out of resources to read.

No one else can dirty (modify) the row we are reading because of the lock, but when we are done, we
release the lock and move on. Locks on modifications to on-disk tables work the same way in all
isolation levels, even READ UNCOMMITTED, and are held until the transaction is committed.

The effect of the NOLOCK table hint and the READ UNCOMMITTED isolation level is that no locks are taken
inside the database for reads, save for schema stability locks. Though, a query using NOLOCK could still
be blocked by data definition language (DDL) commands, such as an offline indexing operation. Put
another way, if you enable the READ UNCOMMITTED isolation level for your connection, things will go faster.

This is a strategy that many DBA programmers have tried before: “We had performance problems, but
we’ve been putting NOLOCK in all our stored procedures to fix it.” It will improve performance, but it can
easily be detrimental to the integrity of your data.

The biggest issue is that a query might be reading a set of data and see data that doesn’t even meet the
constraints of the system. So, if a transaction for $1,000,000 is in a query, and the transaction is later
rolled back (perhaps because the payment details failed), who knows what celebratory alarms might
have gone off, thinking we had $1,000,000 in sales today!

The case against using the READ UNCOMMITTED isolation level is deeper than performance and more than
simply reading dirty data. A developer might argue that data is rarely ever rolled back, or that the data is
for reporting only. In production environments, however, these are not enough to justify the potential
problems.

A query in the READ UNCOMMITTED isolation level could return invalid data in the following real-world,
provable ways:

Read uncommitted data (dirty reads).

Read committed data twice.

Skip committed data.



Return corrupted data.

The query could fail with the error “Could not continue scan with NOLOCK due to data movement.” In
this scenario, where you ignored locks, the data structure that was to be scanned now no longer
exists because of other changes to data pages. The solution to this problem is the solution to a lot
of concurrency issues: Be prepared to re-execute your batch on this failure.

One final caveat: In SQL Server, you cannot apply NOLOCK to tables when used in modification
statements, and it ignores the declaration of the READ UNCOMMITTED isolation level in a batch that includes
modification statements. For example:
Click here to view code image

INSERT INTO dbo.testnolock1 WITH (NOLOCK) 
SELECT * FROM dbo.testnolock2;

SQL Server knows that it will use locks for the INSERT, and makes it clear by way of the following error
being thrown:
Click here to view code image

Msg 1065, Level 15, State 1, Line 17 
The NOLOCK and READUNCOMMITTED lock hints are not allowed for target tables of INSERT, 
UPDATE, DELETE or MERGE statements.

However, this protection doesn’t apply to the source of any writes, hence yet another danger. This
following code is allowed and is very dangerous because it could write invalid, uncommitted data!
Click here to view code image

INSERT INTO testnolock1 
SELECT * FROM testnolock2 WITH (NOLOCK);

In summary, don’t use READ COMMITTED isolation level or NOLOCK unless you really understand the
implications of reading dirty data and have an ironclad reason for doing so. For example, it is an
invaluable tool as a DBA to be able to see the changes to data being made in another connection. For
example,
Click here to view code image

SELECT COUNT(*) FROM dbo.TableName WITH (NOLOCK);

allows you to see the count of rows in dbo.TableName. However, using NOLOCK for performance gains is
short-sighted.

Continue reading for the recommended ways to increase performance without the chance of seeing
dirty data, as we introduce version-based concurrency in the next section.

Inside OUT
Which isolation level does your .NET application use?

By default, if the programmer has not changed any settings, the .NET System.Transaction
infrastructure uses the SERIALIZABLE isolation level—the safest but least practical choice.
SERIALIZABLE provides the most isolation for transactions, so by default .NET transactions do not
suffer from dirty reads, nonrepeatable reads, or phantom rows.

You might find, however, that queries from your application using the SERIALIZABLE isolation level
are frequently blocked or are the source of blocking, and that reducing the isolation of certain
transactions results in better performance. Evaluate the potential risk of nonrepeatable reads



and phantom rows for each new .NET transaction, and reduce the isolation level to REPEATABLE
READ or READ COMMITTED only where appropriate. And, following guidance throughout this chapter,
avoid the READ UNCOMMITTED isolation level in any production code unless you have a full
understanding of why you are doing this.

For applications with high transactional volume, consider also using the SNAPSHOT isolation level
to increase concurrency.

You can set the isolation level of any transaction when it is begun by setting the IsolationLevel
property of the TransactionScope class. You can also default a new database connection’s
isolation level upon creation. Remember, however, that you cannot change the isolation level of
a transaction after it has begun.

Understand row version-based concurrency
In the interest of performance, application developers too often seek to solve concurrency concerns
(reduce blocking, limit access to locked objects) by trying to avoid the problem with the tantalizingly
named NOLOCK. The performance gains appear too large to consider other alternatives, since the
problems we have mentioned only happen “occasionally,” even if it takes 30 hours of meetings, coding,
or testing to try to figure out the issues, because they seem random and non-repeatable.

A far safer option, without the significant drawbacks and potential for invalid data and errors, allows you
to read a previously committed version of data using row-versioning techniques that give the user a view
of a version of the data that was properly committed. This gives you tremendous gains, and never lets
the user see dirty data.

Version-based concurrency is available in the SNAPSHOT isolation level or by altering the implementation
of READ COMMITTED. This is often referred to as RCSI as a shortcut, even in this book, but it is not an
isolation level. Rather, it is a setting at the database level.

Row versioning allows queries to read from rows locked by other queries by storing previous versions of
a row, then reading those versions instead. The SQL Server instance’s tempdb keeps a copy of
committed data, which can be served up to concurrent requests. In this way, row versioning allows
access only to committed data, without blocking access to data locked by writes. By increasing the
workload of tempdb for disk-based tables, performance is dramatically improved. Row versioning
increases concurrency without the dangers of accessing uncommitted data.

The SNAPSHOT isolation level works at the transaction level. Once you start a transaction and access any
data in the transaction, such as the third statement in the following snippet,
Click here to view code image

ALTER DATABASE dbname SET ALLOW_SNAPSHOT_ISOLATION ON; -- required once 
SET TRANSACTION ISOLATION LEVEL SNAPSHOT; 
BEGIN TRANSACTION; 
SELECT * FROM dbo.Table1; 
--Don't forget to COMMIT or ROLLBACK this transaction 
--if you execute this code with a real table

your queries will see a transactionally consistent view of the database. No matter what someone does to
the data in dbo.Table1 (or any other table in the same database), you will always see how the data
looked as of the start of the first statement executed in that database in your transaction (in this case the
SELECT statement). This is great for some things, such as reporting. SNAPSHOT gives you the same level
of consistency to the data you are reading as SERIALIZABLE, except that work can continue even while
things are changing. It is not susceptible to nonrepeatable reads and phantom rows.

The SNAPSHOT isolation level can be problematic for certain types of code because if you need to check if
a row exists to do some action, you can’t see if the row was created or deleted after you started your



transaction context. And as discussed, you can’t switch out of SNAPSHOT temporarily, then apply locks to
prevent non-repeatable reads, and go back to seeing a consistent, yet possibly expired, view of the
database.

Access data in SNAPSHOT isolation level
The beauty of the SNAPSHOT isolation level is its effect on readers of the data. If you want to query the
database, you generally want to see it in a consistent state, and you don’t want to block others. A typical
example is when you are writing an operational report. Suppose you query a child table and you get
back 100 rows with distinct parentId values. But querying the parent table indicates there are only 50
parentId values (because between queries, another process deleted the other 50).

Consider the following steps involving a read and a write, with each transaction coming from a different
session. In this scenario, we see that transaction 2 has access to previously committed row data, even
though those rows are being updated concurrently.

1. A table contains only rows with a column Type value of 0 or 1.

Click here to view code image

CREATE TABLE Demo.SS_Test (Type int); 
INSERT INTO Demo.SS_Test VALUES (0),(1);

2. Transaction 1 starts and updates rows where Type = 1 to Type = 2.

Click here to view code image
--Transaction 1 
BEGIN TRANSACTION; 
SET TRANSACTION ISOLATION READ COMMITTED; 
 
UPDATE Demo.SS_Test 
SET  Type = 2 
WHERE Type = 1;

3. Before transaction 1 commits, transaction 2 sets its session isolation level to SNAPSHOT and
executes BEGIN TRANSACTION.

Click here to view code image
--Transaction 2 
SET TRANSACTION ISOLATION LEVEL SNAPSHOT; 
BEGIN TRANSACTION;

4. Transaction 2 issues a SELECT statement WHERE Type = 1. Transaction 2 is not blocked by
transaction 1, a row where Type = 1 is returned.

--Transaction 2 
SELECT Type 
FROM   Demo.SS_Test 
WHERE  Type = 1;

5. Transaction 1 executes a COMMIT TRANSACTION.

6. Transaction 2 again issues a SELECT statement WHERE Type = 1. The same rows from step 3 are
returned. Even if the table has all its data deleted, the results will always be the same for the same
query while in the SNAPSHOT level transaction. When transaction 2 is committed or rolled back,
queries on that connection will see the changes that have occurred since the transaction started.

Transaction 2 was not blocked when it attempted to query rows that transaction 1 was updating. It had
access to previously committed data, thanks to row versioning.



Implement row-versioned concurrency
You can implement row-versioned isolation levels in a database in two different ways:

Enabling SNAPSHOT isolation. This simply allows for the use of SNAPSHOT isolation and begins
the background process of row versioning.

Enabling RCSI. This changes the default isolation level to READ COMMITTED SNAPSHOT.

You can implement both or either.

It’s important now to introduce another fundamental database concept: pessimistic versus optimistic
concurrency. Pessimistic concurrency uses locks to prevent write conflict errors. This is the approach
SQL Server takes by default with the READ COMMITTED isolation level. Optimistic concurrency uses row
versions with a tolerance for write conflict errors and requires sometimes sophisticated conflict
resolution.

It’s important to understand the differences between these two settings, because they are not the same:

READ COMMITTED SNAPSHOT configures optimistic concurrency for reads by overriding the default
isolation level of the database. When enabled, all queries will use RCSI unless overridden, not
READ COMMITTED.

SNAPSHOT isolation mode configures optimistic concurrency for reads and writes. You must then
specify the SNAPSHOT isolation level for any transaction to use SNAPSHOT isolation level. It is possible
to have update conflicts with SNAPSHOT isolation mode that will not occur with READ COMMITTED
SNAPSHOT. Update conflicts are covered in the next section.

The statements to implement SNAPSHOT isolation in the database are not without consequence. Even if
no transactions or statements use the SNAPSHOT isolation level, behind the scenes, tempdb begins
storing row version data for disk-based tables, minimally for the length of the transaction that modifies
the row. This way, if a row-versioned transaction starts while rows are being modified, the previous
versions are available.

Note
Memory-optimized tables share properties with SNAPSHOT isolation level but are implemented in an
extremely different manner. They are based completely on row-versioning and do not use tempdb.
Memory-optimized tables are further discussed in Chapter 15, “Understand and design indexes.”

The following code snippet allows all transactions in a database to start in the SNAPSHOT isolation level:
Click here to view code image

ALTER DATABASE databasename SET ALLOW_SNAPSHOT_ISOLATION ON;

After you execute only the preceding statement, all transactions will continue to use the default READ
COMMITTED isolation level, but you now can specify the use of the SNAPSHOT isolation level at the session
level or in table hints, as shown in the following example:
Click here to view code image

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

Using SNAPSHOT isolation level on an existing database can be a lot of work, and, as we discuss in the
next section, it changes how we handle executing queries in some very important ways. Because of the
optimistic locking approach, what once was write blocking becomes an error message for you to try
again. Alternatively, if you want to apply the “go faster” solution that mostly works with existing code, you
need to alter the meaning of READ COMMITTED to read row versions instead of waiting for locks to clear.



While SNAPSHOT isolation works at the transaction level, READ COMMITTED SNAPSHOT works at the
statement level. You can use READ_COMMITTED_SNAPSHOT independently of ALLOW_SNAPSHOT_ISOLATION.
Similarly, these settings are not tied to the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database setting to
promote memory-optimized table access to SNAPSHOT isolation.

Here’s how to enable RCSI:
Click here to view code image

ALTER DATABASE databasename SET READ_COMMITTED_SNAPSHOT ON;

Caution
Changing the READ_COMMITTED_SNAPSHOT database option on a live database where you have
memory-optimized tables set to DURABILITY = SCHEMA_ONLY will empty those tables. You need to
move the contents of the table to a more durable table before changing the state of
READ_COMMITTED_SNAPSHOT.

 Chapter 7 discusses memory-optimized tables in greater detail.

For either of the previous ALTER DATABASE statements to succeed, no other transactions can be open in
the database. It might be necessary to close other connections manually or to put the database in
SINGLE_USER mode. Either way, we do not recommend that you perform this change during production
activity.

Inside OUT
If changing to RCSI is so much faster, why is this not the default?

Good question. READ COMMITTED remains the default in SQL Server and Azure SQL Managed
Instance. This has to do with historical precedent and stability of migrated workloads more than
anything.

However, in Azure SQL Database, read committed snapshot isolation (RCSI) is the default. It
can be reverted to READ COMMITTED, of course.

Designing new applications around a scalability boost like RCSI as an underlying assumption
can be smart. Be aware that enabling RCSI on a legacy application can be complex, even if it is
beneficial in the long run. The workload of tempdb will increase in RCSI compared to READ
COMMITTED, potentially dramatically. You should test your full production workload at scale with
RCSI enabled before applying it to production.

It is essential to be aware and prepared for the increased activity in the tempdb database, both in
activity and space requirements. To avoid autogrowth events when enabling RCSI, increase the size of
the tempdb data and log files and monitor their size. Although you should try to avoid autogrowth events
by growing the tempdb data file(s) yourself, you should also verify that your tempdb file autogrowth
settings are appropriate in case things grow larger than expected.

 For more information on file autogrowth settings, see Chapter 8.

If tempdb exhausts all available space on its volume, SQL Server will be unable to row-version rows for
transactions and will terminate them with SQL Server error 3958. You can find these in the SQL Server
Error Log. (Refer to Chapter 1, “Get started with SQL Server tools.”) SQL Server will also issue errors
3967 and 3966 as the oldest row versions are removed from tempdb to make room for new row versions
needed by newer transactions.



Note
Before SQL Server 2016, the READ COMMITTED SNAPSHOT and SNAPSHOT isolation levels were not
supported with columnstore indexes. Beginning with SQL Server 2016, SNAPSHOT isolation and
columnstore indexes are fully compatible.

Understand update operations in the SNAPSHOT isolation level
Transactions that read data in SNAPSHOT isolation or RCSI have access to previously committed data—
instead of being blocked—when data needed is being changed. This is important to understand and
could result in an UPDATE statement experiencing a concurrency error when you start to change data.
Update conflicts change how systems behave; you need to understand this concept before deciding to
implement your code in the SNAPSHOT isolation level.

When modifying data in the SNAPSHOT isolation level, you can only have one dirty version of a physical
resource. So, if another connection modifies a row and you only read the row, you see previous
versions. But if you change a row that another connection has also modified, your update was based on
out of data information and will be rolled back.

For example, consider the following steps, with each transaction coming from a different session. In this
example, transaction 2 fails due to a concurrency conflict, or write-write error:

1. A table contains multiple rows, each with a unique Type value.

Click here to view code image
CREATE TABLE Demo.SS_Update_Test 
(Type int CONSTRAINT PKSS_Update_Test PRIMARY KEY, 
 Value nvarchar(10)); 
INSERT INTO Demo.SS_Update_Test VALUES (0,'Zero'),(1,'One'),(2,'Two'),(3,'Three');

2. Transaction 1 begins a transaction in the READ COMMITTED isolation level and performs an update on
the row where ID = 1.

--Transaction 1 
BEGIN TRANSACTION ; 
UPDATE Demo.SS_Update_Test 
SET  Value = 'Won' 
WHERE Type = 1;

3. Transaction 2 sets its session isolation level to SNAPSHOT and issues a statement to update the row
where ID = 1. This connection is blocked, waiting for the modification locks to clear.

Click here to view code image
--Transaction 2 
SET TRANSACTION ISOLATION LEVEL SNAPSHOT; 
BEGIN TRANSACTION 
UPDATE Demo.SS_Update_Test 
SET  Value = 'Wun' 
WHERE Type = 1;

4. Transaction 1 commits using a COMMIT TRANSACTION statement. Transaction 1’s update succeeds.

5. Transaction 2 immediately fails with error 3960:

Click here to view code image

Msg 3960, Level 16, State 2, Line 8 
Snapshot isolation transaction aborted due to update conflict. You cannot use 



snapshot isolation to access table 'dbo.AnyTable' directly or indirectly in 
database 'DatabaseName' to update, delete, or insert the row that has been 
modified or deleted by another transaction. Retry the transaction or change 
the isolation level for the update/delete statement.

Transaction 2 was rolled back. Let’s try to understand why this error occurred, what to do about it, and
how to prevent it.

Note
The SNAPSHOT isolation level with disk-based tables in SQL Server is not pure row-versioned
concurrency, which is why in the previous example, transaction 2 was blocked by transaction 1.
Using memory-optimized tables, which are based on pure row-versioned concurrency, the
transaction would have failed immediately rather than being blocked. In either case, your
application must have automated retry logic to gracefully handle update conflict errors.

In SQL Server, SNAPSHOT isolation uses locks to create blocking, but it doesn’t prevent updates from
colliding for disk-based tables. It is possible for a statement to fail when committing changes from an
UPDATE statement if another transaction has changed the data needed for an update during a transaction
in SNAPSHOT isolation level.

For disk-based tables, the update conflict error will look like error 3960, which we saw a moment ago.
For queries on memory-optimized tables, the update conflict error will look like this:
Click here to view code image

Msg 41302, Level 16, State 110, Line 8 
The current transaction attempted to update a record that has been updated since this 
transaction started. The transaction was aborted.

If you decide to use SNAPSHOT as your modification query’s isolation level, you must be ready to handle
an error that isn’t really an error; rather, it’s just warning to re-execute your statements after checking to
see if anything has changed since you started your query. This is the same when handling deadlock
conditions, and will be the same for handling all modification conflicts using memory-optimized tables.

Inside OUT
How can developers implement application retry logic?

There are many options available to handle retry patterns and transient faults, especially
important in SNAPSHOT isolation environments, but also in Azure and cloud distributed
environments where transient network errors must be anticipated.

One way developers might implement this is via Microsoft.Data.SqlClient, which introduced
configurable retry logic in version 3. The retry logic can be configured through code or app
configs.

 For more information, see https://learn.microsoft.com/sql/connect/ado-net/configurable-retry-logic
and https://learn.microsoft.com/azure/azure-sql/database/troubleshoot-common-connectivity-
issues.

Even though optimistic concurrency of the SNAPSHOT isolation level increases the potential for update
conflicts, you can mitigate these by doing the following to specifically attempt to avoid update conflicts:

https://learn.microsoft.com/sql/connect/ado-net/configurable-retry-logic
https://learn.microsoft.com/azure/azure-sql/database/troubleshoot-common-connectivity-issues


Minimize the length of transactions that modify data. While it seems like this would be less of an
issue because readers aren’t blocked, long-running transactions increase the likelihood of
modification conflicts. Also, tempdb needs to keep track of more row versions.

When running a modification in SNAPSHOT isolation level, avoid using statements that place update
locks on disk-based tables inside multistep explicit transactions.

Specify the UPDLOCK table hint to prevent update conflict errors for long-running SELECT statements.
UPDLOCK places locks on rows needed for the multistep transaction to complete. The use of UPDLOCK
on SELECT statements with SNAPSHOT isolation level is not a panacea for update conflicts, however,
and it could in fact create them. For example, frequent SELECT statements with UPDLOCK could
increase the number of update conflicts. Regardless, your application must handle errors and
initiate retries when appropriate.

Note
If two concurrent statements use UPDLOCK, with one updating and one reading the same data,
even in implicit transactions, an update conflict failure is possible if not likely.

Consider avoiding writes altogether while in SNAPSHOT isolation mode. Use it only to do reads where
you do not plan to write the data in the same transaction you have fetched it in.

Specifying table granularity hints such as ROWLOCK or TABLOCK can prevent update conflicts, although at
the cost of concurrency. The second update transaction must be blocked while the first update
transaction is running—essentially bypassing SNAPSHOT isolation for the write. If two concurrent
statements are both updating the same data in SNAPSHOT isolation level, an update conflict failure is likely
for the statement that started second.

Understand on-disk versus memory-optimized concurrency
Queries using memory-optimized tables (also referred to as in-memory OLTP tables) can perform
significantly faster than queries based on the same data in disk-based tables. Memory-optimized tables
can improve the performance of frequently written-to tables by up to 40 times over disk-based tables.

However, this almost magical performance improvement comes at a price—not just in the need for extra
memory, but also, the way memory-optimized tables implement concurrency controls is different from
disk-based tables. In the concurrency scenarios previously introduced, all the concurrency protections
provided were based on locking—in other words, waiting until the other connection completed, and then
applying the changes. However, locking applies only to on-disk tables, not memory-optimized tables.

With memory-optimized tables, locking isn’t the mechanism that ensures isolation. Instead, the in-
memory engine uses pure row versioning to provide row content to each transaction. In pure row
versioning, an UPDATE statement inserts a new row and updates the effective ending timestamp on the
previous row. A DELETE statement only updates the effective ending timestamp on the current row. If you
are familiar with the data warehousing concept of a slowly changing dimension (SCD), this is similar to
an SCD type 2. It is equally similar to how temporal tables work, though both the current and historical
data are in the same physical structure.

 For more explanation of temporal tables, see Chapter 7.

Previous versions hang around as long as they are needed by transactions and are then cleaned up.
Data is also hardened to what is referred to as the delta file for durability purposes, as well as the
transaction log.

If two transactions attempt to modify the same physical data resource at the same time, one transaction
will immediately fail due to a concurrency error rather than being blocked and waiting. Only one
transaction can be in the process of modifying or removing simultaneously. The other will fail with a
concurrency conflict (SQL error 41302). However, if two transactions insert the same value for the



primary key, an error will not be returned until the transaction is committed, as it is not the same physical
resource.

This is the key difference between the behavior of pessimistic and optimistic concurrency. Pessimistic
concurrency uses locks to prevent write conflict errors, whereas optimistic concurrency uses row
versions with acceptable risk of write conflict errors. On-disk tables offer isolation levels that use
pessimistic concurrency to block conflicting transactions, forcing them to wait. Memory-optimized tables
offer optimistic concurrency that will cause a conflicting transaction to fail.

Memory-optimized tables allow you to use SNAPSHOT, REPEATABLE READ, and SERIALIZABLE isolation
levels, and provide the same types of protections. In the case of a nonrepeatable read, SQL error 41305
is raised. In the case of a phantom read, a SQL error 41325 is raised. Because of these errors,
applications that write to memory-optimized tables must include logic that gracefully handles and
automatically retries transactions. They should already handle and retry in the case of deadlocks or
other fatal database errors.

Understand memory-optimized data and isolation
All data read by a statement in memory-optimized tables behaves like the SNAPSHOT isolation level. Once
your transaction starts and you access memory-optimized data in the database, further reads from
memory-optimized tables will be from a consistent view of those objects. (The memory-optimized and
on-disk tables are in different “containers,” so your consistent view of the memory-optimized data
doesn’t start if you read on-disk tables only.)

However, what makes your work more interesting is that when in the REPEATABLE READ or SERIALIZABLE
isolation level, the scan for phantom and non-repeatable read rows is done during commit rather than as
they occur.

For example, consider the following steps, with each transaction coming from a different session. A
typical scenario might be running a report of some data. You read a set of data, perform some operation
on it, and then read another set of rows, and your process requires the data to all stay the same.

1. A table contains many rows, each with a unique ID. Transaction 1 begins a transaction in the
SERIALIZABLE isolation level and reads all the rows in the table.

2. Transaction 2 updates the row where ID = 1. This transaction commits successfully.

3. Transaction 1 again reads rows in this same table. No error is raised, and rows are returned as
normal.

4. Transaction 1 commits. An error is raised (41305), alerting you to a non-repeatable read. Even
though this was in the SERIALIZABLE isolation level, the check for a non-repeatable read is done
first, since this is a reasonably easy operation, whereas the scan for phantom rows requires the
engine to run a query on the data to see if extra rows are returned.

Most uses of isolation levels other than SNAPSHOT with memory-optimized data should be limited to
operations like data-integrity checks, where you want to make sure that one row exists before you insert
the next row.

 For more details on conflict detection and retry logic with memory-optimized tables, see
https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/transactions-with-memory-
optimized-tables#conflict-detection-and-retry-logic.

Specify the isolation level for memory-optimized tables in queries
The isolation level is specified in a few mildly confusing ways for memory-optimized tables. The first
method is in an ad hoc query, not in an existing transaction context, where you can query the table as
you always have and it will be accessed in the SNAPSHOT isolation level.

https://learn.microsoft.com/sql/relational-databases/in-memory-oltp/transactions-with-memory-optimized-tables#conflict-detection-and-retry-logic


If you are in the context of a transaction, it will not automatically default to the SNAPSHOT isolation level.
Rather you need to specify the isolation level as a hint, such as:
Click here to view code image

BEGIN TRANSACTION; 
SELECT * 
FROM   dbo.MemoryOptimizedTable WITH (SNAPSHOT);

You can make it default to SNAPSHOT isolation level by enabling the
MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This promotes access to all memory-
optimized tables in the database up to the SNAPSHOT isolation level if the current isolation level is not
REPEATABLE READ or SERIALIZABLE. It also promotes the isolation level to SNAPSHOT from isolation levels
such as READ UNCOMMITTED and READ COMMITTED. This option is disabled by default, but you should
consider enabling it; otherwise, you cannot use the READ UNCOMMITTED or SNAPSHOT isolation levels for a
session including memory-optimized tables.

If you need to use REPEATABLE READ or SERIALIZABLE, or your scenario does not meet the criteria for
automatically choosing the SNAPSHOT isolation level, you can specify the isolation level using table
concurrency hints. (See the section “Use table hints to change isolation” earlier in this chapter.) Only
memory-optimized tables can use this SNAPSHOT table hint, not disk-based tables.

Finally, you cannot mix the disk-based SNAPSHOT isolation level with the memory-optimized SNAPSHOT
isolation level. For example, you cannot include memory-optimized tables in a session that begins with
SET TRANSACTION ISOLATION LEVEL SNAPSHOT, even if MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT = ON or
you specify the SNAPSHOT table hint.

 For more information on configuring memory-optimized tables, see Chapter 7. We discuss more
about indexes for memory-optimized tables in Chapter 15.

Understand durability settings for performance
As discussed at the beginning of this chapter, the last of the four basic requirements for an RDBMS,
ACID, is that data saved is durable. Once you believe it is saved in the database, it is written to non-
volatile memory, and it is assumed that if the server restarts the data cannot be lost. This is a very
important requirement of relational databases. It is also detrimental to performance because non-volatile
memory is slower than volatile memory.

For performance’s sake, there are two configurations to increase performance, at the detriment of
durability:

Use memory-optimized tables and set the durability property on the table to
SCHEMA_ONLY. This creates a logless, memory-based object that will be emptied when the
service is restarted, with only the schema remaining. This can be useful in certain scenarios and
provides amazing performance—even hundreds of times faster than on-disk tables. It is not,
however, a universally applicable tool to increase application performance, because it makes the
table completely non-durable.

Use delayed durability. This alters the durability of your data slightly, but possibly enough to make
a difference in how long it takes to return control to your server’s clients when it makes sense.

Note
The process of writing data to disk and memory is changing as powerful new technologies
arrive. SQL Server 2019 introduced the hybrid buffer pool to use persistent memory modules
(PMEM) that write data to non-volatile memory storage instead. Chapter 2, “Introduction to
database server components,” provides more details on the hybrid buffer pool, as does the



Microsoft Docs article located here: https://learn.microsoft.com/sql/database-engine/configure-
windows/hybrid-buffer-pool.

This section looks at a way to alter how durability is handled in SQL Server in a manner that can be
useful on very small departmental servers as well as enterprise servers.

Delayed durability database options
Delayed durability allows transactions to avoid synchronously committing to a disk. Instead they
synchronously commit only to memory, but asynchronously commit to storage. This opens the possibility
of losing data in the event of a server shutdown before the log has been written, so it does have
dangers. This engine feature was introduced in SQL Server 2014 and works the same today.

Databases in Azure SQL Database also support delayed durability transactions, with the same caveat
and expectations for data recovery. Some data loss is possible, so you should use this feature only if
you can re-create important transactions in the event of a server crash.

Note
Distributed and cross-database transactions are always durable.

At the database level, you can set the DELAYED_DURABILITY option to DISABLED (default), ALLOWED, or
FORCED. ALLOWED allows any explicit transaction to be coded to be optionally set to delayed durability,
using the following statement:
Click here to view code image

COMMIT TRANSACTION WITH ( DELAYED_DURABILITY = ON );

Setting the DELAYED_DURABILITY option to FORCED means that every transaction, regardless of what the
person writing the COMMIT statement wishes, will have asynchronous log writes. This obviously has
implications on all database activity, and you should consider it carefully with existing applications.

Additionally, for natively compiled procedures, you can specify DELAYED_DURABILITY in the BEGIN ATOMIC
block. Take, for example, this header of a procedure in the WideWorldImporters sample database:
Click here to view code image

CREATE PROCEDURE [Website].[RecordColdRoomTemperatures_DD] 
@SensorReadings Website.SensorDataList READONLY 
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER 
AS 
BEGIN ATOMIC WITH 
( 
    TRANSACTION ISOLATION LEVEL = SNAPSHOT, 
    LANGUAGE = N'English', 
    DELAYED_DURABILITY = ON 
) 
    BEGIN TRY 
     …

The delayed durability options, implemented at either the database level or the transaction level, have
use in very-high-performance workloads for which the bottleneck to write performance is the transaction
log itself. This is accomplished by writing new rows only to memory, then asynchronously and eventually
committing to disk. Transactions could therefore be lost in the event of a SQL Server service shutdown;
however, you can gain a significant performance increase, especially with write-heavy workloads. As
Microsoft Docs advise, “If you cannot tolerate any data loss, do not use delayed transaction durability.”

https://learn.microsoft.com/sql/database-engine/configure-windows/hybrid-buffer-pool


Even if you cannot employ delayed durability in your normal day-to-day operations, it can be a very
useful setting when loading a database, particularly for test data. Because log writes are written
asynchronously, instead of every transaction waiting for small log writes to complete, log writes are
batched together in an efficient manner.

Note
While delayed durability does apply to memory-optimized tables, the DELAYED_DURABILITY
database option is not related to the DURABILITY option when creating optimized tables.

A transaction that changes data under delayed durability will be flushed to the disk as soon as possible,
whenever any other durable transaction commits in the same database, or whenever a threshold of
delayed durability transactions builds up.

You can also force a flush of the transaction log with the system stored procedure sys.sp_flush_log.
Otherwise, the transactions are written to a buffer in memory and await a log flush event to become
durable on disk. SQL Server manages the buffer but makes no guarantees as to the amount of time a
transaction can remain in buffer.

It’s important to note that delayed durability is simply about reducing the I/O bottleneck involved with
committing a massive quantity of writes to the transaction log. This has no effect on isolation (locking,
blocking) or access to any data in the database that must be read to perform the write. Otherwise,
delayed durability transactions follow the same rules as other transactions.

Note
Any SQL Server instance service shutdown, whether it be a planned restart or sudden failure,
could result in delayed durability transactions being lost. This also applies when a failover cluster
instance (FCI), availability group, or database mirror fails over. Transaction log backups and log
shipping will similarly contain only transactions made durable. You must be aware of this potential
when implementing delayed durability. For more information, see
https://learn.microsoft.com/sql/relational-databases/logs/control-transaction-durability.

How SQL Server executes a query
This section dives into the execution plan, which is the operational map provided by SQL Server for
each query. It mentions key features, especially database scoped configurations, that are important to
being proactive and reactive to query performance.

Inside OUT
How much has the Query Optimizer changed recently?

The internal Query Optimizer to develop a query plan in SQL Server is very complex, and
increasingly so with recent improvements in the intelligent query processing (IQP) family of
features. Specifically, new feedback features in SQL Server 2022 such as cardinality estimation
(CE), degree of parallelism (DOP), and the existing memory grant feedback features are
powerful adaptive processes that allow the Query Optimizer to learn from its mistakes. The
Query Store is becoming increasingly valuable to built-in query improvement features, and you
should consider enabling it for every database. (Query Store is enabled by default for all new
databases on SQL Server 2022.)

https://learn.microsoft.com/sql/relational-databases/logs/control-transaction-durability


 You can find out much more about the latest advanced features for query performance later in
this chapter. To read more about the IQP features, see https://learn.microsoft.com/sql/relational-
databases/performance/intelligent-query-processing.

Understand the query execution process
When a user writes a query, that query could be one line of code like SELECT * FROM dbo.TableName; or
it could be a statement that contains 1,000 lines. This query could be a batch of multiple statements,
use temporary objects, or employ other coded objects such as user-defined functions, not to mention
table variables, and perhaps a cursor thrown in for good measure.

After writing a query, the user tries to execute it.

First, the code is parsed and translated to structures in the native language of the query processor. If the
query is a technically correct T-SQL syntax, it will pass this phase. For example, if there are syntax
errors like SLECT * FROM dbo.TableName; then the query will fail with a syntax error.

After the code is parsed and prepared for execution, the Query Optimizer tries to calculate the best way
to run your code. It then runs it again using the same process, by saving what is referred to as the query
plan, execution plan, or explain plan, depending on which tool you are using.

If the query plan has already been compiled, it might be in cache. This is complex. The Query Optimizer
might choose to use the cached query plan, saving valuable CPU time. A new feature in SQL Server
2022, Parameter Sensitive Plan (PSP) optimization, also beneficially affects decisions regarding plan
reuse. (More on that later.)

Getting the right query plan for different parameters, or server load, is where the real rocket science
comes in for software engineers. That engine work is why a person with no understanding of how
computers work can write a query in less than 30 seconds that will access 100 million rows, aggregate
the values of one or more columns, filter out values they don’t want to see, and obtain results in just a
few seconds.

You will deal with three kinds of execution plans:

Estimated. Something you can ask for, to show you what the execution plan will probably look like.

Actual. Provides details about what actually occurred, which can vary from the estimated plan for
multiple reasons, including SQL Server’s IQP features, which we will discuss more later in this
chapter.

Live. Shows you the rows of data flowing through during execution.

The execution plan that is created is a detailed blueprint of the Query Optimizer’s plan for processing
any statement. Each time you run a statement, including batches with multiple statements, an execution
plan is generated. Query plans share with you the strategy of execution for queries; inform you of the
steps the Database Engine will take to retrieve data; detail the various transformation steps to sort, join,
and filter data; and finally return or affect data. All statements you execute will create an execution plan,
including DML and DDL statements.

The plan contains the estimated costs and other metadata of each piece required to process a query,
and finally the DML or DDL operation itself. This data can be invaluable to developers and DBAs for
tuning query performance. When you look at the query plan, you can see some of the estimates made,
compared to the actual values.

Variances between the actual versus estimated values sometimes stack up to become real problems,
and that’s why significant engineering effort was put into new features in SQL Server 2022 such as CE
feedback, DOP feedback, and memory feedback. These powerful feedback features allow the Query
Optimizer to notice actual versus estimate variance and adjust the plan on the next execution.

https://learn.microsoft.com/sql/relational-databases/performance/intelligent-query-processing


Execution plans are placed in the procedure cache, which is stored in active memory, that SQL Server
uses when a statement is executed again. The procedure cache can be cleared manually, and is reset
when you restart the Database Engine. Plans from the procedure cache are reused for a query when
that exact same query text is called again.

Queries reuse the same plan only if every character of the query statement matches, including
capitalization, whitespace, line breaks, and text in comments. There are a few exceptions to this rule,
however:

SQL Server will parameterize a query or stored procedure statement, allowing some values, like
literals or variables, to be treated as having a different value on each execution. For example,
these two queries will share a single execution plan:

Click here to view code image
SELECT column_a, column_b FROM table WHERE column_a = 123; 
SELECT column_a, column_b FROM table WHERE column_a = 456;

This automatic parameterization is extraordinarily valuable to performance, but is also sometimes
frustrating. More on this in the section “Understand parameterization and parameter sniffing” later
in this chapter.

A new feature of SQL Server 2022, PSP optimization, comes into play to help solve a classical
problem with parameter sniffing. Again, more on that later in this chapter, but in short: Now SQL
Server can keep multiple cached plans for a single query.

 For more information about PSP optimization, see https://learn.microsoft.com/sql/relational-
databases/performance/parameter-sensitivity-plan-optimization.

View execution plans
Let’s now look at how you can see the different types of execution plans in SQL Server Management
Studio (SSMS) and Azure Data Studio and view them in some detail. The differences between the two
tools, for the purposes of this section, are minimal.

Display the estimated execution plan
You can generate the estimated execution plan quickly and view it graphically from within SSMS or
Azure Data Studio by choosing the Display Estimated Execution Plan option in the Query menu or by
pressing Ctrl+L. An estimated execution plan will return for the highlighted region or for the entire file if
no text is selected.

You can also retrieve an estimated execution plan in T-SQL code by running the following statement. It
will be presented in an XML format:

SET SHOWPLAN_XML ON;

Note
When changing a SET SHOWPLAN option, it must be the only statement in a batch, as it changes the
returned output.

In SSMS, in Grid mode, the results are displayed as a link as for any XML output. SSMS knows this is a
plan, however, so you can select the link to view the plan graphically in SSMS. You can then save the
execution plan as a .sqlplan file by right-clicking the neutral space of the plan window and selecting
Save Execution Plan As.

https://learn.microsoft.com/sql/relational-databases/performance/parameter-sensitivity-plan-optimization


You can also configure the estimated text execution plan in code by running one of the following
statements, which return the execution plan in one result set or two, respectively:

SET SHOWPLAN_ALL ON; 
SET SHOWPLAN_TEXT ON;

The text plan of the query using one of these two statements can be useful if you want to send the plan
to someone in an email in a compact manner.

Note
When any of the aforementioned SET options are enabled for a connection, SQL Server does not
run statements, it only returns estimated execution plans. Remember to disable the SET
SHOWPLAN_* option before you reuse the same session for other queries.

As expected, the estimated execution plan is not guaranteed to match the actual plan used when you
run the statement, but it is usually a very reliable approximation that you can use to see if a query looks
like it will execute well enough. The Query Optimizer uses the same information for the estimate as it
does for the actual plan when you run it.

To display information for individual steps, hover over a step in the execution plan. In SSMS or Azure
Data Studio, select an object, right-click on it, and select Properties. After you have a bit of experience
with plans, you’ll notice the estimated execution plan is missing some information that the actual plan
returns. The missing fields are generally self-explanatory in that they are values you would not have until
the query has actually executed—for example, Actual Number of Rows for All Executions, Actual
Number of Batches, and Estimated Number of Rows for All Executions.

Display the actual execution plan
You can view the actual execution plan used to execute the query along with the statement’s result set
from within SSMS by choosing the Include Actual Execution Plan option in the Query menu or by
pressing Ctrl+M to enable the setting. After enabling this setting, when you run a statement, you will see
an additional tab appear along with the execution results after the results of the statements have
completed.

Note
Turning on the actual execution plan feature will add extra time to the execution of your query. If
you are comparing runs of a query, this could skew the results.

You can also return the actual execution plan as a result set using T-SQL code, returning XML that can
be viewed graphically in SSMS, by running the following statement:

SET STATISTICS XML ON;

The actual execution plan is returned as an XML string. In SSMS, in Grid mode, the results display as a
link, which you can view graphically by selecting the link. Remember to disable the SET STATISTICS
option before you reuse the same session if you don’t want to get back the actual plan for every query
you run on this connection.

You can save both estimated and actual execution plans as a .sqlplan file by right-clicking the neutral
space of the plan window and selecting Save Execution Plan As.

You might see that the total rows to be processed does not match the total estimated number of rows for
that step—or rather, the multiple of that step’s estimated number of rows and a preceding step’s
estimated number of rows.



For an example of an execution plan, consider the following query in the WideWorldImporters sample
database:
Click here to view code image

SELECT * FROM Sales.Invoices 
JOIN Sales.Customers 
on Customers.CustomerId = Invoices.CustomerId 
WHERE Invoices.InvoiceID like '1%';

Figure 14-1 shows part of the actual execution plan for this query.

Figure 14-1 Sample query plan, showing a portion of the actual execution plan.

In Figure 14-1, on the Merge Join (Inner Join) operator, you can see that 11111 of 6654 rows were
processed. The 6654 was the estimate, and 11111 was the actual number of rows.

Inside OUT
What’s the difference between Number of Rows Read and Actual Number of Rows?

This is an important distinction, and it can tip you off to a significant performance issue. Both are
“actual” values. However, Actual Number of Rows contains the number of values in the range of
rows we expect to retrieve, whereas Number of Rows Read contains the number of rows that
were actually read based on the number of rows that needed to be accessed to filter the rows for
a predicate you have included.

The difference could significantly affect performance, and the solution is likely to change the
query so that the predicate is narrower and/or better aligned with indexes on the table.
Alternatively, you can add indexes to better fit the query predicates and make for more efficient
searches.

One of the easiest ways to reproduce this behavior is with a wildcard search—for example in the
WideWorldImporters sample database:

Click here to view code image

SELECT Invoices.InvoiceID 
FROM Sales.Invoices 
WHERE Invoices.InvoiceID like '1%'; 
In the XML, in the node for the Index Scan, you see: 
<RunTimeInformation> 
<RunTimeCountersPerThread Thread="0" ActualRows="11111" ActualRowsRead="70510" 
...

Defined as ActualRowsRead in the XML of the plan, this value is displayed as Number of Rows
Read in SQL Server Management Studio. Similarly, ActualRows is displayed as Actual Number of
Rows.



Displaying live query statistics
Live query statistics, introduced in SSMS v16, are an excellent feature. With this feature, you can
generate and display a “live” version of the execution plan using SSMS. It allows you to access live
statistics on versions of SQL Server starting with SQL Server 2014. To use it, enable the Live
Execution Statistics option for a connection via the Query menu in SSMS.

If you execute the query from the previous section with live query statistics enabled, you will see
something like what’s shown in Figure 14-2. Notice that 1,684 of the estimated 6,654 rows have been
processed by the Merge Join operator, and 93 rows have been processed by the Nested Loops (Left
Semi Join) operator.

Figure 14-2 Sample live query statistics.

The Live Query Statistics window initially displays the execution plan more or less like the estimated
plan, but fills out the details of how the query is being executed as it is processing it. If your query runs
quickly, you’ll miss the dotted, moving lines and the various progress metrics, including the duration for
each step and overall percentage completion. The percentage is based on the actual rows processed
currently incurred versus a total number of rows processed for that step.

The Live Query Statistics window contains more information than the estimated query plan, such as the
actual number of rows and number of executions, but less than the actual query plan. The Live Query
Statistics window does not display some data from the actual execution plan such as actual execution
mode, number of rows read, and actual rebinds.

Returning a live execution plan will noticeably slow down query processing, so be aware that the
individual and overall execution durations measured will often be longer than when the query is run
without the option to display live query statistics. However, it can be worth it to see where a query is
hung up in processing.

If your server is configured correctly to do so, you can see the live query plan of executing queries in
action by using the Activity Monitor in SSMS. In the Activity Monitor you can access the live execution
plan by right-clicking any query in the Processes or Active Expensive Queries panes and selecting
Show Live Execution Plan.

Note
Capturing live query execution statistics has some overhead, so use when it is valuable and not by
default.

Permissions necessary to view execution plans
Not just anyone can view a query’s execution plans. There are two ways you can view plans, and they
require different kinds of permissions.

If you want to generate and view a query plan, you will first need permissions to execute the query, even
to get the estimated plan. Additionally, retrieving the estimated or actual execution plan requires the
SHOWPLAN permission in each database referenced by the query. The live query statistics feature requires



SHOWPLAN in each database, plus the VIEW SERVER STATE permission to see live statistics, so it cannot
(and should not) be done by just any user.

It might be appropriate in your environment to grant SHOWPLAN and VIEW SERVER STATE permissions to
developers. However, the permission to execute queries against the production database might not be
appropriate in your regular environment. If that is the case, there are alternatives to providing valuable
execution plan data to developers without production access. For example:

Providing database developers with saved execution plan (.sqlplan) files for offline analysis.

Configuring dynamic data masking, which might already be appropriate in your environment for
hiding sensitive or personally identifying information for users who are not sysadmins on the
server. Do not provide UNMASK permission to developers, however; assign that only to application
users.

Sometimes, an administrator may need to execute queries on a production server due to
differences in environment or hardware, but be cautioned on all of what that means in terms of
security, privacy, and so on.

 For more information on dynamic data masking, see Chapter 13, “Protect data through classification,
encryption, and auditing.”

There are several tools that provide the ability to see existing execution plans. For example, Extended
Events and Profiler can capture execution plans. Query reports in Activity Monitor, such as Recent
Expensive Queries, also allow you to see the plan (if it is still available in cache). Dynamic management
views (DMVs) that provide access to queries that executed (such as sys.dm_exec_cached_plans) or
requests (sys.dm_exec_requests) will have a column named plan_handle that you can pass to the
sys.dm_exec_query_plan DMV to retrieve the plan. To access plans in this manner, the server principal
needs the VIEW SERVER STATE permission or must be a member of the sysadmin server role.

Finally, and perhaps the best way to view execution plans, is the Query Store, which is covered later in
this chapter. For this, you need VIEW DATABASE STATE permissions or to be a member of the db_owner
fixed role.

Understand execution plans
At this point, we have established the basics of what an execution plan is, where to find it, and what
permissions you need to see it. After you have a graphical execution plan in front of you, you need a
basic understanding of reading how the T-SQL statement was processed and how future queries that
use this same plan will operate. The next several sections outline this process.

Read graphical execution plans
This section steps you through reviewing execution plans in SSMS and covers some of the most
common things to look for.

Start an execution plan
First, start an execution plan. For our purposes, run a simple one, like for the following query:
Click here to view code image

SELECT Invoices.InvoiceID 
FROM Sales.Invoices 
WHERE Invoices.InvoiceID like '1%';

Figure 14-3 shows the resulting estimated query plan.



Figure 14-3 Simple query plan.

To display details for individual steps, position your pointer over a step in the execution plan to open a
detailed tooltip-style window, much like the one shown in Figure 14-4. An interesting detail immediately
should come to you when you look at the plan. It doesn’t say it is scanning the Sales.Invoices table, but
rather an index. If an index has all the data needed to execute the query, the index “covers” the needs of
the query, and the table’s other data structures are not touched.

Figure 14-4 Simple query plan with statistics.

In SSMS, you can also select an operator in the execution plan and then press F4 or open the View
menu and choose Properties Window to open its Properties window, where you will see the same
estimated details.

Now, let’s get the actual execution plan, by pressing Ctrl+M or using one of the other methods
discussed earlier. Execute the query and you will see the actual plan, as shown in Figure 14-5. It will be
nearly identical to the estimate plan in Figure 14-3, but with more information.



Figure 14-5 Actual execution plan for the sample query.

The first thing you should notice is that the query plan has a few more details. In particular, 11,111 of
6,346 rows were processed, where 6,346 is the estimated number of rows that would be returned by the
query. This guess was based on statistics, which do not give perfect answers. When you are tuning
larger queries, very large disparities between such guesses and the actual number require investigation.

Open the Properties pane and you’ll notice the returned estimate and actual values for some metrics,
including Number of Rows, Executions, IO Statistics, and more. Look for differences in estimates and
actual numbers here; they can indicate an inefficient execution plan and the source of a poor performing
query. Your query might be suffering from a poorly chosen plan because of the impact of parameter
sniffing or due to stale, inaccurate index statistics.

 We discuss parameter sniffing later in this chapter, including a new feature in SQL Server 2022
intended to avoid this classic problem, PSP optimization. Chapter 15 discusses index statistics.

Notice that some values, like Cost Information, contain only estimated values, even when you are
viewing the actual execution plan. This is because the operator costs aren’t sourced separately; rather,
they are generated the same way for both the estimated and actual plans and do not change based on
statement execution. Furthermore, cost is not just comprised entirely of duration. You might find that
some statements far exceed others in terms of duration, but not in cost.

Note
You can also review execution plans with a well-known third-party tool called Plan Explorer, a free
download from https://www.sentryone.com/plan-explorer. It provides several additional ways to
sort plan operators that are often helpful when working with very large query plans.

Start with the upper-left operator
The upper-left operator reflects the basic operation the statement performed—for example, SELECT,
DELETE, UPDATE, INSERT, or any of the DML statements. (If your query created an index, you could also
see CREATE INDEX.) This operator might contain warnings or other items that require your immediate
attention. These typically appear with a small yellow triangle warning icon, over which you can position
your mouse pointer to obtain additional details.

This was an intentional teaching opportunity! For example, in our sample plan, the SELECT operator is at
the far left, and it has a triangle over it. You can see in the ToolTip that this is due to the following:
Click here to view code image

Type conversion in expression (CONVERT_IMPLICIT(varchar(12),[WideWorldImporters]. 
[Sales].[Invoices].[InvoiceID],0)) may affect "CardinalityEstimate" in query plan 
choice, Type conversion in expression (CONVERT_IMPLICIT(varchar(12),[WideWorldImport 
ers].[Sales].[Invoices].[InvoiceID],0)>='1') may affect "SeekPlan" in query plan choice.

In other words, we used a LIKE on an integer value, so the query plan is warning us that it cannot
estimate the number of rows as well as it can if our WHERE clause employed integer comparisons to
integers.

Select the upper-left operator and press F4 or open the View menu in SSMS and choose Properties
Window. It lists some other things to look for. You’ll see warnings repeated in here, along with additional
aggregate information.

Note

https://www.sentryone.com/plan-explorer


Yellow triangles on an operator indicate something that should grab your attention. The alert could
tip you off to an implicit conversion—for example, a data-type mismatch that could be costly.
Investigate any warnings reported before moving on.

Also look for the Optimization Level entry. This typically says Full. If the Optimization Level is Trivial,
it means the Query Optimizer bypassed optimization of the query altogether because it was
straightforward enough—for example, if the plan for the query only needed to contain a simple Scan or
Seek operation along with the operation operator, like SELECT. If the Optimization Level is not Full or
Trivial, this is something to investigate.

Look next for the presence of a value for Reason For Early Termination. This indicates the Query
Optimizer did not spend as much time as it could have selecting the best plan. Here are a few possible
reasons:

Good Enough Plan. This is returned if the Query Optimizer determined that the plan it picked was
good enough to not need to keep optimizing.

Time Out. This indicates the Query Optimizer tried as many times as it could to find the best plan
before taking the best plan available, which might not be good enough. If you see this, consider
simplifying the query—in particular, by reducing the use of functions and potentially modifying the
underlying indexes.

Memory Limit Exceeded. This is a rare and critical error indicating severe memory pressure on
the SQL Server instance.

Look right, then read from right to left
Graphical execution plans build from sources (rightmost objects) and apply operators to join, sort, and
filter data from right to left, eventually arriving at the leftmost operator. Among the rightmost objects,
you’ll see scans, seeks, and lookups of different types. You might find some quick, straightforward
insight into how the query is using indexes.

Each of the items in the query plan are referred to as operators. Each operator is a module of code that
does a certain task to process data.

Two of the main types of operators for fetching data from a table or index are seeks and scans.

A seek operator finds a portion of a set of data through the index structure, similar to how you would use
the index of a book to locate coverage of a specific topic. Seek operators are generally the most efficient
operators and can rarely be improved by additional indexes. The seek operation finds the leaf page in
the index, which contains the keys of the index, plus any included column data (which in the case of a
clustered table will be all the data for the row).

If the leaf data contains everything you need, it means the operation was covered by the index.
However, if you need more data than the index contains, a lookup operator will join with the seek
operator using a join operator. This means that although the Query Optimizer used a seek, it needed a
second pass at the table in the form of a lookup on another object, typically the clustered index, using a
second seek operator.

Key lookups (on clustered indexes) and RID lookups (on heaps) are expensive and inefficient,
particularly when many rows are being accessed. These lookups can add up to a very large percentage
of the cost of a query.

If key lookup operators are needed frequently, they can usually be eliminated by modifying the index
that is being scanned. For instance, you could modify an existing nonclustered index to include
additional columns. For an example, see the section “Design rowstore nonclustered indexes” in Chapter
15.



The other typical data source operator is a scan. Scan operations aren’t great unless your query is
intentionally returning a large number of rows out of a table or index. Scans read all rows from the table
or index, which can be very inefficient when you need to return only a few rows, but more efficient when
you need many rows. Without a nonclustered index with a well-designed key (if one can be found) to
enable a seek for the query, a scan might be the Query Optimizer’s only option. Scans can be ordered if
the source data is sorted, which is useful for some joins and aggregation options.

Scans on nonclustered indexes are often better than scans on clustered indexes, in part due to what is
likely a smaller leaf page size, because a nonclustered index doesn’t usually have all the columns on
the leaf page. Nonclustered indexes suffer from the same issues with key lookups.

Note
Very few queries are important enough to deserve their own indexes. Think “big picture” when
creating indexes. If you create a new index for every slow query, the accumulated weight of
nonclustered indexes will begin to slow writes to the table. As a guiding principle, more than one
query should benefit from any new nonclustered index. Avoid redundant or overlapping
nonclustered indexes. See Chapter 15 for more information on creating nonclustered indexes,
including “missing” indexes.

Other types of scans include the following:

Table scan. This indicates that the table has no clustered index. Chapter 15 discusses why this is
probably not a good idea.

Index scan. This scans the rows of an index, even the included columns of the index, for values.

Remote scan. This includes any object that is preceded by “remote,” which is the same operation
but over a linked server connection. You troubleshoot these the same way, but potentially by
making changes to the remote server instead. An alternative to linked server connections that
might be superior in many cases is PolyBase. PolyBase can use T-SQL to query a variety of
external data sources, including nonrelational and other relational data sources. Like a linked
server, PolyBase accomplishes this by reading the data in place without data movement, or
“virtualizing” the data.

 For more details on PolyBase, see Chapter 7.

Constant scan. These appear when the Query Optimizer deals with scalar values, repeated
numbers, and other constants. These are necessary operators for certain tasks and generally not
actionable from a performance standpoint.

Columnstore index. This is an incredibly efficient operator when you are working with lots of rows
but relatively few columns, and likely will outperform a clustered index scan or index seek where
millions of rows, for example, must be aggregated. There is no need to create a nonclustered index
to replace this operator unless your query is searching for a few rows.

Inside OUT
More about columnstore indexes

Since SQL Server 2016, columnstore indexes have been a viable option for read-write tables in
a transactional system. In previous versions of SQL Server, nonclustered columnstore indexes
did not allow writes to the table, and so couldn’t easily be adopted in transactional databases. If
you aren’t using them already to optimize large row count queries, consider adding them to your
toolbelt.



Furthermore, since SQL Server 2016 with Service Pack 1, columnstore indexes have been
available to all editions of SQL Server, even Express edition, though editions below Enterprise
edition have limits to the amount of columnstore cache in memory.

In Azure SQL Database, clustered and nonclustered columnstore indexes are supported on
Standard tier DTU databases (S3 and above), 100 eDTU and larger elastic pools, and all vCore-
based databases (both General Purpose and Business Critical).

The weight of the lines connecting operators tells part of the story, but
isn’t the full story
SQL Server dynamically changes the thickness of the gray lines to reflect the actual number of rows.
You can get a visual idea of where the bulk of data is coming from by observing the pipes (they look like
arrows pointing to the left), which draw your attention to the places where performance tuning could
have the biggest impact. If you hover over the line in your query plan, you can see the rows transmitted
in each step. (See Figure 14-6.)

Figure 14-6 Showing the number of rows read and the estimated metrics in the query plan.

The visual weight and the sheer number of rows does not, however, directly translate to cost. Look for
where the pipe weight changes from light to heavy, or vice versa. Be aware of when bolder pipes are
joined or sorted.

Operator cost share isn’t the full story, either
When you run multiple queries, the cost of a query relative to the batch is displayed in the query
execution plan header. The batch cost relative to the rest of the operators in the statement is displayed
within each plan. SQL Server uses a cost-based process to decide which query plan to use.

When optimizing a query, it is usually useful to start with the costliest operators. But deciding to address
only the highest-cost single operator in the execution plan might be a dead end.

Look for join operators and understand the different algorithms
As you read from right to left in a query of any complexity, you’ll likely see the paths meet at a join
operator. Two tables, indexes, or the output from another operator can be joined together. There are
three types of join operators to be aware of, particularly because they represent where a large
percentage of the cost of an execution plan stems from: merge join, hash match, and nested loop. Any
one of these can be the fastest way to join two sets of data, depending on the size of the sets, whether
they are indexed, and whether they are sorted already (and if not, whether it would be too costly to sort
them with a sort operator).



Note
There is also an adaptive join operator, first introduced in SQL Server 2017, which allows the
Query Optimizer to situationally choose between the hash match and nested loop operators. This
is mentioned again in the “Intelligent query processing” section later in this chapter.

A merge join operator merges two large, sorted sets of data. The query processor can scan each set, in
order, matching rows from each table with a single pass through the sets. This can be quite fast, but the
requirement for ordered sets is where the cost comes in. If you are joining two sets that are keyed on
the same column, they are then sorted, so two ordered scans can be merged. The Query Optimizer can
choose to sort one or both inputs to the merge join, but this is often costly.

Hash match is the join operator used to join two large sets, generally when there is no easily usable
index and sorting is too costly. As such, it has the most overhead, because it creates a temporary index
based on an internal hashing algorithm to bucketize values to make it easier to match one row to
another. This hash structure is in memory if possible, but might spill onto disk (using tempdb). The
presence of a hash join is not necessarily a bad thing; just know that it is the least efficient algorithm to
join two data set, precisely because they are not suited for the other two operators.

Note
When the Query Optimizer does something that seems weird, like sort sets of data for an internal
operation like a join, it is usually because it has calculated that for the design of your database,
this is the best way to do it. As discussed, with complex queries, it sometimes take too long to find
the absolute best way to process the query. And sometimes, the plans are suboptimal—for
example, where statistics are not up to date. This is one reason to make sure plans have full
optimization.

The most efficient join algorithm is the one that sounds the least optimized: nested loops. This join
algorithm is the basic row-by-row processing that people preach about you as a programmer never
doing. It takes one row in one input and searches the other input for values that meet the join criteria.
When joining two sets together, one is indexed on the join key, and doesn’t need to fetch additional data
using a key lookup. Nested loops are very fast. The additional operators were implemented to support
larger, ideally reporting-style, workloads.

Each of the following options could reduce the cost of a join operator.

There might be an opportunity to improve the indexing on the columns being joined, or perhaps,
you have a join on a compound key that is incompletely defined. Look for common joins in queries
—can an index be crafted to match?

In the case of a merge join, you might see a preceding sort operator. This can be an opportunity for
you to sort the data already sorted according to how the merge join requires the data to be sorted.
If this is a composite key, perhaps change the ASC/DESC property of an index key column, or
create a new nonclustered index with columns sorted differently. The result could result in a new
execution plan without the cost of the sort operator.

Filter at the lowest level possible. Perhaps a WHERE clause could exist in a subquery instead of at
the top level of the query, or in the definition of a derived table or common table expression (CTE)
instead of in the subsequent query.

Hash operators are the most expensive. Reducing the row counts going into a hash match or hash
join could allow the Query Optimizer to use a less memory-intensive and less costly join operator.

Nested loops are often necessitated by key lookups and are sometimes quite costly. Address them
with a new or modified nonclustered index to eliminate the nearby key lookup, or to make an



accompanying index seek more capable.

Inside OUT
If it is bad to write looping code, why is this usually the best way for SQL Server to
perform the task?

This really comes down to the type of code that is executing the different code elements. T-SQL
is an interpreted, declarative language. There can be a significant cost to executing a statement.
This cost does not show up when you are running a few statements, but when you run hundreds
of statements, it becomes obvious.

The query processor runs in very efficient machine code and is highly optimized to process joins
in just three ways. While you may write FROM Table1 JOIN Table2 ON…, the resulting amount of
code that is executed to pull data from disk to memory, and then do the comparisons, is
astonishing. As such, the architects of the Database Engine did not optimize for you to go row by
row with a cursor, but to leave it to the engine.

Look for parallel icons
The left-pointing pair of arrows in a yellow circle shown in Figure 14-7 indicate that this operator has
been run with a parallel-processing execution plan. We talk more about parallelism later in this chapter;
the important thing here is to be aware that your query has gone parallel.

Figure 14-7 The parallel indicator on a clustered index scan operator.

This doesn’t mean multiple sources or pipes are being read in parallel; rather, it means the work for
individual tasks has been broken up behind the scenes. The Query Optimizer decided it was faster if
your workload was split up and run into multiple parallel streams of rows. Typically, this is a good thing,
but at scale, excessive parallelism can lower overall performance.

 We discuss parallelism in more detail later in this chapter in the section “Understand parallelism.”

You might also see one of the three different parallelism operators—distribute streams, gather streams,
and repartition streams—each of which appear only for parallel execution plans.

Understand cardinality estimation
When a query plan is being generated, one of the most important factors you will deal with is the
cardinality estimation (CE). Cardinality is defined as the number of items in a set (hence, a cardinal
number is a non-negative integer). The importance of cardinality estimation cannot be overstated and is
analogous to how you might do a task. If you own an e-commerce store and ship three products a week,
you might be able to walk two miles with your stack of packages to the post office at the end of the week
and be efficient enough. If you must ship 300,000 products a day, however, the net effect of each



product being shipped needs to be the same, but the way you achieve this must be far more optimized
and include more than just one person.

SQL Server makes the same choices. You join table X with table Y on column ID. If X has 1,000 rows,
and Y has 10, the solution is easy. If they each have a billion rows, and you are looking for a specific
value in table X—say, value = 'Test'—there are many choices to make. How may rows in X have a
value of 'Test'? And once you know that value, how many values of ID in X will match ID values in Y?

This estimation is done in two ways. The first is with guesses based on histograms of the data. The
table is scanned when creating statistics. Statistics are created by executing UPDATE STATISTICS or
through the automatic gathering of statistics that occurs as data changes, based on the
AUTO_UPDATE_STATISTICS database setting.

Take the first case, where the tables are small. The engine stores a histogram that has something like
what’s shown in Table 14-5.

Table 14-5 Sample histogram of a small table

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS AVERAGE_RANGE_RO
Smith 400 200 20 10
Tests 200 120 23 5

From this, the number of rows equal to 'Test' can be guessed to be less than 400 because Test is
between Smith and Tests; less than 200, because approximately 200 rows matched Smith; and
approximately 10 matches because there are approximately 20 distinct values. Exactly how this
estimation is done is proprietary, but it is important to keep your statistics up to date using maintenance
methods. (See Chapter 8 for more details on proper upkeep of SQL Server.)

From SQL Server 7.0 to SQL Server 2012, the same CE algorithms were used. However, since SQL
Server 2014, Microsoft has been significantly tweaking the cardinality estimator with each release. And
now, in SQL Server 2022, the new CE feedback feature allows SQL Server to automatically adapt query
plans based on the estimate and actual number of rows processed, enhancing performance stability and
automating an otherwise complex troubleshooting exercise.

 CE feedback is discussed later in this chapter. You can find out more at
https://learn.microsoft.com/sql/relational-databases/performance/intelligent-query-processing-
feedback#cardinality-estimation-ce-feedback.

The problem with cardinality estimation is that it is an inexact science. The guesses made are usually
close enough, but sometimes can be off just enough to affect performance. Outdated statistics can lead
to this, but that’s not the only explanation. Estimating filtered rowcounts in query plans is complex.
That’s why it’s important that the new SQL Server 2022 “feedback” features allow SQL Server to quickly
learn from mistakes.

There are a few methods to control which cardinality estimator is used. The first is to use the database’s
compatibility level, like with this command to use the SQL Server 2022 cardinality estimator:
Click here to view code image

ALTER DATABASE [db_name] SET COMPATIBILITY_LEVEL = 160;

Or you can elect to go backward and use the legacy SQL Server 2012 compatibility level:
Click here to view code image

ALTER DATABASE [db_name] SET COMPATIBILITY_LEVEL = 110;

Changing the database’s compatibility level is often an unnecessary or drastic change. In your testing,
consider keeping your modern compatibility level and reverting only to the legacy cardinality estimator

https://learn.microsoft.com/sql/relational-databases/performance/intelligent-query-processing-feedback#cardinality-estimation-ce-feedback


(which pre-dated SQL Server 2014):
Click here to view code image

ALTER DATABASE SCOPED CONFIGURATION SET LEGACY_CARDINALITY_ESTIMATION = ON;

Here also, reverting to the legacy cardinality estimator can be too drastic a change for the entire
database. In compatibility level 130 (SQL Server 2016) and higher, there is a query hint you can use to
modify an individual query to use legacy cardinality estimation (CE version 70):
Click here to view code image

SELECT … 
FROM … 
OPTION (USE HINT ('FORCE_LEGACY_CARDINALITY_ESTIMATION'));

What if you cannot modify the query to use the OPTION syntax because it resides deep within a business
intelligence suite, an ETL tool, or third-party software? SQL Server 2022 has a solution for you: Identify
the query in Query Store metadata and then provide a Query Store hint, shaping the query without
altering any code. For example:
Click here to view code image

EXEC sys.sp_query_store_set_hints @query_id= 555, 
@query_hints = N'OPTION(USE HINT(''FORCE_LEGACY_CARDINALITY_ESTIMATION''))';

In this example, the Query Store is used to identify a specific problematic query, which had been
assigned query_id 555. This new SQL Server 2022 feature is only available when Query Store is
enabled for the database, which we recommend.

Note
Query Store is enabled by default for all new databases on SQL Server 2022.

 For more information about Query Store hints, see the “Query Store hints” section later in this
chapter.

For the most part, we suggest using the latest cardinality estimator possible, and addressing issues in
your queries, but realize this is not always a feasible solution.

 For more information, including how to tell which version of cardinality estimation was used, see
https://learn.microsoft.com/sql/relational-databases/performance/cardinality-estimation-sql-
server.

Inside OUT
Are there tools to help predict the performance impact of upgrading the database
compatibility level?

The Query Tuning Assistant (QTA) can help you find queries that might be affected by a
compatibility level upgrade. It is primarily created to handle upgrade tasks (you launch the tool in
SSMS by right-clicking the database and choosing Tasks > Database Upgrade > New
Database Upgrade Session), but can be used for any database that is not in the max
compatibility level for a server.

Starting in an earlier compatibility level, QTA benchmarks Query Store data for the number of
days that represent a full business cycle of activity. Then, you set your database to a later
compatibility level and capture more activity. QTA will compare before and after the compatibility

https://learn.microsoft.com/sql/relational-databases/performance/cardinality-estimation-sql-server


level upgrade and point out regressed query plans. This analysis comes with advice on how to
make things work better in the new target compatibility level. For obvious reasons, this should be
done on hardware and data load similar to production, but not on your production SQL Server
instance.

 For more details, see Chapter 19, “Migrate to SQL Server solutions in Azure,” where we discuss
using QTA for migrations. Also check out this lab that Microsoft created:
https://github.com/microsoft/tigertoolbox/blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md.

Understand parameterization and parameter sniffing
SQL Server parameterization occurs when the Query Optimizer detects values (such as the search
criteria of a WHERE clause statement) that can be parameterized. For instance, the statements in a stored
procedure are parameterized from the definition.

A query can be parameterized when it meets certain conditions. For example, a query might have
values that could take on multiple values. A query such as
Click here to view code image

SELECT Value From TableName WHERE Value = 'X';

can be parameterized, and the literal 'X' replaced by a parameter, much like if you were writing a stored
procedure. This type of automatic parameterization is the default, referred to as simple
parameterization. (Prior to SQL Server 2005, this was named auto-parameterization.)

The criteria for a query to qualify for simple parameterization are complex and lengthy. For example, a
query where you reference more than one table will not be parameterized. If you change the
PARAMETERIZATION database setting to FORCED, more complex queries will be parameterized. Object-
Relational Mapping (ORM) frameworks like Entity Framework (EF) are likely to generate many queries
that are too sophisticated for simple parameterization. With load testing, you could determine that your
EF application could benefit from forced parameterization.

You can also rewrite a query to ensure it will get a parameterized plan by using a variable:
Click here to view code image

DECLARE @Value varchar(10) = 'X'; 
SELECT Value From TableName WHERE Value = @Value;

This query will be parameterized no matter how complex it is. There are additional ways a query will be
parameterized through client APIs, but the best way to parameterize your queries is with stored
procedures.

Note
Instead of complex procedurally developed queries coming out of object-relational mappers
(ORMs) like Entity Framework in ADO.NET, consider stored procedures for application create,
read, update, and delete (CRUD) operations. Stored procedures provide superior parameterization
for security and cached execution plan reusability.

Simple parameterization is extraordinarily valuable, but also sometimes frustrating. With
parameterization, it’s possible for two potentially helpful or potentially problematic conditions to occur:

You can reuse a query plan for multiple queries for which the query text is exactly the same, except
for parameterized values. That’s helpful!

https://github.com/microsoft/tigertoolbox/blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md


The same query could use the same execution plan for two different values of a parameter,
resulting in vastly different performance. That’s problematic for one of the two values.

For example, you might create the following stored procedure to fetch orders placed for goods from a
certain supplier:
Click here to view code image

CREATE OR ALTER PROCEDURE Purchasing.PurchaseOrders_BySupplierId 
      @SupplierId int 
AS 
SELECT PurchaseOrders.PurchaseOrderID, 
       PurchaseOrders.SupplierID, 
       PurchaseOrders.OrderDate 
 FROM   Purchasing.PurchaseOrders 
WHERE  PurchaseOrders.SupplierID = @SupplierId;

The plan cached for this procedure will depend on the value that is passed in on the first compilation.
For example, if the larger rowcount query (@SupplierID = 5) is used first and has its query plan cached,
the query plan will choose to scan the clustered index of the table, because the value of 5 has a
relatively high cardinality in the table. If the smaller rowcount query (@SupplierID = 1) is run first, its
version of the plan will be cached, which will use an index seek and a key lookup. In this case, the plan
with a seek and key lookup is far less efficient for very large row counts, but will be used for all values of
the parameterized statement.

Here are a few advanced troubleshooting avenues to alleviate this scenario:

In SQL Server 2022, a new IQP feature, PSP optimization, actively adapts query plans to avoid
this exact scenario. (More on this new feature at the end of this chapter, in the section “Intelligent
query processing.”) Between PSP optimization and Query Store hints, SQL Server 2022 provides
multiple superior options to deal with this classic problem.

Query Store hints, also new to SQL Server 2022, further allow administrators to tweak existing
query plans with powerful hints, shaping query performance without the need for code changes.
For example, even if you set simple parameterization at the database level, you could apply the
query hint PARAMETERIZATION FORCED to individual complex queries. Query Store hints can specify
this and many other query hints without changing the application code. With SQL Server 2022, you
can even specify different Query Store hints on primary and secondary replicas of an availability
group.

You can use the OPTIMIZE FOR query hint to demand that the query analyzer use a cached
execution plan that substitutes a provided value for the parameters. You can also use OPTIMIZE
FOR UNKNOWN to instruct the query analyzer to optimize for the most common value, based on
statistics of the underlying data object. You can modify the code to use OPTIMIZE FOR hints, or use
the Query Store hints feature to apply a desired OPTIMIZE FOR hint without the need for code
changes.

The RECOMPILE query hint or procedure option does not allow the reuse of a cached plan, forcing a
fresh query plan to be generated each time the query is run. Similarly, you can modify the code to
use RECOMPILE hints, or use the Query Store hints feature to apply a desired RECOMPILE hint without
the need for code changes.

You can use the Query Store feature (implemented with a GUI in SSMS and via stored procedures
behind the scenes) to visually look at plan performance and force a query to use a specific plan
currently in cache, using an easy graphical interface or T-SQL stored procedures. For more
information, see the section “Leverage the Query Store feature” later in this chapter.

You can use the legacy plan guide feature (implemented via stored procedures) to guide the query
analyzer to a plan currently in cache. You identify the plan via its plan_handle setting. Plan guides



have been mostly replaced by the Query Store and Query Store hints feature, which provide a
more granular and far easier way to tune query plans without code changes.

Use the USE PLAN query hint to provide the entire XML query plan for SELECT statements. This is the
least convenient option to override the query analyzer. Consider using the Query Store instead.

An extreme solution is to disable parameter sniffing at the database level using the
PARAMETER_SNIFFING = OFF database-scoped configuration option. This will cause all plans in the
database to act like the OPTIMIZE FOR UNKNOWN hint has been provided.

Inside OUT
What if you use both plan guides and Query Store forced plans?

Danger! It is possible to create competing plan guides or Query Store forced plans. This is
certainly not recommended and could become confusing. If you create competing plan guides or
Query Store forced plans, you’ll generally see the Query Store forced plan “win,” but this is not
guaranteed or documented as far as we can determine.

In case you are troubleshooting competing plan guides and Query Store forced plans, you can
view any existing plan guides and forced query plans with the following queries of the system
catalog:

Click here to view code image

SELECT * FROM sys.plan_guides; 
SELECT * 
FROM sys.query_store_query AS qsq 
INNER JOIN sys.query_store_plan AS qsp 
     ON qsp.query_id = qsq.query_id 
WHERE qsp.is_forced_plan = 1;

Explore the procedure cache
The procedure cache is a portion of memory that contains query plans for statements that have been
executed. New execution plans enter the procedure cache only when a statement is run. If the
procedure cache already contains a plan matching a previous run of the current statement, the
execution plan is reused, saving valuable time and resources. This is one reason complex statements
can appear to run faster the second time they are run, in addition to the fact that data may be cached on
a second execution.

The procedure cache is empty when the SQL Server service starts and grows from there. SQL Server
manages plans in the cache, removing them as necessary under memory pressure. The size of the
procedure cache is managed by SQL Server and is inside the memory space configured for the server
in the Max Server Memory configuration setting. Plans are removed based on their cost and how
recently they have been used. Smaller, older plans and single-use plans are the first to be cleared,
though this formula of automatic plan cache maintenance is complex.

Note
If you are using SQL Server on Azure VMs, Azure SQL Database, or Azure SQL Managed
Instance, look for the availability of newer memory optimized series of hardware. These are
available for Azure VMs and in preview for various tiers and compute generations and offer a
higher ratio of system memory to vCPUs.



Plans are compiled based on the state of the database and its objects when the plan is generated.
Dramatic changes to underlying data might not cause an automatic plan recompilation, so recompiling a
plan manually might help by creating a more optimized plan. Many data definition changes to tables
referenced in the stored procedure will cause an automatic recompilation.

Inside OUT
If you run a statement only once, does SQL Server need to remember its plan?

By default, SQL Server adds an execution plan to the procedure cache the first time it is
generated, because it expects that it might be executed again. You can view the number and
size of cached execution plans with the sys.dm_exec_cached_plans DMV.

You might find that a large amount of space in the procedure cache is dedicated to storing
execution plans that have been used only once. These single use plans can be referred to as ad
hoc execution plans, from the Latin, meaning “for this situation.” This should not be confused
with the other way that this term is used in SQL Server circles to mean “all queries not contained
in a stored procedure, trigger, or function.”

The guidance on whether to enable the related server configuration option optimize for ad hoc
workloads is complex.

If you find that a SQL Server instance is storing many single-use plans, as many do, enabling
the Optimize For Ad Hoc Workloads server configuration option might benefit performance.
This option does not optimize ad hoc queries; rather, it optimizes SQL Server memory by storing
an execution plan stub for single-use queries. A full plan cache will appear in memory only after
the same query has been detected twice. Queries might then benefit from the cached plan only
upon their third execution.

However, Optimize For Ad Hoc Workloads also hides single-use queries, especially the plans
for very expensive single-use queries that commonly come from an object-relational mapper
(ORM) like Entity Framework. This could hide these resource-hogging queries from Query Store.

Clear the procedure cache
You might find that manually clearing the procedure cache is useful when performance testing or
troubleshooting. Typically, you want to reserve this activity for preproduction systems.

There are a few common reasons to clear out cached plans in SQL Server. One is to compare two
versions of a query or the performance of a query with different indexes; you can clear the cached plan
for the statement to allow for proper comparison.

Note
While this can be a good thing to try, what you are testing is not only your query, but your
hardware’s ability to fetch data from the disk. When you look at the output of SET STATISTICS IO
ON, the Logical Reads measurement gives you an accurate comparison for two or more queries.
The presence of Physical Reads tells you that data the query needed was not in cache. Higher
amounts of physical reads indicate that the server’s ability to hold everything needed in RAM
might not be sufficient.

You can manually flush the entire procedure cache, or individual plans in cache, with the following
database-scoped configuration command, which affects only the current database context, as opposed
to the entire instance’s procedure cache:



Click here to view code image

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

This command was introduced in SQL Server 2016 and is effectively the same as the DBCC
FREEPROCCACHE command within the current database context. It works in both SQL Server and Azure
SQL Database. DBCC FREEPROCCACHE is not supported in Azure SQL Database, and should be
deprecated from your use going forward in favor of ALTER DATABASE.

Caution
We strongly recommend against clearing the procedure cache in a live production environment
during normal business hours. Doing so will cause all new statements to have their execution
plans compiled, dramatically increasing processor utilization, and potentially dramatically slowing
performance.

You can also remove a single plan from cache by identifying its plan_handle and then providing it as the
parameter to the ALTER DATABASE statement. Perhaps this is a plan you would like to remove for testing
or troubleshooting purposes that you have identified with the script in the previous section:
Click here to view code image

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE 0x06000700CA920912307B86 
7DB701000001000000000000000000000000000000000000000000000000000000;

You can alternatively flush the cache by object type. This command clears cached execution plans that
are the result of ad hoc statements and prepared statements (from applications, using sp_prepare,
typically through an API):
Click here to view code image

DBCC FREESYSTEMCACHE ('SQL Plans');

The advantage of this statement is that it does not wipe the cached plans from “programmability”
database objects such as stored procedures, multi-statement table-valued functions, scalar user-defined
functions, and triggers. The following command clears the cached plans from these types of objects:
Click here to view code image

DBCC FREESYSTEMCACHE ('Object Plans');

Note
DBCC FREESYSTEMCACHE is not supported in Azure SQL Database.

You can also use DBCC FREESYSTEMCACHE to clear cached plans associated with a specific Resource
Governor Pool, as follows:
Click here to view code image

DBCC FREESYSTEMCACHE ('SQL Plans', 'poolname');

Analyze cached execution plans
You can analyze execution plans in aggregate starting with the sys.dm_exec_cached_plans DMV, which
contains a column named plan_handle. The plan_handle column contains a system-generated
varbinary(64) string that can be used with a number of other DMVs. As seen in the code example that



follows, you can use the plan_handle to gather information about aggregate plan usage, obtain plan
statement text, and retrieve the graphical execution plan itself.

You might be used to viewing the graphical execution plan only after a statement is run in SSMS, but
you can also analyze and retrieve plans for queries executed in the past by using the following query
against a handful of dynamic management objects (DMOs). These DMOs return data for all databases
in SQL Server instances, and for the current database in Azure SQL Database. The following query can
be used to analyze different aspects of cached execution plans. Note that this query might take a
considerable amount of time as written, so you might want to pare down what is being output for your
normal usage.
Click here to view code image

SELECT 
    p.usecounts AS UseCount, 
    p.size_in_bytes / 1024 AS PlanSize_KB, 
    qs.total_worker_time/1000 AS CPU_ms, 
    qs.total_elapsed_time/1000 AS Duration_ms, 
    p.cacheobjtype + ' (' + p.objtype + ')' as ObjectType, 
    db_name(convert(int, txt.dbid )) as DatabaseName, 
    txt.ObjectID, 
    qs.total_physical_reads, 
    qs.total_logical_writes, 
    qs.total_logical_reads, 
    qs.last_execution_time, 
    qs.statement_start_offset as StatementStartInObject, 
      SUBSTRING (txt.[text], qs.statement_start_offset/2 + 1 , 
     CASE 
         WHEN qs.statement_end_offset = -1 
         THEN LEN (CONVERT(nvarchar(max), txt.[text])) 
         ELSE qs.statement_end_offset/2 - qs.statement_start_offset/2 + 1 END) 
     AS StatementText, 
      qp.query_plan as QueryPlan, 
      aqp.query_plan as ActualQueryPlan 
FROM sys.dm_exec_query_stats AS qs 
INNER JOIN sys.dm_exec_cached_plans p ON p.plan_handle = qs.plan_handle 
OUTER APPLY sys.dm_exec_sql_text (p.plan_handle) AS txt 
 
OUTER APPLY sys.dm_exec_query_plan (p.plan_handle) AS qp 
OUTER APPLY sys.dm_exec_query_plan_stats (p.plan_handle) AS aqp 
--tqp is used for filtering on the text version of the query plan 
CROSS APPLY sys.dm_exec_text_query_plan(p.plan_handle, qs.statement_start_offset, 
qs.statement_end_offset) AS tqp 
WHERE txt.dbid = db_id() 
ORDER BY qs.total_worker_time + qs.total_elapsed_time DESC;

The preceding code sorts queries by a sum of the CPU time and duration, descending, returning the
longest running queries first. You can adjust the ORDER BY and WHERE clauses in this query to find, for
example, the most CPU-intensive or most busy execution plans. Keep in mind that the Query Store
feature, as detailed later in this chapter, will help you visualize the process of identifying the most
expensive and longest running queries in cache.

As you will see after running in the previous query, you can retrieve a wealth of information from these
DMOs, including statistics for a statement within an object that generated the query plan. The query
plan appears as a blue hyperlink in SSMS’s Results to Grid mode, opening the plan as a new .sqlplan
file. You can save and store the .sqlplan file for later analysis. Note too that this query might take quite a
long time to execute as it will include a line for every statement in each query.

For more detailed queries, you can add code to search only for queries that have certain details in the
plan—for example, looking for plans that have a reason for early termination value. In the execution plan
XML, the reason for early termination will show in a node StatementOptmEarlyAbortReason. You can add
the search conditions before the ORDER BY in the script, using the following logic:



Click here to view code image

and tqp.query_plan LIKE '%StatementOptmEarlyAbortReason%'

Included in the query is sys.dm_exec_query_plan_stats, which provides the actual plan XML for a given
plan_handle.

 More details on sys.dm_exec_query_plan_stats are available at
https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-
dm-exec-query-plan-stats-transact-sql.

Permissions required to access cached plan metadata
The only permission needed to run the previous query in SQL Server is the server-level VIEW SERVER
STATE permission, which might be appropriate for developers to have access to in a production
environment because it does not give them access to any data in user databases.

In Azure SQL Database, because of the differences between the Basic/Standard and Premium tiers,
different permissions are needed. In the Basic/Standard tier, you must be the server admin or Azure
Active Directory Admin to access objects that would usually require VIEW SERVER STATE. In the Premium
tier, you can grant VIEW DATABASE STATE in the intended database in Azure SQL Database to a user who
needs permission to view the preceding DMVs.

Understand parallelism
Parallelism in query processing, and computing in general, is a very complex topic. Luckily, much of the
complexity of parallelism in SQL Server is generally encapsulated from the DBA and programmer.

A query that uses parallelism, and one that doesn’t, can be the same query with the same plan (other
than allowing one or more operators to work in parallel.) When SQL Server decides to split and stream
data needed for requests into multiple threads, it uses more than one logical processor to get the job
done. The number of different parallel threads used for the query is called the degree of parallelism
(DOP). Because parallelism can never exceed the number of logical processors, naturally the maximum
degree of parallelism (MAXDOP) is capped.

The main job of the DBA is to tune the MAXDOP for the server, database, and individual queries when
the defaults don’t behave well. On a server with a mixed load of OLTP and analytics workloads, some
larger analytics queries can overpower other active users.

MAXDOP is set at the server level using the server UI in SSMS, or more commonly using the
sp_configure system stored procedure. Starting in SQL Server 2019, there is a MaxDOP tab in SQL
Setup, which proposes an initial MAXDOP for your server configuration. In previous versions, the
system default was 0 (allowing all processors to be used in a single statement).

Parallelism is a seemingly magical way to make queries run faster (most of the time), but even seeming
like magic comes at a price. While queries might perform fastest in a vacuum going massively parallel,
the overuse of parallelism creates a multithreading bottleneck at scale with multiple users. Split into too
many different parts, queries slow down en masse as CPU utilization rises and SQL Server records
increasing values in the CXPACKET wait type.

 We talk about CXPACKET here, but for more about wait type statistics, see Chapter 8.

Until SQL Server 2016, MAXDOP was only a server-level setting, a setting enforced at the query level,
or a setting enforced for sessions selectively via the Resource Governor, an Enterprise edition feature.
Since SQL Server 2016, the MAXDOP setting is also available as a database-scoped configuration. You
can also use the MAXDOP query hint in any statement to override the database or server level MAXDOP
setting.

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-plan-stats-transact-sql


 For more details on Resource Governor, see Chapter 3: “Design and implement an on-premises
database infrastructure,” and Chapter 8.

Setting a reasonable value for MAXDOP will determine how many CPUs will be used to execute a
query, but there is another setting to determine what queries are allowed to use parallelism: cost
threshold for parallelism (CTFP). This enforces a minimum bar for query cost before a query can use a
parallel execution plan. The higher the threshold, the fewer queries go parallel. This setting is low by
default, but its proper setting in your environment depends on the workload and processor count. More
expensive queries usually benefit from parallelism more than simpler queries, so limiting the use of
parallelism to the worst queries in your workload can help. Similarly, setting the CTFP too high could
have an opportunity impact, as performance is limited, queries are executed serially, and CPU cores go
underutilized. Note that CTFP is a server-level setting only.

If large queries are already a problem for performance and multiple large queries regularly run
simultaneously, raising the CTFP might not solve the problem. In addition to the obvious solutions of
query tuning and index changes, it might be worth it to include the use of columnstore indexes for
analytic queries and use MAXDOP as a hint instead to limit some very large queries from taking over
your server.

A possible indication of parallelism being an issue is when the CXPACKET wait is a dominant wait type
experienced over time by your SQL Server. You might need to adjust both MAXDOP and CTFP when
performance tuning. You can also view the live and last wait types for a request using
sys.dm_exec_requests. Make these changes in small, measured gestures, and don’t overreact to
performance problems with a small number of queries. Use Query Store to benchmark and trend the
performance of high-value and high-cost queries as you change configuration settings.

Another flavor of CPU pressure, and in some ways the opposite of the CXPACKET wait type, is the
SOS_SCHEDULER_YIELD wait type. The SOS_SCHEDULER_YIELD is an indicator of CPU pressure, indicating
that SQL Server was forced to share time, or “yield” to other CPU tasks, which might be normal and
expected on busy servers. Whereas CXPACKET is the SQL Server complaining about too many threads in
parallel, SOS_SCHEDULER_YIELD is the acknowledgement that there were more runnable tasks than
available threads. In either case, you should adopt a strategy of reducing CPU-intensive queries and
rescheduling or optimizing CPU-intensive maintenance operations. This is more economical than simply
adding CPU capacity.

Inside OUT
How can you reduce processor utilization during maintenance operations?

If processor utilization spikes during maintenance operations such as index maintenance or
integrity checks, you can force them to run serially. Although this can increase the duration of
maintenance, other queries should be less negatively affected.

You can use the MAXDOP query hint at the end of index maintenance to force index rebuild steps
to run serially. Combined with the ONLINE hint, an Enterprise edition feature, your scripted index
maintenance might run longer but have a minimal impact on concurrent queries. You can also
specify MAXDOP when creating indexes. You cannot specify a MAXDOP for the reorganize step.

Click here to view code image

ALTER INDEX ALL ON WideWorldImporters.Sales.Invoices REBUILD 
WITH (MAXDOP = 1, ONLINE = ON);

You can also enable Trace Flag 2528 to disable parallelism server-wide for DBCC CHECKDB, DBCC
CHECKFILEGROUP, and DBCC CHECKTABLE operations. Keep in mind these operations can take
hours to complete on large databases and might run longer if single-threaded.



Force a parallel execution plan
You know how to specify MAXDOP = 1 to force a query not to use parallelism. What about forcing
parallelism? You can use a query hint to force a statement to compile with a parallel execution plan. This
can be valuable in troubleshooting, or to force a behavior in the Query Optimizer for experimentation,
but is not usually a necessary or recommended option for live code.

Appending the following hint to a query will force a parallel execution plan, which you can see using the
estimate or actual execution plan output options:
Click here to view code image

… OPTION(USE HINT('ENABLE_PARALLEL_PLAN_PREFERENCE'));

Note
The presence of certain system variables or functions can force a statement to compile to be serial
—that is, without any parallelism. This behavior will override the new
ENABLE_PARALLEL_PLAN_PREFERENCE option.
The @@TRANCOUNT system variable forces a serial plan, as do any of the built-in error reporting
functions, including ERROR_LINE(), ERROR_MESSAGE(), ERROR_NUMBER(), ERROR_PROCEDURE(),
ERROR_SEVERITY(), and ERROR_STATE(). This pertains only to using these objects in a query. Using
them in the same batch, such as in a TRY … CATCH handler, will not affect the execution plans of
other queries in the batch.

Use advanced engine features to tune queries
In the past few versions of SQL Server and Azure SQL Database, the programmers building the
Database Engine have started to add especially advanced features to go from the same cost-based
optimizations we have had for many years, to tools that can sense when plans need to be adjusted
before a DBA does. Not that any of these features will replace well-written code and a DBA who
understands the architecture of how queries work, but as data needs explode, the more the engine can
do for you, the better.

Internal improvements in SQL Server 2022
Microsoft has published a few details on some internal performance improvements that were introduced
deep inside the Database Engine. Here is a summary of these advanced changes. None require an opt-
in or deep understanding of the tech involved in order for you to benefit from them in SQL Server 2022.

Reduced buffer pool I/O promotions. There is a documented phenomenon involving the read-
ahead mechanism that pulls data from storage into the buffer pool. To read more about this
complex topic, see this old Microsoft blog post at
https://learn.microsoft.com/archive/blogs/ialonso/the-read-ahead-that-doesnt-count-as-read-ahead.
New to SQL Server 2022, the number of incidents where a single page would be promoted to an
extent has been reduced. This makes SQL Server’s access of the physical I/O subsystem to
populate memory more efficient. This change was delivered with SQL Server 2022 and pushed to
Azure SQL Database and Azure SQL Managed Instance at the time of this writing.

Enhanced spinlock algorithms. Another complex topic from deep within the Database Engine
improves the performance of SQL Server when multiple threads generate spinlocks. This is an
oversimplification of a complex topic, of course, but the details on this performance tune are
limited. This change was delivered with SQL Server 2022 and pushed to Azure SQL Database and
Azure SQL Managed Instance at the time of this writing.

https://learn.microsoft.com/archive/blogs/ialonso/the-read-ahead-that-doesnt-count-as-read-ahead


Virtual Log File (VLF) allocation improvements. In certain growth scenarios, the number of
VLFs allocated to the transaction log was less efficient than it could have been. For small growth
increments in small transaction log files, a single 64 MB VLF is created, instead of multiple VLFs.
Over time, these VLF growth patterns make for a more efficient transaction log internal structure
that benefits recovery and log truncation. For more details on the formulas involved here, visit
https://learn.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-
management-guide#virtual-log-files-vlfs. This change was delivered with SQL Server 2022 and
pushed to Azure SQL Database at the time of this writing.

Recent improvements to tempdb
Each of the past versions of SQL Server versions has introduced significant new features to improve the
performance of the tempdb database. SQL Server 2022 introduces some key improvements to how
tempdb works internally that do not require any configuration. You benefit from them immediately.

In SQL Server 2022, system page latches in tempdb have received concurrency enhancements. Both
Global Allocation Map (GAM) and Shared Global Allocation Map (SGAM) pages received updates to
improve concurrency, an extension of the concurrency improvements to Page Free Space (PFS) pages
in tempdb that were introduced with SQL Server 2019. Also in SQL Server 2019, memory-optimized
metadata in tempdb cure some specific bottlenecks at high scale having to do with how temporary
objects can be created, modified, and destroyed.

 For more information, see Chapter 3.

Leverage the Query Store feature
The Query Store provides a practical history of execution plan performance for a single database, which
persists even when the server has been restarted (unlike the plan cache itself, which is cleared,
eliminating all the interesting data that one needs for tuning queries over time). It can be invaluable for
the purposes of investigating and troubleshooting sudden negative changes in performance, allowing
the administrator or developer to identify both high-cost queries and the quality of their execution plans,
and especially when the same query has multiple plans, where one performs poorly and the other well.

Starting with SQL Server 2022, and likely to be a default in Azure SQL Database and Azure SQL
Managed Instance in the near future, the Query Store is enabled and in read/write mode by default for
new databases. Databases migrated to SQL Server 2022 retain their Query Store settings.

The Query Store is most useful for looking back in time toward the history of statement execution. It can
also assist in identifying and overriding execution plans by using a feature similar to, but different from,
the plan guides or Query Store hints feature. As discussed in the previous section, plan guides are used
to override a query’s plan. Instead of plan guides, consider instead the Query Store’s ability to force
plans, or the Query Store hints feature (introduced in SQL Server 2022 and Azure SQL Database) to
shape query plans without code changes.

The Query Store allows you to find plans that are not working well, but only gives you the ability to force
an entire plan that worked better from the history it has stored. The Query Store has a major benefit
over legacy plan guides in that there is an SSMS user interface to access it, see the benefits, and find
places where you might need to apply a new plan.

You see live Query Store data as it happens from a combination of both memory-optimized and on-disk
sources. Query Store minimizes overhead and performance impact by capturing cached plan
information to in-memory data structure. The data is flushed (persisted) to disk at an interval defined by
Query Store, by a default of 15 minutes. The Disk Flush Interval setting defines how much Query Store
data can be lost in the event of an unexpected system shutdown.

Note

https://learn.microsoft.com/sql/relational-databases/sql-server-transaction-log-architecture-and-management-guide#virtual-log-files-vlfs


Queries are captured in the context of the database where the query is executed. In the following
cross-database query example, the query’s execution is captured in the Query Store of the
WideWorldImporters sample database.
Click here to view code image

USE WideWorldImporters; 
GO 
SELECT * FROM 
AdventureWorks.[Purchasing].[PurchaseOrders];

Microsoft delivered the Query Store to the Azure SQL Database platform first, and then to the SQL
Server product. In fact, Query Store is at the heart of the Azure SQL Database Advisor feature that
provides automatic query tuning. The Query Store feature’s overhead is quite manageable, tuned to
avoid performance hits, and is already in place on millions of customer databases in Azure SQL
Database.

The VIEW DATABASE STATE permission is all that is needed to view the Query Store data.

Initial configuration of Query Store
Query Store is identical between the Azure SQL Database and SQL Server in operation, but not in how
you activate it. Query Store is enabled automatically on Azure SQL Database and all new databases
starting with SQL Server 2022, but it is not automatically on for existing databases that you migrate to
SQL Server 2022.

When should you enable Query Store? Enabling Query Store on all databases you have in your
environment is a generally acceptable practice, as it will be useful in discovering performance issues in
the future when they arise. You can enable Query Store via the database’s Properties dialog box, in
which a Query Store page is accessible from the menu on the left, or you can turn it on via T-SQL by
using the following command:
Click here to view code image

ALTER DATABASE [DatabaseOne] SET QUERY_STORE = ON;

This will enable Query Store with the defaults; you can adjust them using the UI.

Note
As with almost any configuration task, while it is acceptable to use the UI the first few times, it will
always be better to have a script in T-SQL or PowerShell to capture settings in a repeatable
manner. Use the Script button in most SSMS UIs to output a script of what has changed when you
are setting new values.

Query Store begins collecting data when you activate it. You will not have any historical data when you
first enable the feature on an existing database, but you will begin to immediately see data for live
database activity. You can then view plans and statistics about the plan in the Query Store reports.

In versions before SQL Server 2019, the default Query Store capture mode setting was ALL, which
included all queries that were executed. In SQL Server 2019, this default has been changed to AUTO,
which is recommended. The AUTO Query Store capture mode forgets queries that are insignificant in
terms of execution duration or frequency. Further, the CUSTOM Query Store capture mode allows for more
fine tuning that may become necessary on large and busy databases. While AUTO works fine for most
servers, you can use custom capture policies to configure the tradeoff: the amount of history
remembered by Query Store versus the amount of storage the Query Store consumes inside the user
database.



The Query Store retains data up to two limits: a max size (1,000 MB by default), and a Stale Query
Threshold time limit in days (30 by default). If Query Store reaches its max size, it cleans up the oldest
data. Because Query Store data is saved in the database, its historical data is not affected by the
commands we looked at earlier in this chapter to clear the procedure cache, such as DBCC
FREEPROCACHE.

You should almost always keep the size-based cleanup mode set to the default, Auto. If not, when the
max size is reached, Query Store will stop collecting data and enter read-only mode, which does not
collect new data. If you find that the Query Store is not storing more historical days of data than your
stale query threshold setting in days, increase the max size setting.

Troubleshoot with Query Store data
Query Store has several built-in dashboards, shown in Figure 14-8, to help you examine query
performance and overall performance over recent history.

Figure 14-8 The SQL Server Object Explorer list of built-in dashboards available for Query Store in
SSMS.

You can also write your own reports against the collection of system DMOs that present Query Store
data to administrators and developers by using the VIEW DATABASE STATE permission.

 You can view the schema of the well-documented views and their relationships at
https://learn.microsoft.com/sql/relational-databases/performance/how-query-store-collects-data.

On many of the dashboards, there is a button with a crosshairs symbol, as shown in Figure 14-9. If a
query seems interesting, expensive, or is of high value to the business, you can select this button to
view a new window that tracks the query when it’s running as well as various plans identified for that
query.

Figure 14-9 The Query Store toolbar at the top of the screen on many of the dashboards—in this
example, the toolbar for the Regressed Queries report.

Inside OUT
When should you force a statement to use a certain execution plan?

https://learn.microsoft.com/sql/relational-databases/performance/how-query-store-collects-data


Assess the statement’s execution plans using a variety of factors before choosing to force a
plan. Just because the duration or CPU time is lowest, doesn’t mean a plan is superior. It could
be that the table had fewer rows at the time, or was running outside of normal operating hours
with no competition for hardware, or other business-related reasons. Query Store allows for a
variety of slicing and dicing within the reports in SSMS; use the Configure button to examine
various criteria and time intervals.

You can review the various plans for the same statement, compare the plans, and if necessary, force a
plan that you believe is better than the Query Optimizer will choose into place. Compare the execution
of each plan by CPU time, duration, logical reads, logical writes, memory consumption, physical reads,
and several other metrics.

Most of all, the Query Store can be valuable by informing you when a query started using a new plan.
You can see when a plan was generated and the nature of the plan; however, the cause of the plan’s
creation and replacement is not easily deduced, especially when you cannot correlate to a specific DDL
operation or system change. Query plans can become invalidated automatically due to large changes in
statistics resulting from data inserts or deletes, changes made to other statements in the stored
procedure, changes to any of the indexes used by the plan, or manual recompilation due to the
RECOMPILE option.

As discussed in the upcoming “Query Store hints” section, forcing a statement (see Figure 14-10) to use
a specific execution plan should not be a common activity. If you have access to the source code, work
on a code change, only using a forced plan temporarily. For systems where you have no code access,
you can use a Query Store hint for specific performance cases, problematic queries demanding unusual
plans, and so on. Note that if the forced plan is invalid, such as an index changing or being dropped,
SQL Server will move on without the forced plan and without a warning or error, although Query Store
will still show that the plan is being forced for that statement. Note that once a plan has been forced for
this statement (using the Force Plan button), the plan is displayed with a check mark.

Figure 14-10 The Query Store records the query’s execution results.

Inside OUT
How should you force a statement to use a certain execution plan?

Your options for forcing a statement to follow a certain execution plan are using plan guides,
stored procedures (which also allow you to make slight changes to the plan by adding a hint to



the plan, rather than replacing the entire plan), the USE PLAN hint, or the Query Store interface
(and its underlying stored procedures) to force an execution plan. Of these options, the Query
Store makes the business of forcing query plans easiest to implement and evaluate.

These are advanced options for limited, temporary, and/or diagnostic use only. Overriding the
Query Optimizer’s execution plan choice is an advanced performance tuning technique. It is
most often necessitated by query parameter sniffing, which can be addressed in a variety of
ways, detailed in this chapter.

Consider instead using Query Store hints to provide a variety of powerful query-shaping hints
without code changes, and let the Query Optimizer make good choices from there.

Finally, without using Query Store or plan guides, you can use the USE PLAN query hint to provide
the entire XML query plan for any statement execution. This is the least convenient option, and
like other approaches that override the query analyzer, should be considered an advanced and
temporary performance tuning technique.

Query Store hints
In past editions of this book, in this space, we’d discuss plan guides—an aging and well-documented
feature that was inconvenient if not downright painful to implement. The new Query Store hints feature
is a superior alternative to plan guides. Query Store hints provide powerful tools to shape queries
without making code changes, giving administrators and developers options to modify query plans
substantially and easily.

Query Store hints were in preview for Azure SQL Database and Azure SQL Managed Instance starting
mid-2021, and later Microsoft brought the feature to SQL Server 2022. Like many of the new IQP
features introduced in SQL Server 2022, Query Store hints require the Query Store to be enabled on the
database. For this reason, you should strongly consider enabling, monitoring, and customizing the
Query Store feature on every performance-sensitive database.

Query Store hints give administrators an easy replacement to the older plan guides feature, which was
introduced in SQL Server 2005. You can use Query Store to force replacement plans into action. You
can use Query Store hints to force hints into query plans. All require no code changes, giving
administrators and developers options to modify query plans coming from third-party software, SSIS
packages, and business intelligence tools.

With both plan guides and Query Store hints, you can influence a plan by simply adding a hint (a
common example would be WITH RECOMPILE). This can be very useful if you have a plan that is being
chosen by SQL Server that doesn’t work for you and you have no way to change the query code in
question. Combined with new improvements around parameter sniffing thanks to PSP optimization, it is
easy to achieve performance gains in SQL Server 2022.

Query Store is a more complete tuning solution than plan guides, capturing plans from the plan cache
and tracking query performance with different plans over time. A suite of reports and graphical tools
make it easy to investigate query performance. Like with plan guides, you can manually override the
query plan chosen with a previously observed plan. Further, the automatic plan correction feature can
automatically override a query plan with a previously observed plan that performed better. Automatic
plan correction was introduced with SQL Server 2017.

This section reviews aspects of both tools to help guide you as to which tool to choose. Note, however,
that tools that force a plan to override what the Query Optimizer has chosen are not considered the best
approach to query tuning. If you have an application where you own the source code, forcing a plan
might be good to do until you can make a change to code, but should not be your primary tuning tool. If
it is a third-party application, you should work with your vendor on a proper solution, but these features
will help you to get past a serious issue.



Inside OUT
Can you apply Query Store hints on secondary replicas?

Yes. When the Query Store for secondary replicas feature is enabled, hints can be applied to
primary and secondary replicas independently.

For safety, when an availability group fails over, hints aren’t applied from the old primary to the
new primary, in case the capabilities of the replica aren’t the same.

At the time of this book’s writing, Query Store for secondary replicas is a nascent public preview
feature behind a trace flag, so look for more development in this area by Microsoft in future
cumulative updates for SQL Server 2022 and in Azure SQL platforms.

Use Query Store hints
Currently, like plan guides, Query Store hints are driven by T-SQL stored procedures and not accessible
from within any GUI (yet). But the identification of queries can occur through the Query Store interface,
through a unique key for all queries captured by the Query Store, query_id.

Caution
Query Store hints—like plan guides or forcing plans using USE PLAN or the Query Store—are an
advanced troubleshooting technique and are not without some risk.

The following steps will detail how to back out of a Query Store hint quickly. Be prepared to observe and
rollback any hints.

1. Identify a useful hint for the query, ideally by using a non-production performance testing
environment with similar hardware and data scale.

2. Identify the Query Store–assigned query_id for the query. Note that the query_id will be different
on different instances of SQL Server.

3. Use sys.sp_query_store_set_hints to apply a hint. Most query hints are supported. For example,
to apply the MAXDOP 1 hint to query_id 1234, use the following:

Click here to view code image

EXEC sys.sp_query_store_set_hints @query_id= 1234, 
@query_hints = N'OPTION(MAXDOP 1)';

 For a complete list of supported query hints, review the Microsoft Docs article for
sys.sp_query_store_set_hints at https://learn.microsoft.com/sql/relational-databases/system-
stored-procedures/sys-sp-query-store-set-hints-transact-sql#supported-query-hints.

You can specify more than one query hint in a Query Store hint, just as you would in the OPTION
clause of any T-SQL query. For example, to specify MAXDOP 1 and the pre-SQL Server 2014
cardinality estimator, use this:

Click here to view code image

EXEC sys.sp_query_store_set_hints @query_id= 1234, 
@query_hints = N'OPTION(MAXDOP 1, 
USE HINT(''FORCE_LEGACY_CARDINALITY_ESTIMATION''))';

https://learn.microsoft.com/sql/relational-databases/system-stored-procedures/sys-sp-query-store-set-hints-transact-sql#supported-query-hints


The Query Store hint takes effect immediately and adds three attributes to the execution plan XML:
QueryStoreStatementHintId, QueryStoreStatementHintText, and QueryStoreStatementHintSource.
If you’re curious, you can review these to see the Query Store hint in action, and prove the hint
altered the query without code changes.

4. Observe and confirm that your hint is helping the query’s execution. Confirm the Query Store
hint(s) currently in place for your query as follows:

Click here to view code image

SELECT * FROM sys.query_store_query_hints 
WHERE query_id = 1234;

5. Remove the Query Store hint when necessary with sys.sp_query_store_clear_hints. (You want to
prepare for this ahead of time.)

Click here to view code image

EXEC sys.sp_query_store_clear_hints @query_id = 1234;

6. Set yourself a reminder to reevaluate any Query Store hints on a regular basis. Data distributions
change and the winds of fate blow. Changes to underlying data and concurrent server workloads
might cause Query Store hints to generate suboptimal execution plans in the future.

If you set a Query Store hint, it will overwrite any existing hint for that query_id. Query Store hints
will override other hard-coded statement level hints and plan guides, but you should avoid
conflicting instructions as they could be confusing for others in your environment.

Inside OUT
Does the Query Store work on readable secondary replicas in an availability group?

Yes! A new feature of SQL Server 2022 includes a complex mechanism to capture Query Store
data asynchronously on secondary, read-only replicas and harden the Query Store to the
primary replica of an availability group.

This means that some intelligent query processing features can now be replica aware, including
memory grant feedback. Memory grant feedback can aid primary and secondary replicas
differently, which is good, because primary and secondary replicas should have different
workloads.

As of the writing of this book, this feature was in public preview. Look for more development and
announcements around this feature.

Automatic plan correction
Automatic plan correction is a feature that relies on the Query Store to detect and revert query duration
regression. For example, suppose a commonly executed query normally runs in 100 milliseconds, but
then changes execution plans and starts finishing in 2 minutes. Instead of waiting for complaints of slow
performance, the engine can notice this regression and deal with it. SQL Server 2017 introduced this
feature to the on-premises versions of the Database Engine, and was originally released for Azure SQL
Database.

A typical use case is to view the regressed queries report in Query Store, identify a query that has
regressed in duration, and then force a better past execution plan into use. With automatic plan
correction enabled, the database can detect plan regression and take action to force the previous plan
back into action, automatically. The sample syntax for enabling automatic plan correction is below:



Click here to view code image

ALTER DATABASE WideWorldImporters SET AUTOMATIC_TUNING (FORCE_LAST_GOOD_PLAN = ON );

The sys.dm_db_tuning_recommendations DMO captures plan recommendations based on query
performance regression. This doesn’t happen immediately—the feature has an algorithm that requires
several executions before regression is identified. When a recommendation appears in
sys.dm_db_tuning_recommendations, it includes a large amount of diagnostic data, including a plain-
language explanation for the recommendation to be generated, and a block of JSON data containing
diagnostic information.

 A sample query to parse this data is available at https://learn.microsoft.com/sql/relational-
databases/automatic-tuning/automatic-tuning.

Intelligent query processing
Intelligent query processing (IQP) is not a tool or a GUI option, but rather a suite of behind-the-scenes
features that make the processing of queries more efficient. Many are specific to the database
compatibility version; you don’t benefit from them in an older version compatibility. Some features help
to pick or adapt a query plan to current conditions. Others are just straight up changes to how the
Database Engine uses long existing query constructs. In every case, the goal of IQP features is to
improve the way queries are processed without code changes.

The remainder of this chapter covers the new IQP features in SQL Server 2022 and some of the most
significant features in recent versions, though a review of the complete list of the IQP suite of
performance features is worthwhile.

 For more information, see https://learn.microsoft.com/sql/relational-
databases/performance/intelligent-query-processing.

Inside OUT
Do you need to enable Query Store for the latest query tuning performance features to
work?

Yes, many of the newest IQP features in SQL Server 2022 depend on Query Store data—
specifically the three new feedback features that help SQL Server perform better on successive
execution of a query. Memory grant feedback, cardinality estimation (CE) feedback, and degree
of parallelism (DOP) feedback all require the Query Store to be active in that database.

Batch mode on rowstore
One of the features added, along with columnstore indexes, in SQL Server 2012 was a type of
processing known as batch mode. Columnstore indexes were built to process compressed rowgroups
containing millions of rows. A new processing mode was needed when the heuristics told the query
processor it would be worthwhile to work on batches of rows at a time.

 For more details on batch and row mode processing, see
https://learn.microsoft.com/sql/relational-databases/query-processing-architecture-guide.

Starting with SQL Server 2019 and included in Azure SQL Database, this feature was extended to work
for certain types of queries with row store tables and indexes as well as columnstore tables and indexes.
A few examples:

https://learn.microsoft.com/sql/relational-databases/automatic-tuning/automatic-tuning
https://learn.microsoft.com/sql/relational-databases/performance/intelligent-query-processing
https://learn.microsoft.com/sql/relational-databases/query-processing-architecture-guide


Queries that use large quantities of rows in a table, often in analytical queries touching hundreds of
thousands of rows.

Systems that are CPU bound in nature. (I/O bottlenecks are best handled with a columnstore
index.)

The feature is enabled when the compatibility level is at least 150. Though unusual, if you find it is
harming performance, you can turn it off using ALTER DATABASE without lowering the compatibility level:
Click here to view code image

ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_ON_ROWSTORE = OFF;

Instead of changing this setting for the database, you could disallow this feature for a specific query,
perhaps one that touches large number of rows. You can use the query hint ALLOW_BATCH_MODE. For
example:
Click here to view code image

SELECT … 
FROM … 
OPTION(USE HINT('ALLOW_BATCH_MODE'));

Note
Columnstore and rowstore indexes continue to exchange advantageous features. In SQL Server
2022, ordered clustered columnstore indexes arrived, a feature first introduced for Azure Synapse
Analytics. We cover this more in the next chapter.

Cardinality estimation (CE) feedback
Similar to other feedback features, CE feedback allows the Query Optimizer to adapt to changes in
query performance based on suboptimal CE. CE estimates the total number of rows in the various
stages of a query plan. (Constraints and key relationships between tables can help inform and shortcut
estimation, another good reason to put them in place.)

CE feedback is a process by which the Query Optimizer learns by modeling query behavior over time.
This feature requires both compatibility level 160 (for SQL Server 2022) and the Query Store to be
enabled for the database.

In the past, the cardinality estimator and the database’s compatibility level were closely linked.
(Changes in SQL Server 2014 improved the cardinality estimator in most but not all cases, with severe
impacts when it missed.) CE feedback does not change the database compatibility level for the query,
but makes incremental corrections via the Query Store hint feature.

 For more about Query Store hints, see the “Understand cardinality estimation” section earlier in
this chapter.

At the time of this writing, CE feedback is not yet available in Azure SQL Database or Azure SQL
Managed Instance, but should be available in the near future.

SQL Server 2022 also added a persistence feature for CE feedback. Persistence helps CE feedback
avoid poor adjustment decisions by remembering query information, even if a plan is evicted from
cache. Using the Query Store, estimates can be considered over multiple query executions.

Degree of parallelism (DOP) feedback



DOP feedback has perhaps the biggest impact of all the feedback features introduced to make SQL
Server more adaptive to observed performance. The ability for the Query Optimizer to analyze and
adapt to observed query performance and make changes to parallelism with each query execution is a
powerful self-tuning feature.

DOP feedback is introduced with SQL Server 2022, and requires the Query Store feature to be enabled.
Further, the DOP_FEEDBACK database scoped configuration can be enabled or disabled if necessary.

Instead of worrying about optimizing the database’s MAXDOP for the most important parts of a
workload, DOP feedback automatically adjusts parallelism for repeating queries with the goal of
increasing overall concurrency and reducing wait times. Smartly, DOP feedback excludes some wait
types that are not relevant to this part of query performance, such as buffer latch, buffer IO, and network
IO waits.

DOP feedback adjusts queries automatically by adding the MAXDOP query hint, but never at a value
exceeding the database’s MAXDOP setting. You might consider exploring the performance gains with
DOP feedback in a different (higher) MAXDOP setting for your server or database in SQL Server 2022.

At the time of this writing, DOP feedback is not yet available in Azure SQL Database or Azure SQL
Managed Instance, but should be available in the near future.

SQL Server 2022 also added a persistence feature for DOP feedback. Persistence helps the DOP
feedback feature avoid poor adjustment decisions by remembering query information, even if a plan is
evicted from cache. Using the Query Store, optimal parallelism can be considered over multiple
executions.

Memory grant feedback
When a query executes, it uses some amount of memory. Memory grant feedback lets future executions
of the same query know if the memory granted for the execution was too much or too little, so it can
adjust future executions. Memory grant feedback was introduced in SQL Server 2017 for batch mode
executions, and in SQL Server 2019 for row mode executions.

If for some reason you want to disable this feature in a database, you can do so without lowering the
database compatibility level using the following statements:
Click here to view code image

-- SQL Server 2017 
ALTER DATABASE SCOPED CONFIGURATION SET DISABLE_BATCH_MODE_MEMORY_GRANT_FEEDBACK = OFF; 
-- Azure SQL Database, SQL Server 2019 or later 
ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_MEMORY_GRANT_FEEDBACK = OFF; 
For row mode queries, this feature is controlled using: 
ALTER DATABASE SCOPED CONFIGURATION SET ROW_MODE_MEMORY_GRANT_FEEDBACK = OFF;

SQL Server 2022 further enhances memory grant feedback with two additional features: persistence
and percentile improvement. Both are intended to help the Query Optimizer avoid expensive memory
spills by accurately estimating (or at worst, overestimating) the amount of memory needed for crucial
parts of an execution plan.

Memory grant feedback persistence allows SQL Server to remember query memory grant information
even if a plan is evicted from cache. Using the Query Store, feedback can be considered over multiple
executions. Persistence also applies to CE feedback and DOP feedback, as stated.

Memory grant feedback percentile adjustment allows the memory grant adjustment to examine the
recent history of query execution, not just the most recent execution. The complex calculation now
includes the 90th percentile of past memory grants over time. The percentile adjustment only applies to
memory grant feedback.



When the new Query Store for secondary replicas feature is enabled, memory grant feedback is replica
aware and can help primary and secondary replica workloads differently.

Parameter Sensitive Plan optimization
Parameter Sensitive Plan (PSP) optimization, new in SQL Server 2022, addresses the age-old problem
of queries getting a suboptimal execution plan when the value of a filter wildly changes the result sets.
PSP solves the problem in an intuitive way: by allowing more than one cached execution plan to be
saved for a single query.

Imagine a search query for sales, filtered on customer, where customer_id = @customer_id. Customer 1
has been purchasing goods for decades, and has millions of invoice line items. Customer 2 is a new
customer with a single invoice. In previous versions of SQL Server, should the execution plan for
customer 2 become the execution plan for this search query, performance of the query on customer 1
would be poor. This is because the operators chosen for the execution plan would be unlikely to scale
from one row to millions of rows in the result set.

Previous solutions required an understanding of query parameterization and the application of a variety
of strategies, including cache preparation, synthetically calling queries with their largest filter parameters
using the OPTIMIZE FOR query hint, or using plan guides. Between PSP optimization and Query Store
hints, SQL Server 2022 provides multiple superior options to deal with this classic problem. PSP
optimization uses a complex set of instructions that require a significant amount of performance data to
act and cache a different plan, in an effort to minimize memory utilization associated with unnecessary
plan retention.

PSP optimization is part of the database compatibility level 160 feature set, so be sure to update the
compatibility level for any databases migrated up to SQL Server 2022. Query Store is not required for
PSP optimization, but it is recommended.

If for some reason you need to disable PSP optimization, you can do so without lowering the database
compatibility level with the PARAMETER_SENSITIVE_PLAN_OPTIMIZATION database-scoped configuration
option.

 For a deep dive on the internals of PSP optimization, see
https://learn.microsoft.com/sql/relational-databases/performance/parameter-sensitivity-plan-
optimization.

Caution
A known bug in an early public preview of PSP optimization in SQL Server 2022 raised an error
when you did not specify two part names (schemaname.objectname) in stored procedures that were
not in the dbo schema. While this bug has been fixed, it’s just another reminder that a good best
practice is to always specify two-part names in your T-SQL code, even for objects in the dbo
schema.

Table variable deferred compilation
Table variable deferred compilation was introduced in SQL Server 2019 to deal with the glaring lack of
statistics for a table variable at compile time. Previously, SQL Server defaulted to a guess of one (1) row
for the number of rows in the table variable. This provided poorly performing plans if the programmer
had stored any significant number of rows in the table variable.

Similarly, an IQP feature introduced in SQL Server 2017 called interleaved execution improved the
performance of multi-statement table-valued functions. Interleaved execution let the Query Optimizer
execute parts of the query during optimization to get better estimates, because if your multi-statement
table-valued function is going to output 100,000 rows, the plan needs to be considerably different.

https://learn.microsoft.com/sql/relational-databases/performance/parameter-sensitivity-plan-optimization


Instead of using the guess of 1 to define the query plan, table variable deferred compilation waits to
complete the actual plan until the table variable has been loaded the first time, and then the rest of the
plan is generated.

Note
Table variable optimizations do not make table variables the best choice for large numbers of
rows. Table variables still lack column statistics, a key difference between them and temp tables
(prefixed with # or ##) that can make temp tables far superior for large rowsets.

T-SQL scalar user-defined function (UDF) inlining
A common culprit of poor performance in custom applications is user-defined functions (UDFs). Every
programmer who has taken any class in object-oriented programming (OOP) instinctively desires to
modularize or de-duplicate their code. So, if you have a scenario in which you want to classify some
data (say, something simple like CASE WHEN 1 THEN 'True' ELSE 'False' END), it makes sense from a
programmer’s perspective to bundle this up into a coded module (code reuse). However, UDFs can
become a bear trap at scale for application performance.

Introduced in SQL Server 2019, scalar UDF inlining alleviates some of the performance hit introduced
by UDFs at scale; it’s an automatic, no-code-change-necessary, performance boost. This is a complex
fix that substitutes scalar expressions or subqueries in the query during query optimization. Throughout
the post-RTM life of SQL Server 2019, cumulative updates added complexity, issue fixes, and
restrictions to UDF inlining.

 For details, see https://learn.microsoft.com/sql/relational-databases/user-defined-
functions/scalar-udf-inlining.

Example of scalar UDF inlining
To demonstrate UDF inlining, we created the following overly simple UDF in the WideWorldImporters
sample database:
Click here to view code image

USE WideWorldImporters; 
GO 
CREATE SCHEMA Tools; 
GO 
CREATE FUNCTION Tools.Bit_Translate 
(@value bit) 
RETURNS varchar(5) 
AS 
BEGIN 
     RETURN (CASE WHEN @value = 1 THEN 'True' ELSE 'False' END); 
END;

To demonstrate, execute the function in the same query twice: once in SQL Server 2017 (14.0)
database compatibility level, before scalar UDF inlining was introduced, and again with SQL Server
2022 (16.0) database compatibility level behavior.
Click here to view code image

SET STATISTICS TIME ON; 
ALTER DATABASE WideWorldImporters SET COMPATIBILITY_LEVEL = 140; --SQL Server 2017 
GO 
SELECT Tools.Bit_Translate(IsCompressed) AS CompressedFlag, 
CASE WHEN IsCompressed = 1 THEN 'True' ELSE 'False' END AS CompressedFlag_Desc 
FROM  Warehouse.VehicleTemperatures; 

https://learn.microsoft.com/sql/relational-databases/user-defined-functions/scalar-udf-inlining


GO 
ALTER DATABASE WideWorldImporters SET COMPATIBILITY_LEVEL = 160; -- SQL Server 2022 
GO 
SELECT Tools.Bit_Translate(IsCompressed) AS CompressedFlag, 
CASE WHEN IsCompressed = 1 THEN 'True' ELSE 'False' END 
FROM   Warehouse.VehicleTemperatures;

On the 65,998 rows returned in each result set, you will likely not notice a difference in performance.
Checking the output from SET STATISTICS TIME ON on this author’s machine, the execution in
COMPATIBILITY LEVEL = 160 was only about 75 milliseconds faster on average.

Looking at the actual plan CPU used for the two executions in Figure 14-11, you can see an interesting
difference.

Figure 14-11 Query plan output for two runs, the first in SQL Server 2017 (14.0) compatibility level,
and the second in SQL Server 2022 (16.0) benefitting from scalar UDF inlining.

The big thing to notice between these two executions is that the compute scalar in query 2 appears as a
typical compute scalar operator, for any scalar expression not including a UDF. In query 1, it shows rows
passing through, and an amount of time as it calculates the scalar for each row that passes through.
Even in this extremely simple case, we saved time because we avoided running the function in a cursor-
like loop for every row.

There are limitations to scalar UDF inlining, such as not working when time dependent intrinsic functions
like SYSDATETIME() are present. You cannot change security context using EXECUTE AS (only EXECUTE AS
CALLER, the default, is allowed). You also cannot benefit from scalar UDF inlining when referencing table
variables or table-valued parameters.

 For more details and the complete list of requirements see
https://learn.microsoft.com/sql/relational-databases/user-defined-functions/scalar-udf-inlining.

Scalar UDF inlining has immediate value for databases whose programmers have overused scalar
UDFs. For many, scalar UDF inlining removes the problematic performance stigma associated with
scalar UDFs, opening up more use cases. Formatting functions and translation functions where it might
be easier than creating a table are now possible and will perform very well, as opposed to destroying
your performance.

https://learn.microsoft.com/sql/relational-databases/user-defined-functions/scalar-udf-inlining


Chapter 15

Understand and design
indexes

Design clustered indexes
Design rowstore nonclustered indexes
Understand columnstore indexes
Understand indexes in memory-optimized tables
Understand index statistics
Understand other types of indexes

This chapter dives into indexing of all kinds—not just clustered and
nonclustered indexes—including practical development techniques
for designing indexes. It mentions memory-optimized tables
throughout, including hash indexes for extreme writes and
columnstore indexes for extreme reads. The chapter reviews missing
indexes and index usage, and then introduces statistics—how they
are created and updated. There are important performance-related
options for statistics objects. Finally, it explains special types of
indexes for niche uses.

In SQL Server you have access to a variety of indexing tools in your
toolbox.



We’ve had clustered and nonclustered indexes in all 21st-century
versions of SQL Server—those two rowstore index types that are the
bread and butter of SQL Server. We cover those in the first half of this
chapter, including important new options for SQL Server 2022.

Introduced in SQL Server 2012, columnstore indexes presented a
new and exciting way to perform analytical queries on massive
amounts of compressed data. They became an essential tool for
database developers, and this chapter discusses them in detail. SQL
Server 2014 brought memory-optimized tables and their uniquely
powerful hash indexes for latchless querying on rapidly changing
data. You can even combine the power of these two new concepts
now, with columnstore index concepts on memory-optimized tables,
allowing for live analytical-scale queries on streamed data. First,
though, we’re going to dive into the index design concepts.

Inside OUT
What’s the difference between rowstore and
columnstore?

If these terms are new to you, rowstore indexes describe the
only type of clustered indexes (and nonclustered indexes) that
existed before SQL Server 2012. These indexes are
traditional B+ tree indexes that have always existed in SQL
Server and continue to be foundational to OLTP workloads.
Rowstore structures also include tables without a clustered
index (known as heaps), as well as memory-optimized tables.

Columnstore indexes were introduced in SQL Server 2012
and serve a different purpose. They are superior to rowstore
data storage for performance only in appropriate situations—
specifically, in scans of millions of rows or more in large
tables. Highly compressed, columnstore indexes take up less
storage (and therefore, need less I/O) to serve queries typical
in enterprise reporting, data warehousing, and OLAP
scenarios. Columnstore indexes have important new



performance enhancements in SQL Server 2022 that we’ll
discuss in this chapter.

Both rowstore and columnstore indexes are important tools for
database designers in modern applications. In some database
designs, rowstore, columnstore, and hash-based indexes on
memory-optimized tables all play a role. We discuss all these
at length in this chapter.

All scripts for this book are all available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

Design clustered indexes
Let’s be clear about what a clustered index is, and then state the
case for why every table in a relational database should have one,
with very few exceptions.

First, we will discuss rowstore clustered indexes. It is also possible to
create a clustered columnstore index. We discuss that later in this
chapter.

Whether you are inheriting and maintaining a database or designing
the objects within it, there are important facts to know about clustered
indexes. In the case of both rowstore and columnstore indexes, the
clustered index stores the data rows for all columns in the table. In
the case of rowstore indexes, the table data is logically sorted by the
clustered index key; in the case of clustered columnstore indexes,
there is no key. Memory-optimized tables don’t have a clustered index
structure inherent to their design but could have a clustered
columnstore index created for them.

Choose a proper rowstore clustered index key

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


There are four marks of a good clustered index key for most OLTP
applications, or in the case of a compound clustered index key, the
first column listed. The column order matters. Let’s review four key
factors that will help you understand what role the clustered index key
serves, and how best to design one:

Increasing sequential value. A value that increases with every
row inserted (such as 1,2,3…, or an increasing point in time, or
an increasing alphanumeric) is useful in efficient page
organization. This means the insert pattern of the data as it
comes in from the business will match the loading of rows onto
the physical structures of the table.

A column with the identity property, or populated by a value
from a sequence object, matches this perfectly. Use date and
time data only if it is highly unlikely to repeat, and then strongly
consider using the datetimeoffset data type to avoid repeated
data once annually during daylight saving time changes.

Unique. A clustered index key does not need to be unique, but
in most cases it should be. (The clustered key also does not
need to be the primary key of the table, or the only uniqueness
enforced in the table.) A unique (or near-unique) clustered index
means efficient seeks. If your application will be searching for
individual rows out of this table regularly, you and the business
should know what makes those searches unique.

Unique constraints, whether nonclustered or clustered, can
improve performance on the same data and create a more
efficient structure. A unique constraint is the same as a unique
rowstore nonclustered index.
If a clustered index is declared without the UNIQUE property, a
second key value is added in the background: a four-byte
integer uniquifier column. SQL Server must have some way to
uniquely identify each row. The key from the rowstore clustered
index is used as the row locator for nonclustered indexes, which
leads to the next factor.



Nonchanging. Choose a key that doesn’t change, and is a
system-generated key that shouldn’t be visible to end-user
applications or reports. In general, when end users can see
data, they will eventually see fit to change that data. You do not
want clustered index keys to ever change (much less PRIMARY
KEY values). A system-generated or surrogate key of sequential
values (like an IDENTITY column) is ideal. A field that combines
system or application-generated fields such as dates and times
or numbers would work too.

The negative impact of changing the clustering key includes the
possibility that the first two aforementioned guidelines would be
broken. If the clustered key is also a primary key, updating the
key’s values could also require cascading updates to enforce
referential integrity. It is much easier for everyone involved if
only columns with business value are exposed to end users and,
therefore, can be changed by end users. In normalized
database design, we would call these natural keys as opposed
to surrogate keys.

Narrow data type. The decision with respect to data type for
your clustered index key can have a large impact on table size,
the cost of index maintenance, and the efficiency of queries at
scale. The clustered index key value is also stored with every
nonclustered index key value, meaning that an unnecessarily
wide clustered index key will also cause unnecessarily wide
nonclustered indexes on the table. This can have a very large
impact on storage on drives and in memory at scale.

The narrow data type guidance should also steer you away from
using the uniqueidentifier field, which is 16 bytes per row, or
four times the size of an integer column per row, and twice as
large as a bigint. It also steers away from using wide strings,
such as names, addresses, or URLs.

Inside OUT



Why might unique identifiers be a poor choice for the
clustered index key, even for the “oil rig problem”?

There is a common design challenge to store rows from
multiple (perhaps disconnected) data sources in the same
table—for example, oil rigs, medical devices, or a supervisory
control and data acquisition (SCADA) system. Each data
source must create unique values for itself, but those values
must then be combined into a single table. The
uniqueidentifier data type and newid() function can be an
option because they generate values uniquely across multiple
servers.

This is not a good design for scale, however, because unique
identifiers are random, meaning inserts will fragment a table
with each new row. This will cause page splits (an expensive
I/O operation) as the rows naturally merge into the rest with
each insert in the “middle” rather than at the end, inserting
sequentially. (You can mitigate this, though not significantly, by
altering the fill factor of each index that uses the unique
identifier as a key. However, this is also not desirable,
because it will further increase the space to store the same
data.)

Even the newsequentialid() function, which can only be used
as a column default, has fatal flaws. Used to create sequential
unique identifier values, after a server restart, the sequence
might start at a new point, meaning that eventually you will be
back to writing new rows in the middle of existing rows,
causing page splits again.

Numerous events could trigger a reset to the starting point of
the newsequentialid() function, which is based on the MAC
address of the network interface card (NIC) on the server.
Therefore, any failover of a failover cluster instance (FCI) or
availability group (AG) will result in a new starting point, as
well as any future upgrade or migration to new hardware.
Similarly, changing the tier of Azure SQL Database, reimaging
an Azure Virtual Machine (VM) with an ephemeral OS, or



starting a new container without an explicit MAC will reset the
starting point. Finally, and most importantly, the MAC of any
NIC could change on startup of a VM in VMWare or HyperV.
Obviously, given this list, newsequentialid() is fatally flawed
and shouldn’t be relied on for sequential values long-term.

This design problem usually involves these devices merging
their data periodically—not continuously. A pair of INTs should
be a good replacement for a unique identifier field in those
cases. Consider instead a solution using multiple integers—
one that autoincrements and one that identifies the data
source, if you are considering the uniqueidentifier data
type. Even two four-byte integers are half the size of a unique
identifier, and they compress better.

In the case of continuous connected application integration
into a single table, consider using the SEQUENCE feature of SQL
Server, introduced in SQL Server 2012, instead of a unique
identifier. Using the SEQUENCE object will allow multiple
database connections to write rows using a unique,
autoincrementing, ascending, procedurally generated integer.

It is ironic that a number of Microsoft-developed platforms use
unique identifiers heavily, and sometimes with very public
failures—for example, the Windows 7 RC download page.
(Read Paul Randal’s blog, “Why did the Windows 7 RC
download failure happen?” at
https://www.sqlskills.com/blogs/paul/why-did-the-windows-7-
rc-download-failure-happen/.)

But systems like Microsoft SharePoint and even SQL Server’s
own merge replication needed to be developed for utility and
versatility across unlimited client environments and a wide
array of user expertise. When designing your own systems,
take advantage of your knowledge of the business
environment to design better clustered index keys that escape
the inefficiencies of the uniqueidentifier data type.

https://www.sqlskills.com/blogs/paul/why-did-the-windows-7-rc-download-failure-happen/


If you must use the uniqueidentifier data type for your
clustered index, exclude those tables from automated index
reorganization plans, and rebuild your indexes fully at regular
intervals. This will avoid additional and unnecessary overhead
during maintenance periods by reorganizing indexes that will
become fragmented almost immediately. We discuss
maintenance plans in Chapter 8, “Maintain and monitor SQL
Server.”

The clustered index is an important decision in the structure of a new
table. For the vast majority of tables designed for relational database
systems, however, the decision is fairly easy. An identity column
with an INT or BIGINT data type is the ideal key for a clustered index
because it satisfies the aforementioned four recommended qualities
of an ideal clustered index. A procedurally generated timestamp or
other incrementing time-related value, combined with a unique,
autoincrementing number, also provides for a common, albeit less-
narrow, clustered index key design.

When a table is created with a primary key constraint and no other
mention of a clustered index, the primary key’s columns become the
clustered index’s key. This is typically safe, but a table with a
compound primary key or a primary key that does not begin with a
sequential column could result in a suboptimal clustered index. It is
important to note that the primary key does not need to be the
clustered index key, but often should be. It is possible to create
nonunique clustered indexes or to have multiple unique columns or
column combinations in a table.

When combining multiple columns into the clustered index key, keep
in mind that the column order of an index, clustered or nonclustered,
does matter. If you decide to use multiple columns to create a
clustered index key, the first column should still align as closely to the
other three rules, even if it alone is not unique.

In the sys.indexes catalog view, the clustered index is always
identified as index_id = 1. If the table is a heap, there will instead be



a row with index_id = 0. This row represents the heap data.

The case against intentionally designing heaps
Without a clustered index, a table is known as a heap. In a heap, the
Database Engine uses a structure known as row identifier (RID),
which uniquely identifies every row for internal purposes. The
structure of the heap has no order when it is stored. RIDs do not
change, so when a record is updated, a forwarding pointer is created
in the old location to point to the new. Also, if the row that has the
forwarding pointer is moved to another page, it gets another
forwarding pointer. Even deleted rows can have forwarding pointers!
If that sounds like it is complicated or would increase the amount of
I/O activity needed to store and retrieve the data, you’re right.

Furthering the performance problems associated with heaps are that
table scans are the only method of access to read from a heap
structure, unless a nonclustered index is created on the heap. It is not
possible to perform a seek against a heap; however, it is possible to
perform a seek against a nonclustered index that has been added to
a heap. In this way, a nonclustered index can provide an ordered
copy for some of the table data in a separate structure.

One edge case for designing a table purposely without a clustered
index is if you would only ever insert into a table. Without any order to
the data, you might reap some benefits from rapid, massive data
inserts into a heap. Other types of writes to the table (deletes and
updates) will likely require table scans to complete and likely be far
less efficient than the same writes against a table with a clustered
index.

Deletes and updates typically leave wasted space within the heap’s
structure, which cannot be reclaimed even with an index rebuild
operation. To reclaim wasted space inside a heap without re-creating
it, you must, ironically, create a clustered index on the table, then
drop the clustered index. You can also use the ALTER TABLE ...
REBUILD Transact-SQL (T-SQL) command to rebuild the heap.



The perceived advantage of heaps for workloads exclusively
involving inserts can be easily outweighed by the significant
disadvantages whenever accessing that data—when query
performance would necessitate the creation of a clustered and/or
nonclustered index. Table scans and RID lookups for any significant
number of rows are likely to dominate the cost of any execution plan
accessing the heap. Without a clustered index, queries reading from
a table large enough to gain significant advantage from its inserts
would perform poorly.

Microsoft’s expansion into modern unstructured data platforms,
including integration with Azure Data Lake Storage Gen2, S3-
compatible storage, Apache Spark, and other architectures, is likely
to be more appropriate when rapid, massive data inserts are
required. This is especially true for when you will continuously collect
massive amounts of data and then only ever analyze the data in
aggregate. These alternatives, integrated with the Database Engine
starting with SQL Server 2016, or a focus of new Azure development
such as Azure Synapse, would be superior to intentionally designing
a heap.

Further, adding a clustered index to optimize the eventual retrieval of
data from a heap is nontrivial. Behind the scenes, the Database
Engine must write the entire contents of the heap into the new
clustered index structure. If any nonclustered indexes exist on the
heap, they also will be re-created, using the clustered key instead of
the RID. This will likely result in a large amount of transaction log
activity and tempdb space being consumed.

Understand the
OPTIMIZE_FOR_SEQUENTIAL_KEY feature
Earlier in this chapter, we sang the praises of a clustered index key
with an increasing sequential value, such as an integer based on an
identity or sequence. For very frequent, multithreaded inserts into a
table with an identity or sequence, the “hot spot” of the page in
memory with the “next” value can provide some I/O bottleneck. (Long



term, this is still likely preferable to fragmentation-upon-insertion, as
explained in the previous section, and only surfaces at scale.)

A useful feature introduced in SQL Server 2019 is the
OPTIMIZE_FOR_SEQUENTIAL_KEY index option, which improves the
concurrency of the page needing rapid inserts for rowstore indexes
from multiple threads.

You might observe a high amount of the PAGELATCH_EX wait type on
sessions performing inserts into the same table. You can observe this
with the dynamic management view (DMV)
sys.dm_exec_session_wait_stats, or at an instance aggregate level
with sys.dm_os_wait_stats. You should see this wait type drop when
the new OPTIMIZE_FOR_SEQUENTIAL_KEY index option is enabled on
indexes in tables that are written to by multiple requests
simultaneously. Note that this isn’t the PAGEIOLATCH_EX wait type,
more associated with physical page contention, but PAGELATCH_EX,
associated with memory page contention.

 For more information on observing wait types with DMVs,
including the differences between the PAGEIOLATCH_EX and
PAGELATCH_EX wait types, see Chapter 8.

Let’s take a look at implementing OPTIMIZE_FOR_SEQUENTIAL_KEY. In
our contrived example, multiple T-SQL threads frequently executing
single-row inserting statements mean that the top two predominant
wait types accrued via the DMV sys.dm_os_wait_stats are WRITELOG
and PAGELATCH_EX. As Chapter 8 explained, the WRITELOG wait type is
fairly self-explanatory—sending data to the transaction log—while
PAGELATCH_EX is an indication of a “hot spot” page, symptomatic of
rapid concurrent inserts into a sequential key.

By enabling OPTIMIZE_FOR_SEQUENTIAL_KEY on your rowstore indexes
—both clustered and nonclustered—you should see some reduction
in PAGELATCH_EX and the introduction of a small amount of a new wait
type, BTREE_INSERT_FLOW_CONTROL, which is associated with the new
OPTIMIZE_FOR_SEQUENTIAL_KEY setting.



Note
The new OPTIMIZE_FOR_SEQUENTIAL_KEY option is not available
when creating columnstore indexes or for any indexes on
memory-optimized tables.

You can query the value of the OPTIMIZE_FOR_SEQUENTIAL_KEY option
with a new column added to sys.indexes of the same name. Note
that this new option is not enabled by default, so it must be enabled
manually on each index. The option is retained after an index is
disabled and then rebuilt. For existing rowstore indexes, you can
change the new OPTIMIZE_FOR_SEQUENTIAL_KEY option without a
rebuild operation, with the following syntax:
Click here to view code image

ALTER INDEX PK_table1 on dbo.table1 
SET (OPTIMIZE_FOR_SEQUENTIAL_KEY = ON);

Note
There are only a handful of index settings that can be set like
this without a rebuild operation, so the syntax might look a little
unusual. The index options ALLOW_PAGE_LOCKS,
ALLOW_ROW_LOCKS, OPTIMIZE_FOR_SEQUENTIAL_KEY,
IGNORE_DUP_KEY, and STATISTICS_NORECOMPUTE can be set
without a rebuild.

Design rowstore nonclustered indexes
Each table almost always should have a clustered index that both
defines the order and becomes the data structure of the data in the
table. Nonclustered indexes provide additional copies of the data in
vertically filtered sets, sorted by nonprimary columns.



You should approach the design of nonclustered indexes in response
to application query usage, and then verify over time that you are
benefitting from indexes. (You can read more about index usage
statistics later in this chapter.) You might also choose to design a
unique rowstore nonclustered index to enforce a business constraint.
A unique constraint is implemented in the same way as a unique
rowstore nonclustered index. This might be a valuable part of the
table’s behavior even if the resulting unique rowstore nonclustered
index is never queried.

Here are the properties of ideal nonclustered indexes:

Broad enough to serve multiple queries, not just designed to suit
one query.

Well-ordered keys eliminate unnecessary sorting in high-value
queries.

Well-stocked INCLUDE sections prevent lookups in high-value
queries, but can become out of control if too much value without
investigation is given to the missing index DMVs.

Proven beneficial usage over time in the
sys.dm_db_index_usage_stats DMV.

Unique when possible (keep in mind a table can have multiple
uniqueness criteria).

Key column order matters, so in a compound index, it is likely
best for the most selective (with the most distinct values)
columns to be listed first.

Nonclustered indexes on disk-based tables are subset copies of a
rowstore table that take up space on storage and in memory. (On
memory-optimized tables, indexes interact with the disk much
differently. More on that later in this chapter.) You must spend time
maintaining all nonclustered indexes. They are kept transactionally
consistent with the data in the table, serving a limited, reordered set
of the data in a table. All writes (including deletes) to the table data
must also be written to the nonclustered index (in the case of



updates, when any indexed column is modified) to keep it up to date.
(On columnstore optimized tables, this happens a little differently, with
a delta store of change records.)

The positive benefit rowstore nonclustered indexes can have on
SELECT, UPDATE, and DELETE queries that don’t use the clustered index,
however, is potentially very significant. Keep in mind that some write
queries might appear to perform more quickly because accessing the
data that is being changed can be optimized, as with accessing the
data in a SELECT query. Your applications’ writes will slow with the
addition of nonclustered indexes, and adding many nonclustered
indexes will certainly contribute to poor write performance. You can
be confident that creating any one well-designed nonclustered index
will contribute to reads greatly, and not have a perceivable impact on
writes.

You should not create nonclustered indexes haphazardly or clumsily;
you should plan, modify, combine them when appropriate, and review
them regularly to make sure they are still useful. (See the section
“Understand and provide index usage” later in this chapter.) However,
nonclustered indexes represent a significant source of potential
performance tuning that every developer and database administration
should be aware of, especially in transactional databases.
Remember: Always look at the “big picture” when creating indexes.
Very rarely does a single query rise to the level of importance of
justifying its own indexes.

Note
Starting with SQL Server 2019, the RESUMEABLE syntax can be
used when creating an index with the ONLINE syntax. An ALTER
INDEX and CREATE INDEX statement can be similarly paused and
resumed. For more on RESUMABLE index maintenance, see
Chapter 8.

Understand nonclustered index design



Let’s talk about what we meant a moment ago when we said, “You
should not create nonclustered indexes haphazardly or clumsily.”
When should you create a nonclustered index, and how should you
design them? How many should you add to a table?

Even though adding nonclustered indexes on foreign key columns
can be beneficial if those referencing columns will frequently be used
in queries, it’s rare that a useful nonclustered index will be properly
designed with a single column in mind. This is because outside of
joins on foreign keys, it is rare that queries will be designed to both
seek and return a single column from a table. Starting a database
design with indexes on foreign key columns is useful; that doesn’t
mean, however, that they can’t be changed to have more columns at
the end of the key list or in the include list.

Further, nonclustered rowstore index design should always be aware
of all the indexes on a table and looking for opportunities to combine
indexes with overlapping keys. In the next section, we’ll talk about
index keys and overlapping index keys.

Choose a proper index
When creating new nonclustered indexes for a table, you must
always compare the new index to existing indexes. The order of the
key of the index matters. In T-SQL, it looks like this:
Click here to view code image

CREATE NONCLUSTERED INDEX 
IDX_NC_InvoiceLines_InvoiceID_StockItemID 
ON [Sales].[InvoiceLines] (InvoiceID, StockItemID);

In this index, InvoiceID and InvoiceLineID are defined as the key.
Using Object Explorer in SQL Server Management Studio (SSMS),
you can view the index properties to see the same information. This
nonclustered index represents a copy of two of the columns of data in
the InvoiceLines table, sorted by the column InvoiceID first, and
then the StockItemID. Neither of these columns are the primary key



or the first key of the clustered index, which we can assume is
InvoiceLineID.

To emphasize that the order of key columns in a nonclustered index
matters, the two indexes that follow are completely different
structures, and will best serve different queries. It’s unlikely that a
single query would have much use for both nonclustered indexes,
though SQL Server can still choose to use an index with less-than-
optimal key order rather than scan a clustered index:
Click here to view code image

CREATE INDEX IDX_NC_InvoiceLines_InvoiceID_StockItemID 
ON [Sales].[InvoiceLines] (InvoiceID, StockItemID); 
CREATE INDEX IDX_NC_InvoiceLines_StockItemID_InvoiceID 
ON [Sales].[InvoiceLines] (StockItemID, InvoiceID);

The columns with the most distinct values are more selective and will
usually best serve queries if they are listed before less-selective
columns in the index order. Note, though, that the order of columns in
the INCLUDE portion of a nonclustered index (more on that later) does
not matter.

Remember also from the previous section on clustered indexes that
the clustered index key is already inside the key of the nonclustered
index. There might be scenarios when the missing indexes feature
(more on this later) suggests adding a clustered key column to your
nonclustered index. It does not change the size of a nonclustered
index to do this; the clustered key is already in a nonclustered index.
The only caveat is that the order of the nonclustered index keys still
determines the sort order of the index. So, having the clustered index
key column(s) in your nonclustered index key won’t change the
index’s size, but could change the sort order of the keys, creating
what is essentially a different index when compared to an index that
doesn’t include the clustered index key column(s).

The default sort order for index column values is ascending. If you
want to sort in descending order, you must be explicit in that as in the
query that follows. If queries frequently call for data to be sorted by a
column in descending order, which might be common for queries



looking for the most recent data, you could provide that key value like
this:
Click here to view code image

CREATE INDEX IDX_NC_InvoiceLines_InvoiceID_StockItemID 
ON [Sales].[InvoiceLines] (InvoiceID DESC, StockItemID);

Creating the key’s sort order incorrectly might not matter to some
queries. For example, the nested loop operator does not require data
to be sorted in a particular order, so different sort orders in the keys of
a nonclustered index might not make a significant impact to the
execution plan. On the other hand, a merge join operator requires
data in both inputs to the operator to be sorted in the same order, so
changing the sort order of the keys of an index—especially the first
key—could simplify an execution plan by eliminating unnecessary
sort operators. This is among the strategies of index tuning to
consider. Remember to review the query plan performance data that
the Query Store collects to observe the impact of index changes on
multiple queries.

 For more on performance tuning, see Chapter 14,
“Performance tune SQL Server.”

Understand redundant indexes
Nonclustered index keys shouldn’t overlap with other indexes in the
same table. Because index key order matters, you must be aware of
what is and what isn’t an overlapping index. Consider the following
two nonclustered indexes on the same table:
Click here to view code image

CREATE INDEX 
IDX_NC_InvoiceLines_InvoiceID_StockItemID_UnitPrice_Quantity 
ON [Sales].[InvoiceLines] (InvoiceID, StockItemID, UnitPrice, 
Quantity); 
CREATE INDEX IDX_NC_InvoiceLines_InvoiceID_StockItemID 
ON [Sales].[InvoiceLines] (InvoiceID, StockItemID);



Both indexes lead with InvoiceID and StockItemID. The first index
includes additional data. The second index is completely overlapped.
Queries may still use the second index, but because the leading key
columns match the other index, the larger index will provide very
similar performance gains. If you drop
IDX_NC_InvoiceLines_InvoiceID_StockItemID, you’ll have fewer
indexes to maintain, and fewer indexes to take up space in memory
and on disk. The space it requires, the space in memory it consumes
when used, and the effort it takes to keep the index up to date and
maintained could all be considered redundant. The index
IDX_NC_InvoiceLines_InvoiceID_StockItemID isn’t needed and
should be dropped, and queries that used it will use
IDX_NC_InvoiceLines_InvoiceID_StockItemID_UnitPrice_Quantity.

Note
Before dropping an index entirely, you can disable it. This keeps
the index definition metadata so you can re-create it later if
needed. While disabled, the index does not consume any
resources.

Consider, then, the following two indexes:
Click here to view code image

CREATE INDEX 
IDX_NC_InvoiceLines_InvoiceID_StockItemID_UnitPrice_Quantity 
ON [Sales].[InvoiceLines] (InvoiceID, StockItemID, UnitPrice, 
Quantity); 
CREATE INDEX IDX_NC_InvoiceLines _StockItemID_InvoiceID 
ON [Sales].[InvoiceLines] (StockItemID, InvoiceID);

Note that the second index’s keys are in a different order. This is
physically and logically a different structure than the first index.

Does this mean both of these indexes are needed? Probably. Some
queries might perform best using keys in the second index’s order.
The Query Optimizer can still use an index with columns in a
suboptimal order—for example, to scan the smaller structure rather



than the entire table. The Query Optimizer might instead find that an
index seek and a key lookup on a different index is faster than using
an index with the columns in the wrong order.

You can verify whether or not each index has been used in the
sys.dm_db_index_usage_stats DMV, which we discuss later in this
chapter, in the section “Understand and provide index usage.”

The Query Store can be an invaluable tool to discover queries that
have regressed because of changes to indexes that have been
dropped, reordered, or resorted.

Understand the INCLUDE list of an index
In the B+ tree structure of a rowstore nonclustered index, key
columns are stored through the two major sections of the index
object:

Branch levels. These are where the logic of seeks happens,
starting at a narrow “top” where key data is stored so it can be
traversed by SQL Server using binary decisions. A seek moves
“down” the B+ tree structure via binary decisions.

Leaf levels. These are where the seek ends and data is
retrieved. Adding a column to the INCLUDE list of a rowstore
nonclustered index adds that data only to the leaf level.

Inside OUT
How can you see the properties and storage for each
level of the index’s B+ tree?

You can view the page_count, record_count, space_used
statistics, and more for each level of a B+ tree by using the
DETAILED mode of the sys.dm_db_index_physical_stats
dynamic management function. Only the leaf level
(index_level = 0) is visible in other modes. The mode



parameter is the fifth parameter passed in, as demonstrated in
the following code:

Click here to view code image

SELECT * FROM sys.dm_db_index_physical_stats 
(DB_ID(), object_id('Sales.Invoices'), null , null, 
'DETAILED');

An index’s INCLUDE statement allows for data to be retrievable in the
leaf level only, but not stored in the branch level. This reduces the
overall size and complexity needed to cover a query’s need. Consider
the following query and execution plan (see Figure 15-1) from the
WideWorldImporters sample database. (Figure 15-2 shows the
properties of the index seek in the following script.)
Click here to view code image

SELECT CustomerID, AccountsPersonID 
FROM [Sales].[Invoices] 
WHERE CustomerID = 832;

Figure 15-1 This execution plan shows an index seek and a key
lookup on the same table. The Key Lookup represents



99 percent of the cost of the query.

Figure 15-2 The properties of the Index Seek in the previous
sample script. Note that CustomerID is in the seek
predicate and also in the output list, but that
AccountsPersonID is not listed in the output list.

Note in Figure 15-2 that CustomerID is in the seek predicate and also
in the output list, but that AccountsPersonID is not listed in the output
list. Our query is searching for and returning CustomerID (it appears in
both the SELECT and WHERE clauses), but our query also returns
AccountsPersonID, which is not contained in the index
FK_Sales_Invoices_CustomerID. (It searches the indexes then joins
that result with the clustered index.)

Here is the code of the nonclustered index
FK_Sales_Invoices_CustomerID, named because it is for CustomerID,
a foreign key reference:
Click here to view code image

CREATE NONCLUSTERED INDEX [FK_Sales_Invoices_CustomerID] 
ON [Sales].[Invoices] 
( CustomerID ASC );

To remove the key lookup, add an included column to the
nonclustered index so the query can retrieve all the data it needs
from a single object:
Click here to view code image



CREATE NONCLUSTERED INDEX [FK_Sales_Invoices_CustomerID] 
ON [Sales].[Invoices] 
( CustomerID ASC ) 
INCLUDE ( AccountsPersonID ) 
WITH (DROP_EXISTING = ON); 
GO

Let’s run our sample query again (see Figure 15-3):
Click here to view code image

SELECT CustomerID, AccountsPersonID 
FROM [Sales].[Invoices] 
WHERE CustomerID = 832;

Figure 15-3 The execution plan now shows only an index seek.
The key lookup that appeared in Figure 15-1 has been
eliminated from the execution plan.

Note in Figure 15-3 that the key lookup has been eliminated. The
query was able to retrieve both CustomerID and AccountsPersonID
from the same index and required no second probe of the table for
AccountsPersonID. The estimated subtree cost, in the properties of
the SELECT operator, is now 0.0034015, compared to 0.355919 when
the key lookup was present. Although this query was a small example
for demonstration purposes, eliminating the key lookup represents a
cost reduction by two orders of magnitude, without changing the
query.

Just as you do not want to add too many nonclustered indexes, you
also do not want to add too many columns unnecessarily to the



INCLUDE list of nonclustered indexes. Columns in the INCLUDE list, as
you saw in the previous code example, still require storage space.
For infrequent queries that return small sets of data, the key lookup
operator is probably not worth the cost of storing additional columns
in the INCLUDE list of an index. Every time you include a column, you
increase the overhead of the index.

In summary, you should craft nonclustered indexes to serve many
queries intelligently, you should always try to avoid creating
overlapping or redundant indexes, and you should regularly review to
verify that indexes are still being used as applications or report
queries change. Keep this guidance in mind as you move into the
next section!

Create filtered nonclustered indexes
Nonclustered indexes are a sort of vertical partition of a table, but you
can also create a horizontal filter of an index. A filtered index has
powerful potential uses to serve up prefiltered data. Obviously, filtered
indexes are only then suited to serve data to queries with matching
WHERE clauses.

Filtered indexes could have particular use in table designs that
include a soft delete flag, a processed/unprocessed status flag, or a
current/archived flag. Work with developers to identify this sort of
table design usage.

Imagine a scenario where a table has millions of rows, with a few
rows marked as “unprocessed” and the rest marked as “processed.”
An application might regularly query this table using WHERE processed
= 0, looking for rows to process. A nonclustered index on the
processed column, resulting in a seek operation in the execution
plan, would be much faster than scanning the entire table. But a
filtered index with the same WHERE clause would only contain the few
rows marked “unprocessed,” resulting in a performance gain for the
same query with no code changes.

You can easily add a filter to an index. For example:



Click here to view code image

CREATE INDEX [IX_Application_People_IsEmployee] 
ON [Application].[People]([IsEmployee]) WHERE IsEmployee = 1 
WITH (DROP_EXISTING = ON);

In your database, look for potential uses of new filtered indexes in
columns that are of the bit data type, use a prefix like “Is” or a suffix
like “Flag,” or perhaps, when a query only ever looks for data of a
certain type, or data that is NULL or NOT NULL. Work with developers to
identify potential uses when the majority of data in the table is not
needed for many queries.

Adding a filter to an existing index might make it unusable to queries
that do not use the same query. Avoid adding a filter to an existing
nonclustered index marked unique, as this will change the
enforcement of the constraint and the intent of the unique index.
Filtered nonclustered indexes can be created with the unique
property to enforce filtered uniqueness. For example, this could have
potential uses in employee IDs that are allowed to be reused, or in a
data warehouse scenario where a table needs to enforce uniqueness
on only the active records of a dimension.

Understand the missing indexes feature
The concept of intelligently combining many similar indexes into one
super-index is crucial to understanding the utility of using SQL
Server’s built-in missing indexes feature. First introduced in SQL
Server 2005, the missing indexes feature revolutionized the ability to
see the big picture when crafting nonclustered indexes. The missing
indexes feature has been passively gathering information on every
database since SQL Server 2005 as well as in Azure SQL Database.

The missing indexes feature collects information from actual query
usage. SQL Server passively records when it would have been better
to have a nonclustered index—for example, to replace a scan for a
seek, or to eliminate a lookup from a query’s execution plan. The
missing indexes feature then aggregates these requests, counts how



many times they have occurred, calculates the cost of the statement
operations that could be improved, and estimates the percentage of
that cost that would be eliminated (this percentage is labeled the
impact). Think of the missing indexes feature as the database wish
list of nonclustered indexes.

There are, however, some caveats and limitations with regard to the
missing indexes feature. The recommendations in the output of the
missing index dynamic management objects (DMOs) will likely
include overlapping (but not duplicate) suggestions. Also, only
rowstore nonclustered indexes can be suggested—remember this
feature was introduced in SQL Server 2005—so clustered
columnstore and other types of indexes won’t be recommended.
Finally, recommendations are lost when any data definition language
(DDL) changes to the table occur and when the SQL Server instance
restarts.

You can look at missing indexes any time, with no performance
overhead to the server, by querying a set of DMOs dedicated to this
feature. You can find the following query, which concatenates the
CREATE INDEX statement for you according to a simple, self-
explanatory naming convention. As you can see from the use of
system views, this query is intended to be run in a single database:
Click here to view code image

SELECT mid.[statement], create_index_statement = 
      CONCAT('CREATE NONCLUSTERED INDEX IDX_NC_' 
    , TRANSLATE(replace(mid.equality_columns, ' ' ,''), '],[' 
,'___') 
    , TRANSLATE(replace(mid.inequality_columns, ' ' ,''), '],
[' ,'___') 
    , ' ON ' , mid.[statement] , ' (' , mid.equality_columns 
    , CASE WHEN mid.equality_columns IS NOT NULL 
     AND mid.inequality_columns IS NOT NULL THEN ',' ELSE '' 
END 
    , mid.inequality_columns , ')' 
    , ' INCLUDE ('+ , mid.included_columns ,+ ')' ) 
, migs.unique_compiles, migs.user_seeks, migs.user_scans 
, migs.last_user_seek, migs.avg_total_user_cost 
, migs.avg_user_impact, mid.equality_columns 



, mid.inequality_columns, mid.included_columns 
FROM sys.dm_db_missing_index_groups mig 
INNER JOIN sys.dm_db_missing_index_group_stats migs 
ON migs.group_handle = mig.index_group_handle 
INNER JOIN sys.dm_db_missing_index_details mid 
ON mig.index_handle = mid.index_handle 
INNER JOIN sys.tables t ON t.object_id = mid.object_id 
INNER JOIN sys.schemas s ON s.schema_id = t.schema_id 
WHERE mid.database_id = DB_ID() 
-- count of query compilations that needed this proposed 
index 
--AND       migs.unique_compiles > 10 
-- count of query seeks that needed this proposed index 
--AND       migs.user_seeks > 10 
-- average percentage of cost that could be alleviated with 
this proposed index 
--AND       migs.avg_user_impact > 75 
-- Sort by indexes that will have the most impact to the 
costliest queries 
ORDER BY migs.avg_user_impact * migs.avg_total_user_cost 
desc;

At the bottom of this query is a series of filters that you can use to find
only the most-used, highest-value index suggestions. If this query
returns hundreds or thousands of rows, consider spending an
afternoon crafting together indexes to improve the performance of the
actual user activity that generated this data.

Some indexes returned by the missing indexes queries might not be
worth creating because they have a very low impact or have been
part of only one query compilation. Others might overlap each other.
For example, you might see these three index suggestions:
Click here to view code image

CREATE NONCLUSTERED INDEX IDX_NC_Gamelog_Team1 ON dbo.gamelog 
(Team1) INCLUDE (GameYear, 
GameWeek, Team1Score, Team2Score); 
CREATE NONCLUSTERED INDEX 
IDX_NC_Gamelog_Team1_GameWeek_GameYear ON dbo.gamelog (Team1, 
GameWeek, GameYear) INCLUDE (Team1Score); 
CREATE NONCLUSTERED INDEX 



IDX_NC_Gamelog_Team1_GameWeek_GameYear_Team2 ON dbo.gamelog 
(Team1, GameWeek, GameYear, Team2);

You should not create all three of these indexes. Instead, you should
combine the indexes you deem useful and worthwhile into a single
index that matches the order of the needed key columns and covers
all the included columns, as well. Here is the properly combined index
suggestion:
Click here to view code image

CREATE NONCLUSTERED INDEX 
IDX_NC_Gamelog_Team1_GameWeek_GameYear_Team2 
ON dbo.gamelog (Team1, GameWeek, GameYear, Team2) 
INCLUDE (Team1Score, Team2Score);

This last index is a good combination of the previous suggestions. It
delivers maximum positive benefit to the most queries and minimizes
the negative impact to writes, storage, and maintenance. Note that
the key columns list overlaps and is in the correct order for each of
the previous index suggestions, and that the INCLUDE columns list
also covers all the columns needed in the index suggestions. If a
column is in the key of the index, it does not need to exist in the
INCLUDE of the index.

However, don’t create this index yet. You should still review existing
indexes on the table before creating any missing indexes. Perhaps
you can combine a new missing index and an existing index, in the
key column list or the INCLUDE column list, further increasing the value
of a single index.

After combining missing index suggestions with each other and with
existing indexes, you are ready to create the index and see it in
action. Remember: Always look at the big picture when creating
indexes. Rarely does a single query rise to the level of importance of
justifying its own indexes. For example, in SSMS, you will sometimes
see text suggesting a missing index for this query, as illustrated in
Figure 15-4. (This text will be green on your screen, but appears gray
in this book.)



Figure 15-4 In the Execution plan tab, in the header of each
execution plan. Text starting with “Missing Index” will
alert you to the possible impact. Do not create this
index on the spot!

This is somewhat valuable, but do not create this index on the spot!
Always refer to the complete set of index suggestions and other
existing indexes on the table, combining overlapping indexes when
possible. Consider the green missing index alert in SSMS as only a
flag that indicates you should spend time investigating new missing
indexes.

To recap, when creating nonclustered indexes for performance
tuning, you should do the following:

1. Use the missing index DMVs to identify new big-picture
nonclustered indexes:

Don’t create indexes that will likely only help out a single
query; few queries are important enough to deserve their
own indexes.

Consider nonclustered columnstore indexes for very large
rowcount tables where queries often have to scan millions
of rows for aggregates. (You can read more on columnstore
indexes later in this chapter.)

2. Combine missing index suggestions, being aware of key order
and INCLUDE lists.

3. Compare new index suggestions with existing indexes; perhaps
you can combine them.



4. Review index usage statistics to verify whether indexes are
helping you. (More on the index usage statistics DMV in a
moment.)

Inside OUT
Does the missing indexes feature suggest only rowstore
nonclustered index?

Yes. The missing indexes feature can’t help you with proper
clustered index design; that’s up to you, the informed
database designer. It can provide some insight into usage
after a time, but that would mean running a typical production
workload against a heap and suffering the performance issues
likely to arise.

Here’s another limitation to the missing indexes feature: It is
not aware of clustered or nonclustered columnstore indexes,
which are incredibly powerful structures to add for massive
row count queries on large tables. The missing indexes
feature (introduced in SQL Server 2005) cannot suggest
columnstore indexes (introduced in SQL Server 2012). The
missing indexes feature will even suggest an index to replace
a useful columnstore index. Be aware of all indexes in your
table, including columnstore indexes, when considering new
indexes.

When you have created a columnstore index on a table, you
might need to ignore index suggestions that look like the
same workloads that are currently benefitting from the
columnstore. For a query that requires a scan on many rows
in the table, the Query Optimizer is unlikely to pick a
nonclustered index over a nonclustered columnstore index.
The columnstore index will typically vastly outperform a
nonclustered index for massive row count queries, though the
missing index feature might still count this as a new
nonclustered index suggestion.



Understand when missing index suggestions are
removed
Missing index suggestions are cleared out for any change to the
tables—for example, if you add or remove columns or indexes.
Missing index suggestions are also cleared out when the SQL Server
service is started and cannot be manually cleared easily. (You can
take the database offline and back online, which would clear out the
missing index suggestions, but this seems like overkill.)

Logically, make sure the missing index data that you have collected is
also based on a significant sample of actual production user activity
over time spanning at least one business cycle. Missing index
suggestions based on development activity might not be a useful
representation of intended application activity, though suggestions
based on end-user testing or training could be.

Understand and provide index usage
You’ve added indexes to your tables, and they are used over time,
but meanwhile the query patterns of applications and reports change.
Columns are added to the database, new tables are added, and
although you add new indexes to suit new functionality, how does a
database administrator ensure that existing indexes are still worth
keeping?

SQL Server tracks this information for you automatically with yet
another valuable DMV: sys.dm_db_index_usage_stats. Following is a
script that measures index usage within a database, combining
sys.dm_db_index_usage_stats with other system views and DMVs to
return valuable information. Note that the ORDER BY clause places
indexes with the fewest read operations (seeks, scans, lookups) and
the most write operations (updates) at the top of the list.
Click here to view code image



SELECT TableName = sc.name + '.' + o.name, IndexName = i.name 
     , s.user_seeks, s.user_scans, s.user_lookups 
     , s.user_updates 
     , ps.row_count, SizeMb = 
(ps.in_row_reserved_page_count*8.)/1024. 
     , s.last_user_lookup, s.last_user_scan, s.last_user_seek 
     , s.last_user_update 
FROM sys.dm_db_index_usage_stats AS s 
  INNER JOIN sys.indexes AS i 
ON i.object_id = s.object_id AND i.index_id = s.index_id 
   INNER JOIN sys.objects AS o ON o.object_id=i.object_id 
   INNER JOIN sys.schemas AS sc ON sc.schema_id = o.schema_id 
    INNER JOIN sys.partitions AS pr 
ON pr.object_id = i.object_id AND pr.index_id = i.index_id 
    INNER JOIN sys.dm_db_partition_stats AS ps 
ON ps.object_id = i.object_id AND ps.partition_id = 
pr.partition_id 
WHERE o.is_ms_shipped = 0 
--Don't consider dropping any constraints 
AND i.is_unique = 0 AND i.is_primary_key = 0 AND 
i.is_unique_constraint = 0 
--Order by table reads asc, table writes desc 
ORDER BY user_seeks + user_scans + user_lookups asc, 
s.user_updates desc;

Any indexes that rise to the top of the preceding query should be
considered for removal or redesign, given the following caveats:

Before dropping any indexes, you should ensure you have
collected data from the index usage stats DMV that spans at
least one complete business cycle. The index usage stats DMV
is cleared when the SQL Server service is restarted. You cannot
manually clear it. If your applications have week-end and month-
end reporting, you might have indexes present and tuned
specifically for those critical performance periods.

Logically, verify that the index usage data that you have
collected is based on actual production user activity. Index
usage data based on testing or development activity would not
be a useful representation of intended application activity.



Note the final WHERE clause that ignores unique constraints and
primary keys. Even if a nonclustered index exists and isn’t used,
if it is part of the uniqueness of the table, it should not be
dropped.

Again, the Query Store can be an invaluable tool to monitor for query
regression after indexing changes.

 For more info on the Query Store, see Chapter 14.

Like many DMVs that are cleared when the SQL Server service
restarts, consider a strategy of capturing data and storing index
usage history periodically in persistent tables.

Server-scoped dynamic management views and functions require
VIEW SERVER STATE permission on the server. Database-scoped
dynamic management views and functions require VIEW DATABASE
STATE permission on the database.

 For more information, see
https://learn.microsoft.com/sql/relational-databases/system-
dynamic-management-views/system-dynamic-management-
views.

Understand columnstore indexes
Columnstore indexes were first introduced in SQL Server 2012,
making a splash in their ability to far outperform clustered and
nonclustered indexes for aggregations. They were typically used in
the scenario of nightly refreshed data warehouses, but now they have
beneficial applications on transactional systems, including on
memory-optimized tables.

Since their introduction, the evolution of columnstore indexes has
greatly expanded their usefulness:

Before SQL Server 2016, the presence of a nonclustered
columnstore index made the table read-only. This drawback was

https://learn.microsoft.com/sql/relational-databases/system-dynamic-management-views/system-dynamic-management-views


removed in SQL Server 2016; now nonclustered columnstore
indexes are fully featured and quite useful in a variety of
applications aside from nightly refresh databases.

Starting with SQL Server 2016 with Service Pack 1, columnstore
indexes became available below Enterprise edition licenses of
SQL Server (though with a limitation on columnstore memory
utilization).

Snapshot isolation and columnstore indexes are fully
compatible. Before SQL Server 2016, using read-committed
snapshots and snapshot isolation levels was not supported with
columnstore indexes.

You can place a clustered columnstore index on a memory-
optimized table, providing the ability to do analytics on millions
of rows of live real-time online transactional processing (OLTP)
data.

Starting with SQL Server 2017, a variety of batch mode features
grouped under the intelligent query processing (IQP) label
increased performance of queries with columnstore indexes.

 For more about the suite of features under IQP, see Chapter 14.

Starting with SQL Server 2019, using the WITH (ONLINE = ON)
syntax is supported for creating and rebuilding columnstore
indexes.

These key improvements opened columnstore indexes to be used in
transactional systems, when tables with millions of rows are read,
resulting in million-row result sets.

Columnstore indexes have two compression levels. In addition to the
eponymous default COLUMNSTORE compression level, there is also a
COLUMNSTORE_ARCHIVE compression option, which further compresses
the data at the cost of more CPU when needing to read or write the
data.



As with rowstore indexes, you can compress each partition of a
table’s columnstore index differently. Consider applying
COLUMNSTORE_ARCHIVE compression to partitions of data that are old
and rarely accessed. You can change the data compression option
for rowstore and columnstore indexes by using the index rebuild
operation via the DATA_COMPRESSION option. For columnstore indexes,
you can specify the COLUMNSTORE or COLUMNSTORE_ARCHIVE options,
whereas for rowstore indexes, you can use the NONE, ROW, and PAGE
compression options.

 For more detail on data compression, see Chapter 3, “Design
and implement an on-premises database infrastructure.”

You cannot change the compression option of a rowstore index to
either of the columnstore options, or vice versa. Instead, you must
build a new index of the desired type.

The sp_estimate_data_compression_savings system stored
procedure can be used to estimate the size differences between the
compression options. Starting with SQL Server 2019, this stored
procedure includes estimates for the two columnstore compression
options. In SQL Server 2022,
sp_estimate_data_compression_savings can be used to estimate
savings for XML compression as well.

 See the “XML compression” section at the end of the chapter
for more information.

Note
There is currently a three-way incompatibility between the
sp_estimate_data_compression_savings system stored
procedure, columnstore indexes, and the memory-optimized
tempdb metadata feature introduced in SQL Server 2019. You
cannot use sp_estimate_data_compression_savings with
columnstore indexes if the memory-optimized tempdb metadata
feature is enabled. For more information visit
https://learn.microsoft.com/sql/relational-databases/system-

https://learn.microsoft.com/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql


stored-procedures/sp-estimate-data-compression-savings-
transact-sql.

Design columnstore indexes
Columnstore indexes don’t use a B+ tree; instead, they contain highly
compressed data (on disk and in memory), stored in a different
architecture from the traditional clustered and nonclustered indexes.
They are the standard for storing and querying large data warehouse
fact tables. Unlike rowstore indexes, there is no “key” or “include” of a
columnstore index, only a set of columns that are part of the index.
For non-ordered columnstore indexes, the order of the columns in the
definition of index does not matter. This is the default index. You can
create “clustered” or “nonclustered” columnstore indexes, though this
terminology is used more to indicate what role the columnstore index
is serving, not what it resembles behind the scenes.

Clustered columnstore indexes do not change the physical structure
of the table like rowstore clustered indexes. Ordered clustered
columnstore indexes sort the existing data in memory by the order
key(s) before the index builder compresses them into index
segments. Any sorted data overlap is reduced, which allows for better
data elimination when querying, and therefore faster performance
because the amount of data read from disk is smaller. If all data can
be sorted in memory at once, then data overlap can be avoided.
Owing to the size of tables in data warehouses, this scenario doesn’t
happen often.

 For more information, visit
https://learn.microsoft.com/azure/synapse-analytics/sql-data-
warehouse/performance-tuning-ordered-cci.

You can also create nonclustered rowstore indexes on tables with a
clustered columnstore index, which is potentially useful to enforce
uniqueness, and support single row fetching, deleting, and updating.
Columnstore indexes cannot be unique, and so cannot replace the
table’s unique constraint or primary key. Clustered columnstore

https://learn.microsoft.com/sql/relational-databases/system-stored-procedures/sp-estimate-data-compression-savings-transact-sql
https://learn.microsoft.com/azure/synapse-analytics/sql-data-warehouse/performance-tuning-ordered-cci


indexes might also perform poorly when a table receives updates, so
consider the workload for a table before adding a clustered
columnstore. Tables that are only ever inserted into, but never
updated or deleted from, would be an ideal candidate for a clustered
columnstore index.

You can combine nonclustered rowstore and nonclustered
columnstore indexes on the same table, but you can have only one
columnstore index on a table, including clustered and nonclustered
columnstore indexes. You can even create nonclustered rowstore and
nonclustered columnstore indexes on the same columns. Perhaps
you create both because you want to filter on the column value in one
set of queries, and aggregate in another. Or perhaps you create both
only temporarily, for comparison.

You can also create nonclustered columnstore indexes on indexed
views—another avenue to quick-updating analytical data. The
stipulations and limitations regarding indexed views apply, but you
would create a unique rowstore clustered index on the view, then a
nonclustered columnstore view.

You can add columns in any order to satisfy many different queries,
greatly increasing the versatility of the columnstore index in your
table. This is because the order of the data is not important to how
columnstore indexes work.

The size of the key for columnstore indexes, however, could make a
big difference in performance. The columns in a columnstore index
should each be limited to 8,000 bytes for best performance. Data
larger than 8,000 bytes in a row is compressed separately outside of
the columnstore compressed row group, requiring more
decompression to access the complete row.

While the large object data types varchar(max), nvarchar(max), and
varbinary(max) are supported in the key of a columnstore index, they
are not stored in-line with the rest of the compressed data, but rather
outside the columnstore structure. These data types are not
recommended in columnstore indexes. Starting with SQL Server
2017, they are supported, but still not recommended.



 For more on data type restrictions and limitations for
columnstore indexes, visit https://learn.microsoft.com/sql/t-
sql/statements/create-columnstore-index-transact-
sql#LimitRest.

The most optimal data types for columns in a columnstore index are
data types that can be stored in an 8-byte integer value, such as
integers and some date- and time-based data types. They allow you
to use what is known as segment elimination. If your query includes a
filter on such values, SQL Server can issue reads to only those
segments in row groups that contain data within a range, eliminating
ranges of data outside of the request. The data is not sorted, so
segment elimination might not help all filtering queries, but the more
selective the value, the more likely it will be useful. Other data types
with a size less than 8,000 bytes will still compress and be useful for
aggregations, but should generally not appear as a filter, because the
entire table will always need to be scanned unless you add a
nonclustered index.

Understand batch mode
Batch mode is one of the existing features lumped into the intelligent
query processing (IQP) umbrella—a collection of performance
improvements. Batch mode has actually been around since SQL
Server 2014. Like many other features listed under IQP, batch mode
can benefit workloads automatically and without requiring code
changes.

Batch mode is useful in the following scenarios:

Analytical queries. Usually, these queries use operators like
joins or aggregates that process hundreds of thousands of rows
or more.

Your workload is CPU bound. However, you should consider a
columnstore index even if your workload is I/O bound.

https://learn.microsoft.com/sql/t-sql/statements/create-columnstore-index-transact-sql#LimitRest


Heavy OLTP workload. You may decide that creating a
columnstore index adds too much overhead to your heavy
transactional workload, and your analytical workload is not as
important.

Support. Your application depends on a feature that
columnstore indexes don’t yet support.

Batch mode uses heuristics to determine whether it can move data
into memory to be processed in a batch rather than row by row.
Columnstore indexes reduce I/O and batch processing reduces CPU
usage, ultimately speeding up the query.

You’ll see Batch (instead of the default Row) in the Actual Execution
Mode of an execution plan operator when this faster method is in use.
Batch mode processing appears in the form of batch mode operators
in execution plans, and benefits queries that process millions of rows
or more.

 For more information on IQP features, see Chapter 14.

Initially, only queries on columnstore indexes could benefit from batch
mode operators. Starting with compatibility level 150 (SQL Server
2019), however, batch mode for analytic workloads became available
outside of columnstore indexes. The query processor might decide to
use batch mode operators for queries on heaps and rowstore
indexes. No changes are needed for your code to benefit from batch
mode on rowstore objects, as long as you are in compatibility level
150 or higher.

 For more information on which operators can use batch mode
execution, go to https://learn.microsoft.com/sql/relational-
databases/indexes/columnstore-indexes-query-performance.

Note
Batch mode has not yet been extended to in-memory OLTP
tables or other types of indexes like full-text, spatial, or XML

https://learn.microsoft.com/sql/relational-databases/indexes/columnstore-indexes-query-performance


indexes. Batch mode will also not occur on sparse and XML
columns.

Understand the deltastore of columnstore indexes
The columnstore deltastore is an ephemeral location where changed
data is stored in a clustered B+ tree rowstore format. When certain
thresholds of inserted rows are reached, typically 1,048,576 rows, or
when a columnstore index is rebuilt or reorganized, a group of
deltastore data is “closed.” Then, via a background thread called the
tuple mover, the deltastore rowgroup is compressed into the
columnstore. The number of rows SQL Server compresses into a
rowgroup might be smaller under memory pressure, which happens
dynamically.

The COMPRESSION_DELAY option for both nonclustered and clustered
columnstore indexes has to do with how long it takes changed data to
be written from the deltastore to the highly compressed columnstore.

The COMPRESSION_DELAY option does not affect the 1,048,576 number,
but rather how long it takes SQL Server to move the data into the
columnstore. If you set the COMPRESSION_DELAY option to 10 minutes,
data will remain in the deltastore for at least an extra 10 minutes
before SQL Server compresses it. The advantage of data remaining
in the deltastore, delaying its eventual compression, could be
noticeable on tables that continue to be updated and deleted.
Updates and deletes are typically very resource intensive on
columnstore indexes. Delete operations in the columnstore are “soft”
deleted, marked as removed, and then eventually cleaned out during
index maintenance. Updates are actually processed as deletes and
inserts into the deltastore.

The advantage of COMPRESSION_DELAY is noticeable for some write
workloads, but not all. If the table is only ever inserted into,
COMPRESSION_DELAY doesn’t really help. But if a block of recent data is
updated and deleted for a period before finally settling in after a time,
implementing COMPRESSION_DELAY can speed up the write transactions



to the data and reduce the maintenance and storage footprint of the
columnstore index.

Changing the COMPRESSION_DELAY setting of the index, unlike many
other index settings, does not require a rebuild of the index, and you
can change it at any time. For example:
Click here to view code image

ALTER INDEX [NCCX_Sales_InvoiceLines] 
    ON [Sales].[InvoiceLines] 
    SET (COMPRESSION_DELAY = 10 MINUTES);

SQL Server can ignore the deltastore for inserts when you insert data
in large amounts. This is called bulk loading in Microsoft
documentation, but is not related to the BULK INSERT command.
When you want to insert large amounts of data into a table with a
columnstore index, SQL Server bypasses the deltastore. This
increases the speed of the insert and the immediate availability for
the data for analytical queries, and reduces the amount of logged
activity in the user database transaction log.

Under ideal circumstances, the best number of rows to insert in a
single statement is 1,048,576, which creates a complete, compressed
columnstore row group. The number of rows to trigger a bulk load is
between 102,400 rows and 1,047,576 rows, depending on memory. If
you specify TABLOCK in the INSERT statement, bulk loading data into
the columnstore occurs in parallel. The typical caveat about TABLOCK
is applicable here, as the table might block other operations at the
time of the insert in parallel.

Demonstrate the power of columnstore indexes
To demonstrate the power of this fully operational columnstore index,
let’s review a scenario in which more than 14 million rows are added
to the WideWorldImporters.Sales.InvoiceLines table. About half of
the rows in the table now contain InvoiceID = 69776.



To demonstrate, start by restoring a fresh copy of the sample
WideWorldImporters database from
https://learn.microsoft.com/sql/samples/wide-world-importers-oltp-
install-configure.

The following sample script drops the existing WideWorldImporters-
provided nonclustered columnstore index and adds a new
nonclustered index we’ve created here. This performs an index scan
to return the data. Remember that InvoiceID = 69776 is roughly half
the table, so this isn’t a “needle in a haystack” situation; it isn’t a seek.
If the query can use a seek operator, the nonclustered rowstore index
would likely be better. When the query must scan, columnstore is
king.
Click here to view code image

USE WideWorldImporters; 
GO 
-- Fill haystack with 3+ million rows 
INSERT INTO Sales.InvoiceLines (InvoiceLineID, InvoiceID 
, StockItemID, Description, PackageTypeID, Quantity 
, UnitPrice, TaxRate, TaxAmount, LineProfit, ExtendedPrice 
, LastEditedBy, LastEditedWhen) 
SELECT InvoiceLineID = NEXT VALUE FOR [Sequences].
[InvoiceLineID] 
, InvoiceID, StockItemID, Description, PackageTypeID, 
Quantity 
, UnitPrice, TaxRate, TaxAmount, LineProfit 
, ExtendedPrice, LastEditedBy, LastEditedWhen 
FROM Sales.InvoiceLines; 
GO 3 --Runs the above three times 
-- Insert millions of records for InvoiceID 69776 
INSERT INTO Sales.InvoiceLines (InvoiceLineID, InvoiceID 
, StockItemID, Description, PackageTypeID, Quantity 
, UnitPrice, TaxRate, TaxAmount, LineProfit, ExtendedPrice 
, LastEditedBy, LastEditedWhen) 
SELECT InvoiceLineID = NEXT VALUE FOR [Sequences].
[InvoiceLineID] 
, 69776, StockItemID, Description, PackageTypeID, Quantity 
, UnitPrice, TaxRate, TaxAmount, LineProfit 
, ExtendedPrice, LastEditedBy, LastEditedWhen 
FROM Sales.InvoiceLines; 

https://learn.microsoft.com/sql/samples/wide-world-importers-oltp-install-configure


GO 
--Clear cache, drop other indexes to only test our comparison 
scenario 
DBCC FREEPROCCACHE 
DROP INDEX IF EXISTS [NCCX_Sales_InvoiceLines] 
ON [Sales].[InvoiceLines]; 
DROP INDEX IF EXISTS 
IDX_NC_InvoiceLines_InvoiceID_StockItemID_Quantity 
ON [Sales].[InvoiceLines]; 
DROP INDEX IF EXISTS 
IDX_CS_InvoiceLines_InvoiceID_StockItemID_Quantity 
ON [Sales].[InvoiceLines]; 
GO 
--Create a rowstore nonclustered index for comparison 
CREATE INDEX 
IDX_NC_InvoiceLines_InvoiceID_StockItemID_Quantity 
     ON [Sales].[InvoiceLines] (InvoiceID, StockItemID, 
Quantity); 
GO

Now that the data is loaded, you can perform the query again for
testing. (See Figure 15-5.) Note we are using the STATISTICS TIME
option to measure both CPU and total duration. (Remember to enable
the actual query plan before executing the query.)
Click here to view code image

SET STATISTICS TIME ON; 
SELECT il.StockItemID, AvgQuantity = AVG(il.quantity) 
FROM [Sales].[InvoiceLines] AS il 
WHERE il.InvoiceID = 69776 --1.8 million records 
GROUP BY il.StockItemID; 
SET STATISTICS TIME OFF;

Figure 15-5 The execution plan of our sample query starts with an
Index Seek (NonClustered) on the rowstore



nonclustered index. Note the large amount of
parallelism operators along the way.

The sample query on 69776 had to work through 1.8 million records
and returned 227 rows. With the rowstore nonclustered index, the
cost of the query is 4.52 and completes in 844 ms of CPU time (due
to parallelism), 194 ms of total time. (These durations will vary from
system to system; the lab environment was a four-core Intel
processor with Hyper-Threading enabled.)

Now, let’s create a columnstore index, and watch our analytical-scale
query benefit.

Note
Starting with SQL Server 2019, using the WITH (ONLINE = ON)
syntax is supported for creating and rebuilding columnstore
indexes.

Click here to view code image

--Create a columnstore nonclustered index for comparison 
CREATE COLUMNSTORE INDEX 
IDX_CS_InvoiceLines_InvoiceID_StockItemID_quantity 
    ON [Sales].[InvoiceLines] (InvoiceID, StockItemID, 
Quantity) WITH (ONLINE = ON); 
GO

Perform the query again for testing. Note again we are using the
STATISTICS TIME option to measure both CPU and total duration.
(See Figure 15-6.)
Click here to view code image

SET STATISTICS TIME ON; 
--Run the same query as above, but now it will use the 
columnstore 
SELECT il.StockItemID, AvgQuantity = AVG(il.quantity) 
FROM [Sales].[InvoiceLines] AS il 
WHERE il.InvoiceID = 69776 --1.8 million records 



GROUP BY il.StockItemID; 
SET STATISTICS TIME OFF;

Figure 15-6 The execution plan of our sample query, now starting
with a Columnstore Index Scan (NonClustered).

The sample query on 69776 still returns 227 rows. With the benefit of
the columnstore nonclustered index, however, the cost of the query is
1.54 and completes in 47 ms of CPU time, 160 ms of total time. This
is a significant but relatively small sample of the power of a
columnstore index on analytical scale queries.

Understand indexes in memory-
optimized tables
Memory-optimized tables support table performance less bound by
I/O constraints, providing high-performance, latchless writes.
Memory-optimized tables don’t use the locking mechanics of
pessimistic concurrency, as discussed in Chapter 14. Data rows for
memory-optimized tables are not stored in data pages, and so do not
use the concepts of disk-based tables.

Memory-optimized tables can have two types of indexes: hash and
nonclustered. Nonclustered indexes for memory-optimized tables
behave similarly on memory-optimized tables as they do for disk-
based tables, whereas hash indexes are better suited for high-
performance seeks for individual records. You must create at least
one index on a memory-optimized table. Either of the two types of
indexes can be the structure behind the primary key of the table, if
you want both the data and the schema to be durable.



Indexes on in-memory tables are never durable and will be rebuilt
whenever the database comes online. The schema of the memory-
optimized table is always durable; however, you can choose to have
only the schema of the table be durable, not the data. This has utility
in certain scenarios as a staging table to receive data that will be
moved to a durable disk-based or memory-optimized table. You
should be aware of the potential for data loss. If only the schema of
the memory-optimized table is durable, you do not need to declare a
primary key. However, in the CREATE TABLE statement, you must still
define at least one index or a primary key for a table by using
DURABILITY = SCHEMA_ONLY. Our suggestion is that only in very rare
situations should a table not have a primary key constraint, no matter
the durability.

Adding indexes to memory-optimized tables increases the amount of
server memory needed. There is otherwise no limit to the size of
memory-optimized tables in Enterprise edition; however, in Standard
edition, you are limited to 32 GB of memory-optimized tables per
database.

Earlier versions of SQL Server put a cap on the number of indexes on
a memory-optimized table. That cap was raised from 8 to 999 in SQL
Server 2017.

Although there is no concept of a rowstore clustered index in
memory-optimized tables, you can add a clustered columnstore index
to a memory-optimized table, dramatically improving your ability to
perform analytical scale queries on the data even as it is rapidly
inserted. Because columnstore indexes cannot be unique, they
cannot serve as the primary key for a memory-optimized table.

Let’s go over the basics of using hash and nonclustered indexes on
memory-optimized tables.

Understand hash indexes for memory-optimized
tables



Memory-optimized hash indexes are an alternative to the typical B+
tree internal architecture for index data storage. Hash indexes are
best for queries that look for the needle in the haystack, and are
especially effective when matching exact values, but they are not
effective at range lookups or queries with an ORDER BY.

One other limitation of the hash index is that if you don’t query all the
columns in a hash index, they are generally not useful. The WHERE
clause must try to seek each column in the hash index’s key. When
there are multiple columns in the key of the indexes but not all
columns—or even just the first column—are queried, hash indexes do
not perform well. This is different from B+ tree-based nonclustered
indexes, which perform fine if only the first column of the index’s key
is queried.

Hash indexes are currently available only for memory-optimized
tables, not disk-based tables. You can declare them by using the
UNIQUE keyword, but they default to a non-unique key. You can create
more than one hash index.

There is an additional unique consideration for creating hash indexes.
Estimating the best number for the BUCKET_COUNT parameter can have
a significant impact. The number should be as close as possible to
the number of unique key values that are expected. BUCKET_COUNT
should be between 1 and 2 times this number.

Hash indexes always use the same amount of space for the same-
sized bucket count, regardless of the rowcount within. For example, if
you expect the table to have 100,000 unique values in it, the ideal
BUCKET_COUNT value would be between 100,000 and 200,000.

Having too many or too few buckets in a hash index can result in poor
performance. More buckets will increase the amount of memory
needed and the number of those buckets that are empty. Too few
buckets will result in queries needing to access more, larger buckets
in a chain to access the same information.

Ideally, a hash index is declared unique. Hash indexes work best
when the key values are unique or at least highly distinct. If the ratio



of total rows to unique key values is too high, a hash index is not
recommended and will perform poorly. Microsoft recommends a
threshold of less than 10 rows per unique value for an effective hash
index. If you have data with many duplicate values, consider a
nonclustered index instead.

You should periodically and proactively compare the number of
unique key values to the total number of rows in the table. It is better
to overestimate the number of buckets. You can change the number
of buckets in a memory-optimized hash index by using the ALTER
TABLE/ALTER INDEX/REBUILD commands. For example:
Click here to view code image

ALTER TABLE [dbo].[Transactions] 
ALTER INDEX [IDX_NC_H Transactions_1] 
REBUILD WITH (BUCKET_COUNT = 524288); 
--will always round up to the nearest power of two

Understand nonclustered indexes for memory-
optimized tables
Nonclustered indexes for memory-optimized tables behave similarly
on memory-optimized tables to how they behave on disk-based
tables. Instead of a B+ tree like a rowstore, disk-based nonclustered
index, they are in fact a variant of the B-tree structure called the Bw-
tree, which does not use locks or latches. They outperform hash
indexes for queries that perform sorting on the key value(s) of the
index, or when the index must be range scanned. Further, if you don’t
query all the columns in a hash index, they are generally not as
useful as a nonclustered index.

You can declare nonclustered indexes on memory-optimized tables
unique. However, the CREATE INDEX syntax is not supported. You
must use the ALTER TABLE/ADD INDEX commands or include them in
the CREATE TABLE script.

Neither hash indexes nor nonclustered indexes can serve queries on
memory-optimized tables for which the keys are sorted in the reverse



order from how they are defined in the index. These types of queries
simply can’t currently be serviced efficiently from memory-optimized
indexes. If you need another sort order, you need to add the same B-
tree index with a different sort order.

Remember: You can also add a clustered columnstore index to a
memory-optimized table, dramatically improving your ability to
analyze fast-changing data.

Understand index statistics
When we talk about statistics in SQL Server, we do not mean the
term generically. Statistics on one or more columns in tables and
views are created as needed by the Query Optimizer to describe the
distribution of data within indexes and heaps.

Statistics are important to the Query Optimizer to help it make query
plan decisions, and they are heavily involved in the concept of
cardinality estimation. The SQL Server cardinality estimator (CE)
provides accurate estimations of the number of rows that queries will
return—a big part of producing query plans.

 For more on the performance impact of statistics on cardinality
estimation, see Chapter 14.

Making sure statistics are available and up to date is essential for
choosing a well-performing query plan. Stale statistics that have
evaded updates for too long contain information that is quite different
from the current state of the table and will likely cause poor execution
plans.

There are several options in each database regarding statistics
maintenance. Chapter 4, “Install and configure SQL Server instances
and features,” reviews some of these, but we present them again
here in the context of understanding how indexes are used for
performance tuning.



Automatically create and update statistics
Most statistics needed for describing data to the SQL Server are
created automatically, because the AUTO_CREATE_STATISTICS
database option is enabled by default. This results in automatically
created indexes with the _WA_Sys_<column_name>_<object_id_hex>
naming convention.

When the AUTO_CREATE_STATISTICS database option is enabled, SQL
Server can create single-column statistics objects based on query
need. These can make a big difference in performance. You can
determine that a statistics object was created by the
AUTO_CREATE_STATISTICS = ON behavior because it will have the
name prefix _WA. You can also use the following query:

SELECT * 
FROM sys.stats 
WHERE auto_created = 1;

The behavior that creates statistics for indexes (with a matching
name) happens automatically, regardless of the
AUTO_CREATE_STATISTICS database option.

Statistics are not automatically created for columnstore indexes.
Instead, statistics objects that exist on the heap or the clustered index
of the table are used. As with any index, a statistics object of the
same name is created; however, for columnstore indexes it is blank,
and in place for logistical reasons only. This statistics object is
actually populated on the fly and not persisted in storage.

As you can imagine, statistics must also be kept up to date with the
data in the table. SQL Server has an option in each database for
AUTO_UPDATE_STATISTICS, which is ON by default and should almost
always remain on.

You should only ever disable both AUTO_CREATE_STATISTICS and
AUTO_UPDATE_STATISTICS when requested by highly complex
application designs, with variable schema usage, and a separate
regular process that creates and maintains statistics, such as



Microsoft SharePoint. On-premises SharePoint installations include a
set of stored procedures that periodically run to create and update the
statistics objects for the wide, dynamically assigned table structures
within. If you have not designed your application to intelligently create
and update statistics using a separate process from that of the SQL
Server engine, we recommend that you never disable these options.

Inside OUT
Should you enable the AUTO_UPDATE_STATISTICS and
AUTO_UPDATE_STATISTICS_ASYNCHRONOUSLY database
settings?

Yes! (Again, unless an application specifically recommends
that you do not, such as SharePoint.)

Starting with compatibility level 130, the ratio of data
modifications to rows in the table that helps identify out-of-
date statistics has been aggressively lowered, causing
statistics to be automatically updated more frequently. This is
especially evident in large tables in which many rows are
regularly updated. In SQL Server 2014 and before, this more
aggressive behavior was not enabled by default, but could be
enabled via Trace Flag 2371 starting with SQL Server 2008
R2 with Service Pack 1.

It is more important now than ever to enable
AUTO_UPDATE_STATISTICS_ASYNCHRONOUSLY, which can
dramatically reduce the overhead involved in automatic
statistics maintenance.

Manually create statistics for on-disk tables
You can also create statistics manually during troubleshooting or
performance tuning by using the CREATE STATISTICS statement.



Consider manually creating statistics for large tables, and with design
principles similar to how nonclustered indexes should be created. The
order of the keys in statistics does matter, and you should choose
columns that are regularly queried together to provide the most value
to queries.

When venturing into creating your own statistics objects, consider
using filtered statistics, which can also be helpful if you are trying to
carry out advanced performance tuning on queries with a static filter
or specific range of data. Like filtered indexes (covered earlier in this
chapter) or even filtered views and queries, you can create statistics
with a similar WHERE clause. Filtered statistics are never automatically
created.

 For more information on maintaining index statistics, see
Chapter 8.

Understand statistics on memory-optimized
tables
Statistics are created and updated automatically on memory-
optimized tables, and serve the same role as they do for on-disk
structures. Memory-optimized tables require at least one index to be
created, and a matching statistics object is created for that index
object.

It is recommended to always create memory-optimized tables in
databases with the highest compatibility level. If a memory-optimized
table was created with a SQL Server 2014 (12.0) compatibility level,
you must manually update the statistics object using the UPDATE
STATISTICS command. Then, if the AUTO_UPDATE_STATISTICS
database option is enabled, statistics will update as normal. Statistics
for new memory-optimized tables are not automatically updated if the
database compatibility level was below compatibility level 130 when
the tables were created.

 For more on memory-optimized tables, see Chapter 7,
“Understand table features.”



Understand statistics on external tables
You can also create statistics on external tables—that is, tables that
do not exist in the SQL Server database but instead are transparent
references to data stored in Azure Blob Storage via PolyBase.

You can create statistics on external tables, but currently, you cannot
update them. Creating the statistics object involves copying the
external data into the SQL Server database only temporarily, and
then calculating statistics. To update statistics for these datasets, you
must drop them and re-create the statistics. Because of the data
sizes typically involved with external tables, using the FULLSCAN
method to update statistics is not recommended.

 For more on external tables, see Chapter 7.

Understand other types of indexes
There are other types of indexes that you should be aware of, each
with specific, limited uses for certain SQL Server features—for
example, the Full-Text Search engine, spatial data types, and the
xml data type. Though not nearly as common as other types of
indexes mentioned in this chapter, they have powerful specific uses.

Understand full-text indexes
If you have chosen to install the SQL Server Full-Text Search feature,
you can take advantage of the full-text service (fdhost.exe) to query
vast amounts of data using special full-text syntax, looking for word
forms, phrases, thesaurus lookups, word proximity, and more. (You
can of course choose to add the feature via SQL Server Setup if it is
not already installed.)

Because they have specific uses for particular architectures and
applications, we won’t spend much time on them here. Developers
might take advantage of powerful full-text functions CONTAINS or
FREETEXT.



By design, full-text indexes require a unique nonclustered or
clustered rowstore index on the table in which they are created, with
a single column in the key. We recommend that you give this index an
integer key for performance reasons, such as an identity column.
Full-text indexes are usually placed on varchar or nvarchar columns,
often with large lengths, but you can also place them on xml and
varbinary columns.

It is important to understand the two viable options to updating the
full-text index. A full population of the full-text index is effective but will
consume more resources than an incremental load strategy. If the
table receives writes frequently, you should consider the two possible
incremental load strategies. By default, the CHANGE_TRACKING AUTO
option enables the change tracking feature on the table that hosts the
full-text index, which makes it possible for changes to propagate into
the full-text index. This asynchronously keeps the full-text data
synchronized with minimal overhead. If enabling change tracking is
not an option for the table, you can instead add or use an existing
column with the timestamp data type in the table and then periodically
update the full-text index by starting an incremental population.
Consider both strategies, along with your requirements for frequency
of updates to the full-text index. Both are superior to frequent full
populations.

Understand spatial indexes
A spatial index is a special B-tree index that uses a suite of special
code and geometry methods to assist in performing spatial and
geometry calculations. Developers can use these data structures for
non-Euclidean geometry calculations, distance and area calculations
on spheres, and more. Spatial indexes can improve the performance
of queries with spatial operations.

You can create these indexes only on columns that use the spatial
data types geometry or geography, and you can create different types
of indexes on the same spatial column to serve different calculations.
To create a spatial index, the table must already have a primary key.



You create spatial indexes by using bounding boxes or tessellation
schemes for geometry and geography data types. Consult the
documentation and the developers’ intended use of spatial data when
creating these indexes here: https://learn.microsoft.com/sql/relational-
databases/spatial/spatial-indexes-overview.

Understand XML indexes
XML indexes are created for much the same benefit as nonclustered
indexes. You use them to prevent the runtime shredding of XML files
each time they are accessed, and to instead provide a persistent row
set of the XML data’s tags, values, and paths.

Because the xml data type is stored as a BLOB and has an upper
limit of 2 GB of data per row, XML data can be massive, and XML
indexes can be extremely beneficial to reads. Like nonclustered
indexes, they also incur an overhead to writes.

Primary XML indexes prevent the on-demand shredding of the data
by providing a reference to the tags, values, and paths. On large XML
documents, this can be a major performance improvement.

Secondary XML indexes enhance the performance of primary XML
indexes. They are created on either path, value, or property data in
the primary XML index and benefit a read workload that heavily uses
one of those three methods of querying XML data.

 Consult the documentation and the developers’ intended use
of XML data when creating XML indexes at
https://learn.microsoft.com/sql/relational-databases/xml/xml-
indexes-sql-server.

XML compression
SQL Server 2022 introduces XML compression, which can compress
off-row XML data for both XML columns and XML indexes, providing
a much-needed improvement when storing XML data in SQL Server.

https://learn.microsoft.com/sql/relational-databases/spatial/spatial-indexes-overview
https://learn.microsoft.com/sql/relational-databases/xml/xml-indexes-sql-server


When you enable XML compression, the underlying storage is
changed to a compressed binary format, but this doesn’t change how
you query the data, and it doesn’t require any application changes.

Although XML compression works in a similar way to data
compression, it only affects the xml data type and associated XML
indexes. You can run data compression and XML compression side
by side on the same tables, but it must be enabled explicitly on
primary and secondary XML indexes.

Space saving with XML compression
The similarity with data compression extends to two system objects:
the sp_estimate_data_compression_savings system stored
procedure and the sys.dm_db_index_physical_stats dynamic
management function.

You can use sp_estimate_data_compression_savings to estimate
how much space you will save by compressing XML columns and
indexes. In SQL Server 2022, this stored procedure takes a new
parameter, @xml_compression, which is a Boolean value. You can
assign it a bit value of 1, 0, or NULL (the default).

To find out how much space you have saved once you have
compressed your XML data, use sys.dm_db_index-physical_stats.
The following query returns the average row size in bytes, number of
records, and number of data pages occupied to show you the
benefits of compression:
Click here to view code image

SELECT o.name, 
    ips.partition_number, 
    ips.index_type_desc, 
    ips.record_count, ips.avg_record_size_in_bytes, 
    ips.min_record_size_in_bytes, 
    ips.max_record_size_in_bytes, 
    ips.page_count, ips.compressed_page_count 
FROM sys.dm_db_index_physical_stats ( DB_ID(), NULL, NULL, 
NULL, 'DETAILED') ips 



JOIN sys.objects o on o.object_id = ips.object_id 
ORDER BY record_count DESC;



Part VI

Cloud



Chapter 16

Design and implement
hybrid and Azure
database infrastructure

Cloud computing and Microsoft Azure
Cloud models and SQL Server
Cloud security
Other data services in Azure

This chapter examines options for designing a database
infrastructure in which some or all your data is hosted in a public
cloud—specifically, the Microsoft Azure cloud. It begins with an
overview of cloud and Azure concepts. It then discusses
considerations for deploying SQL Server–based infrastructure using
infrastructure as a service (IaaS), platform as a service (PaaS), or a
hybrid approach. The chapter ends with a cursory listing of some
non–SQL Server data platform services in Azure, exploring the
flexibility the cloud has to offer.

All scripts for this book are available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


 Detailed coverage of several PaaS offerings—specifically,
Azure SQL Database and Azure SQL Managed Instance—is
found in Chapter 17, “Provision Azure SQL Database,” and
Chapter 18, “Provision Azure SQL Managed Instance,”
respectively. Migrating to Azure is covered in Chapter 19,
“Migrate to SQL Server solutions in Azure.”

Note
Microsoft Azure consists of multiple “clouds,” including the
public cloud as well as Azure Government and sovereign clouds
in China and Germany. The content of this chapter applies to
the public cloud. Service and feature availability may vary in the
other cloud environments.

Cloud computing and Microsoft Azure
You have likely already encountered many different definitions of
cloud computing. Rather than present you with yet another one, we
will briefly discuss some key features of cloud computing and how
they apply to SQL Server offerings in Azure:

Financial accounting. With traditional on-premises
environments, there is usually a significant initial outlay of
capital. This is called capital expenditure, or “CapEx.” Expenses
in Azure, on the other hand, generally fall under the category of
operational expenditure, or “OpEx.” With OpEx, there is no initial
monetary outlay and little long-term financial commitment. The
fees you pay are pay-per-use charges and are all-inclusive:
hardware, licensing, electricity, monitoring, and more.

Some Azure subscription models incentivize you to commit to a
minimum annual spend in return for a reduced service cost.
OpEx might not be cheaper than CapEx overall, depending on
how efficiently you provision cloud services. These
considerations are beyond the scope of this text, but we strongly



encourage you to plan early to optimize your resource
allocation.

Elasticity. This means the resources you provision are not fixed
in terms of capacity. In on-premises environments, you provision
hardware and software (licensing) sufficient to accommodate
peak demand. In Azure, elasticity gives you the ability to scale
up and down or out and in as needed to accommodate demand
at any given moment.

Control. With on-premises deployments of SQL Server, the
DBA team decides which hardware to select, when to apply
patches, and when to upgrade to a major new release. If you
select an Azure PaaS offering, it’s the team at Microsoft that
makes these decisions. They announce changes and updates
using a variety of channels; as a cloud DBA, one of your tasks
will include regularly reviewing these announcements. You must
thoroughly understand your Azure environment to determine
which changes or updates will affect your application(s).

Database as a service
Azure provides many types of services, including virtual machines
(VMs), web applications, and, of course, Azure SQL Database. Cloud
services are often categorized in one of three types: infrastructure as
a service (IaaS), platform as a service (PaaS), and software as a
service (SaaS). In this book, we may refer to Azure SQL Database as
database as a service (DBaaS), which is a specialized type of PaaS.

You might also choose to host SQL Server databases in the cloud
using Azure Virtual Machine (VM) images, which can come with a
SQL Server version pre-installed. In that case, you are using IaaS.
With IaaS, you gain increased control and complete feature parity
with on-premises deployments. IaaS also introduces more
responsibility for sizing VM specifications appropriately and managing
software updates for both the operating system (OS) and SQL
Server.



Azure SQL Managed Instance is a more recent addition to the SQL
Server offerings in Azure. Azure SQL Managed Instance strikes a
better balance between feature parity and control than IaaS,
especially with the backup portability feature introduced in November
2022 that allows backups and failover with on-premises SQL Server
2022 instances. We discuss Azure SQL Managed Instance and the
link feature for Azure SQL Managed Instance in Chapter 18.

Managing Azure with the Azure portal and
PowerShell 7
When you are ready to begin using Azure, you must deploy, manage,
and eventually tear down resources when applications are retired or
upgraded. To manage on-premises Microsoft environments, you
might use various GUI tools (often based on the Microsoft
Management Console) or PowerShell.

The primary GUI in Azure is the Azure portal. It helps if you also
become comfortable managing resources using PowerShell.

The latest version of PowerShell 7, based on .NET 3.1 Core, was
introduced in 2020 as a unified platform. There is no more distinction
between PowerShell Core and PowerShell. PowerShell 7 allows you
to execute the same PowerShell scripts on a variety of platforms: a
half dozen Linux distributions, macOS 10.13+, Windows 7 and later
versions, and Windows Server 2008 R2 and later versions. A third
option for managing Azure is the Azure Command-Line Interface
(CLI). You can use the Azure CLI across platforms (Windows,
macOS, and Linux) and within the Azure portal using Azure Cloud
Shell.

PowerShell 5.1 remains the default version of PowerShell installed on
current and recent Windows operating systems, and it should handle
many tasks. The dbatools open source library of PowerShell
modules, for example, requires PowerShell 3 for Windows operating
systems, or PowerShell 6.1 for Linux and macOS.



If you intend to use PowerShell scripting as a core part of your
enterprise’s automation, auditing, or provisioning, manually installing
PowerShell 7 is recommended.

To install PowerShell 7, see
https://learn.microsoft.com/powershell/scripting/install/installing-
powershell. The GitHub releases page at
https://github.com/PowerShell/PowerShell/releases lists stable, pre-
release, and Long Term Support (LTS) releases. The releases shown
first might be preview releases, so scroll down to find the release
marked latest. The LTS releases contain only security updates and
other fixes, minimizing the impact of any new features or changes to
sensitive, stable code. For most use cases, you should use the
current stable release. For more information about the PowerShell
Support Lifecycle and these releases, visit https://aka.ms/pslifecycle.

For managing Azure and Azure SQL Database using PowerShell 7,
you should always use the latest Azure PowerShell module, Az. The
module is updated frequently, so be sure to regularly check for
updates. To check the version of PowerShell currently installed, use
$psversiontable and look at the value of PSVersion.

You can install the PowerShell module using the following PowerShell
command, run with administrator privileges:
Click here to view code image

Install-Module -Name Az -AllowClobber

Note
The -AllowClobber parameter is generally only necessary if you
also have the older AzureRM module installed in Windows
PowerShell. The AzureRM PowerShell module is deprecated, will
be retired in February 2024, and hasn’t received feature
updates since December 2018. You should plan to migrate any
scripts that use the AzureRM module to the Az module. For more
information, see

https://learn.microsoft.com/powershell/scripting/install/installing-powershell
https://github.com/PowerShell/PowerShell/releases
https://aka.ms/pslifecycle


https://learn.microsoft.com/powershell/azure/new-azureps-
module-az.

Be patient while the module downloads all its child modules; there are
quite a few of them to manage most Azure services.

To update the module in place, use the following:

Update-Module Az

Before you can manage your Azure resources with PowerShell, you
must log in to Azure. Use the Connect-AzAccount to use the device
login mechanism. A popup window with multifactor authentication will
launch to confirm your Azure credentials.

After logging in, the Get-AzContext cmdlet outputs information about
the active subscription. If you need to switch the subscription, use the
Get-AzSubscription cmdlet to see a list of all subscriptions your
account can manage. You can then use the Select-AzSubscription
cmdlet to change the active subscription to another one. This is
illustrated using the following commands, which assume you have a
subscription with the name 'Pay-As-You-Go'.
Click here to view code image

Get-AzSubscription 
# A list of subscriptions is displayed. 
# You can copy and paste a subscription name on the next 
line. 
Select-AzSubscription -SubscriptionName 'Pay-As-You-Go'

Note
Managing SQL resources in Azure is discussed in Chapters 17
and 18.

Azure exposes a complete REST API that third-party tools or in-
house developed tools can use to perform virtually any action in the
Azure environment. Developers might not even need to call the APIs

https://learn.microsoft.com/powershell/azure/new-azureps-module-az


directly because for many platforms, official client libraries are
available. The use of the REST API is not covered in this book.

 For a discussion on the use of the REST API, see
https://learn.microsoft.com/rest/api/azure/.

Azure governance
Even relatively modest on-premises environments require
governance—organizational processes and procedures by which the
environment is managed and responsibilities are delineated.
Governance is also a necessity in cloud environments. This chapter
can’t delve into all of the governance issues related to cloud
operations. It does, however, discuss some Azure features that allow
governance to be formalized.

Azure resources are organized in a hierarchy of containers. The
container at the top level is the subscription. The subscription is
primarily a billing boundary; all resources in a single subscription
appear on a single invoice and have the same billing cycle. There are
also life cycle consequences: If a subscription is discontinued, all
resources within the subscription stop. (Eventually, the subscription
and resources are deleted.)

Security configuration is also associated with the subscription; a
subscription trusts a single Azure Active Directory (Azure AD)
instance. This means all user accounts used to manage resources
within a subscription must exist within the trusted Azure AD instance.
Microsoft accounts, or user accounts from other Azure AD instances,
can be added as external users to the trusted instance. An
organization can choose to have multiple Azure subscriptions that
trust the same Azure AD instance.

 For more information on Azure AD, see Chapter 12,
“Administer instance and database security and permissions.”

As illustrated in Figure 16-1, a single subscription can have many
resources of several types, and Azure SQL Database is just one.

https://learn.microsoft.com/rest/api/azure/


Resource groups allow you to organize these resources by life cycle
and to provide a security boundary. Resource groups are logical
containers that have a name and a bit of metadata. The resources in
a resource group are deleted if the resource group itself is deleted,
hence the life cycle relationship between the resources and the
resource group.

Figure 16-1 The container relationship between an Azure
subscription, resource groups, and resources.

Using role-based access control (RBAC), permissions can be granted
on a resource group, and those permissions apply to the resources
within the group. Configuring permissions this way can be a huge
timesaver and increase visibility into permission assignments. This is
discussed in more detail in the “Security in Azure SQL Database”
section in Chapter 17. Up front, you must know that the permissions
assigned to the Azure SQL Database resource don’t grant
permissions to sign into the database itself.



Note
You can move resources between resource groups and
subscriptions. When moving resources, the Azure region in
which they are located does not change, even if the target
resource group’s location is different. The location of a resource
group determines only where that resource group’s metadata is
stored, not where the actual resources are hosted.

Cloud-first
If you’ve been working with SQL Server for more than a few years,
you’ve likely noticed the increased release cadence. This is a direct
result of the cloud-first approach in SQL Server product development
that Microsoft adopted a few years ago. Cloud-first in this context
means that new features are generally first made available in Azure
SQL Database as a preview feature. Those preview features are
usually opt-in and are closely monitored by the product team. The
close monitoring allows the team to quickly identify usage patterns
and issues. These features are then included in the next SQL Server
release. A feature released in this way for SQL Server 2022 was
Query Store hints, for example, which was in preview for Azure SQL
Database for more than a year before the release of SQL Server
2022. Features like SHORTEST_PATH, UTF-8 support, Always
Encrypted, dynamic data masking, and graph tables were made
available in Azure SQL Database before their release in SQL Server.

Resource scalability
Scalability is a key feature of cloud computing, and can be
considered along a vertical axis of performance (scaling up) or a
horizontal axis (scaling out). Scaling up means additional hardware
resources are assigned to a server or to a database. Scaling out
means that a database is either broken up into multiple databases,
each holding a portion of the data (sharding), or that additional copies
of the database are made available for read-only connections, such



that those read-only connections are offloaded from the primary
database, which handles the writes.

Generally, scalability with PaaS resources is easier than with IaaS
resources. Scaling a VM up or down causes some downtime, but is
considerably less onerous than moving a database to different
hardware as the workload changes.

You can scale up or scale down an Azure SQL Database with
minimal impact to applications. Depending on the size of the
database and the nature of the scale operation, the operation can
take several hours to complete. This scaling activity is completed
while the database is online, though at the end of the scale operation,
existing connections are dropped.

This benefit, and many others, of PaaS might encourage you to look
first at PaaS for your cloud database needs. That is a valid strategy:
Choose PaaS unless it is unable to meet your requirements, in which
case fall back to IaaS.

When managing many databases, each with potentially many
different scaling needs, you should also consider running these
databases in an elastic pool. An elastic pool is a group of databases
on a single logical server that share the resources available within the
pool. We discuss elastic pools in depth in the “Elastic pools” section
later in this chapter.

Scaling out in Azure SQL Database (recall that is the PaaS offering)
can be accomplished using read-only replicas in service tiers that
support them. Read-scale replicas are discussed later in this chapter,
along with elastic pools, which are ideally suited for sharding
databases.

Networking in Azure
Networking in Azure is an extensive topic that cannot be fully covered
in a single section of this chapter. Therefore, we focus on the aspects
of Azure networking that are critical to the successful operation of the
various types of SQL Server deployments.



An Azure Virtual Network (VNet) is a resource type that defines an IP
range, subnets, and more, as discussed later in this section. In some
Azure deployments, you might not find a VNet; many PaaS resources
don’t require it and some deployments wouldn’t benefit from it.
However, many IaaS and some PaaS resources require or
automatically configure their own VNet, such as Azure VM and Azure
SQL Managed Instance.

You might not be too excited about exposing services to the public
Internet. To secure your VNet, you can use network security groups
(NSGs), which are discussed a little later, or Azure Firewall. Azure
Firewall is a fully managed service that provides granular control over
connections to and from the VNet.

A VNet can be divided into multiple subnets. Each subnet might then
have its own route table, NSG, and service endpoints. Brief
definitions of some of these networking features follow:

Network security group (NSG). An NSG combines security
rules that define the inbound and outbound traffic that is allowed
or denied. An NSG can be applied to a subnet or a single VM
network interface. NSGs can define source and target IP ranges
and ports, service tags, or application security groups (ASGs).

Service tag. A service tag allows you to define a rule in an NSG
without knowing the details about source or target IP addresses.
An example of a service tag relevant for this book is
Sql.KoreaCentral. This service tag defines the IP addresses of
the Azure SQL Database service in the Korea Central region of
Azure.

Application security group (ASG). An ASG is essentially just a
name. It can be assigned to multiple network interfaces, and a
network interface can have multiple ASGs assigned. The ASGs
can then be used instead of a source or destination IP or IP
range, simplifying the maintenance of security rules as VMs are
added or removed from your Azure infrastructure.



 An example of how ASGs can simplify rules is available at
https://learn.microsoft.com/azure/virtual-network/network-
security-groups-overview#application-security-groups.

Service endpoint. A service endpoint is a connection between
the VNet and Azure services. Using service endpoints increases
security because Azure services deployed to the VNet using a
service endpoint are accessible only from the VNet. Service
endpoints also provide routing benefits because the traffic
between the resources in the VNet and the Azure services does
not take the same route as Internet traffic. Not all Azure services
support service endpoints, but Azure SQL Database does.

Private Link is a technique that allows you to assign a private IP
address from a VNet to a PaaS service. With a Private Link enabled,
public endpoints traditionally assigned to PaaS services can be
completely ignored. Connections to the service can be established
only from the same VNet, a peered VNet, a cross-region VNet-to-
VNet connection, Express Route, or a virtual private network (VPN).
Like service endpoints, only select PaaS services support Private
Link. Azure SQL DB supports it, but Azure SQL Managed Instance
does not (perhaps, yet). A Private Link for Azure SQL Database
handles inbound connections only and has no effect on outbound
traffic.

 Private networking between on-premises and Azure is
discussed in the “Hybrid cloud with Azure” section later in this
chapter.

Azure Private Link for Azure SQL Database and Azure Synapse
Analytics allows you to connect to various PaaS resources in Azure
via a private endpoint.

 Learn more about Private Link for Azure SQL Database at
https://learn.microsoft.com/azure/sql-database/sql-database-
private-endpoint-overview.

https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview#application-security-groups
https://learn.microsoft.com/azure/sql-database/sql-database-private-endpoint-overview


Note
At the time of this writing, Private Link availability depends on
the service in use.

Cloud models and SQL Server
Azure offers several ways to manage and query data in a SQL Server
or an Azure SQL platform:

Infrastructure as a service (IaaS). SQL Server running on an
Azure VM.

Platform as a service (PaaS). Azure SQL Database, Azure
SQL Managed Instance, and Azure Synapse Analytics. These
services might also be referred to as database as a service
(DBaaS).

Hybrid cloud. Combines the best features of on-premises SQL
Server with Azure—specifically, a SQL Server feature that
supports Backup to URL, or the link feature for Azure SQL
Managed Instance.

Azure SQL resources, whether IaaS or PaaS, can be managed in a
centralized management hub. You can use this centralized view of
SQL Server VMs, Azure SQL Database logical servers and
databases, and Azure SQL Managed Instance to efficiently manage
SQL resources at scale. The experience of creating new SQL
resources is also streamlined.

Each of the following sections discusses specific terminology and
configuration considerations for running an optimal SQL Server
deployment in Azure. Specifics for deploying Azure SQL Database
and Azure SQL Managed Instance are covered in the next two
chapters.



 Configuring availability groups for SQL Server instance on
Azure VMs is simpler thanks to a new preview feature to
configure multiple subnets in the same Azure virtual network,
removing the requirement to use Azure load balancers. For
more information, see https://learn.microsoft.com/azure/azure-
sql/virtual-machines/windows/availability-group-azure-portal-
configure.

Infrastructure as a service
Take what you’ve learned in the first three chapters of the book about
VMs, and that’s IaaS in a nutshell, optimized for a SQL Server
environment.

As detailed in Chapter 2, “Introduction to database server
components,” a VM shares physical resources with other VMs. In the
case of Azure VMs, there are some configurations and optimizations
that can make your SQL Server implementation perform well, without
requiring insight into the other guest VMs.

When creating a SQL Server VM in Azure, you can choose from
different templates, which provide a wide range of options for different
virtual hardware configurations, operating systems, and, of course,
versions and editions of SQL Server.

Azure VMs are priced using a time-based usage model, which makes
it easier to get started. You pay per minute or per hour, depending on
the resources you need, so you can start small and scale upward. In
many cases, if performance is not acceptable, moving to better virtual
hardware is very easy and requires only a few minutes of downtime.

Azure VM performance optimization
Many of the same rules for physical hardware and VMs outlined in
Chapter 3, “Design and implement an on-premises database
infrastructure,” apply to Azure VMs used for SQL Server. These
include changing power-saving settings to High Performance,

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/availability-group-azure-portal-configure


correctly configuring max server memory usage, spreading tempdb
over several files, and so on.

When you deploy a VM using one of the Microsoft-provided SQL
Server templates, some of these tasks are done for you. For
instance, power-saving settings are set to High Performance already,
and tempdb files are configured properly when you configure a new
Azure VM running SQL Server 2016 or higher.

There are a variety of options for storage on Azure VMs, but you’d
follow some of the same best practices there as well. The OS should
be on its own volume, but database and log files should be separated
on other volumes, just as in an on-premises server hosting a SQL
Server instance. There is one particularly useful exception: the ultra-
fast, local SSD on the temporary disk (volume letter D:), which can
host the tempdb data and log files. More on that later in this chapter,
in the section “Locate tempdb files on the VM.”

Inside OUT
What is Azure Blob Storage?

Coming from a database background, you probably think of a
BLOB as a large object in binary format stored using the
varbinary(max) data type.

In a similar vein, Azure Blob Storage is a service for storing
unstructured text or binary data as objects (binary large
objects or BLOBs), accessible using HTTP or HTTPS. You
can think of these BLOBs conceptually as files. The BLOBs
can contain any type of data, including SQL Server files, but
the service doesn’t know, care, or provide any functionality to
handle structured data.

As a storage service, Azure Storage focuses on high
availability (HA), performance, and disaster recovery (DR)
functions. These highly desirable attributes make Azure



Storage attractive for many scenarios. You’ll find later in this
chapter that many services take advantage of this service.

 To read more about using Azure Blob Storage with SQL
Server backups, visit https://learn.microsoft.com/sql/relational-
databases/backup-restore/sql-server-backup-and-restore-
with-microsoft-azure-blob-storage-service.

Azure Disk Storage
The storage disks for Azure VMs are provided through several
storage offerings. These options are listed in order of increasing
ranges of input/output per second (IOPS).

Standard HDD. Designed for backups and low-cost, latency-
insensitive workloads.

Standard SSD. Suited for low-use enterprise workloads,
including web servers and development and test environments.

Premium SSD. Recommended for production workloads and
other performance-sensitive environments.

Premium SSD v2. Introduced in October 2022 and is
recommended when available for production enterprise
workloads. Unlike Premium SSD, Premium SSD v2 has
independently configurable size and IOPS, meaning that you do
not need to overprovision or stripe storage to get a desired level
of IOPS. You may save money and get more performance by
reconfiguring to use Premium SSD v2. For more information,
see https://aka.ms/premiumv2doc.

Ultra SSD. Ideal for transaction-heavy workloads, including
large-scale database and analytics environments.

 The exact max throughput measured in IOPS is regularly updating
in Azure Storage, so we’ll avoid printing them here. Consult the

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-and-restore-with-microsoft-azure-blob-storage-service
https://aka.ms/premiumv2doc


Azure portal for the latest figures. You can see the disk
comparison chart at https://learn.microsoft.com/azure/virtual-
machines/disks-types.

As mentioned, SQL Server’s main performance bottleneck is tempdb,
followed closely by transaction log files, all of which are I/O-bound.
Consider these when making your price-performance decisions
around Azure VM storage for SQL Server instances.

Inside OUT
Can you use Standard HDD storage for SQL Server?

Yes, you can choose Standard HDD or SSD storage instead
of Premium storage for your SQL Server VM, but we do not
recommend it unless you have a large number of Standard
drives in a striped configuration.

With solid-state storage, you pay for the entire drive, even if
you use only a portion of it. With Standard storage, you pay
only for what you are using. Although this is an attractive cost-
saving opportunity, and might be useful for a development
environment, the storage is not dedicated and is much slower.

Standard storage’s relatively low maximum of IOPS and
throughput will likely negatively affect your SQL Server’s
performance.

You have the choice between unmanaged and managed disks, but
managed disks are the clear option for provisioning new VMs.

Unmanaged disks. VM disks are managed by you, from
creating the storage account and the container, to attaching the
virtual hard disks (VHDs) to a VM and configuring redundancy
and scalability. Unmanaged disks are now a deprecated
technology and not recommended for new development.

https://learn.microsoft.com/azure/virtual-machines/disks-types


Unmanaged disks will be retired, requiring migration, by
September 30, 2025. For more information, visit
https://learn.microsoft.com/azure/virtual-machines/unmanaged-
disks-deprecation.

Managed disks. You specify the size and type of drive you
need (Premium or Standard), and Azure handles the creation,
management, and scaling for you.

 For more information about performance best practices, visit
https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/performance-guidelines-best-practices-
checklist.

Note
Maximum throughput can be limited by Azure VM bandwidth.
Each Azure VM also has a maximum uncached disk
throughput. You might not be able to address disk
performance issues in SQL Server Azure VMs by adding
disks or selecting disks with higher throughput numbers.
Instead, you might need to select a larger VM. In many
cases, you can select a higher size VM to get more system
memory while keeping the vCore count the same.

We recommend a minimum of two P30 drives for SQL Server data
files. The first drive is for transaction logs, and the second is for data
files and tempdb.

Disk striping options
To achieve better performance (and larger drive volumes) out of your
SQL Server VM, you can combine multiple drives into various RAID
configurations by using Storage Spaces on Windows-based VMs or
mdadm on Linux-based VMs. Depending on the Azure VM size, you
can stripe up to 64 Premium storage drives together in an array.

https://learn.microsoft.com/azure/virtual-machines/unmanaged-disks-deprecation
https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-checklist


An important consideration with RAID is the stripe (block) size. As
noted, a 64-KB block size is most appropriate for an online
transactional processing (OLTP) SQL Server environment. However,
large data warehouses can benefit from a 256-KB stripe size, due to
the larger sequential reads from that type of workload.

 To read more about the different types of RAID, see Chapter 2.

Storage account bandwidth considerations
Azure Storage costs are dictated by three factors: bandwidth,
transactions, and capacity. Bandwidth is defined as the amount of
data egress from the storage account. For Azure VMs running SQL
Server, if the storage account is in the same region as the VM, there
is no additional bandwidth cost. If there is any external access on the
data, however, such as log shipping to a different location or using
the AzCopy tool to synchronize data to another region (for example),
there is a cost associated with that.

 For more information on the latest version of AzCopy, visit
https://learn.microsoft.com/azure/storage/common/storage-
use-azcopy-v10.

Drive caching
For SQL Server workloads on Azure VMs, you should enable
ReadOnly caching on the Premium storage drive when attaching it to
the VM, but only for data files and tempdb data files. This increases
the IOPS and reduces latency for your environment, and avoids the
risk of data loss that might occur due to ReadWrite caching. For
drives hosting transaction logs, do not enable caching: Set caching to
NONE.

 You can read more about drive caching and performance best
practices for SQL Server on Azure VMs at
https://learn.microsoft.com/azure/azure-sql/virtual-

https://learn.microsoft.com/azure/storage/common/storage-use-azcopy-v10
https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage


machines/windows/performance-guidelines-best-practices-
storage.

SQL Server data files in Azure Storage
Instead of attaching a data drive to your machine running SQL
Server, you can use Azure Storage to store your user database files
directly, as blobs. This provides migration benefits (data movement is
unnecessary), high availability (HA), snapshot backups, and cost
savings with storage. For system databases, this feature is neither
recommended nor supported.

Caution
Because performance is critical, especially when accessing
storage over a network, you must test this offering, especially
for heavy workloads.

To get this to work, you need a storage account and container on
Azure Storage, a shared access signature (SAS), and a SQL Server
credential for each container.

There are some limitations that might affect your decision:

FILESTREAM data is not supported, which affects memory-
optimized objects, as well. If you want to use FILESTREAM or
memory-optimized objects, you must use locally attached
storage.

Only .mdf, .ndf, and .ldf extensions are supported.

Geo-replication is not supported.

 You can read more (including additional limitations) at
https://learn.microsoft.com/sql/relational-
databases/databases/sql-server-data-files-in-microsoft-azure.

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-storage
https://learn.microsoft.com/sql/relational-databases/databases/sql-server-data-files-in-microsoft-azure


Virtual machine sizing
Microsoft recommends certain types, or series, of Azure VMs for SQL
Server workloads. Each of these series of VMs comes with different
size options.

 You can read more about performance best practices for SQL
Server in Azure VMs at
https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/performance-guidelines-best-practices-
vm-size.

It is possible to resize your VM within the same series (going larger is
as simple as choosing a bigger size in the Azure portal), and in many
cases you can even move across series as the need arises.

You can also downgrade your VM to a smaller size to scale down
after running a resource-intensive process or if you accidentally
overprovision your server. Provided the smaller VM can handle
additional options you might have selected (data drives and network
interfaces tend to be the deciding factor here), it is equally simple to
downgrade a VM to a smaller size by choosing the VM in the Azure
portal.

Both growing and shrinking the VM size requires downtime, but it
usually takes just a few minutes at most.

 At the time of this writing, the Edsv5 series, M-series, and Mv2
series are best suited to OLTP workloads, with the M-series
providing the highest RAM to vCore ratio. For more
information, visit https://learn.microsoft.com/azure/azure-
sql/virtual-machines/windows/performance-guidelines-best-
practices-vm-size#checklist.

Choosing the right series can be confusing, especially with new sizes
and series coming out all the time. The ability to resize VMs makes
this decision less stressful.

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-vm-size
https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/performance-guidelines-best-practices-vm-size#checklist


Note
You pay separately for solid-state drives attached to Azure VMs.
Keep this in mind when identifying the right VM for your
workload.

Locate tempdb files on the VM
Many Azure VMs come with a temporary drive, which is provisioned
automatically for the Windows page file and scratch storage space.
The drive is not guaranteed to survive VM restarts and does not
survive a VM deallocation.

A fairly common practice with Azure VMs is to place the SQL Server
tempdb on this temporary drive because it uses solid-state storage
and is theoretically faster than a Standard storage drive. However,
this temporary drive is thinly provisioned. Recall in Chapter 2 how thin
provisioned storage for VMs is shared among all the VMs on that
host.

Placing the tempdb on this drive might require preparation, because it
can result in high latency—especially if other guests using that
underlying physical storage have done the same thing. Whether this
issue will affect you is determined in part by the series of VM. If you
created the VM using a SQL Server template from Microsoft, then no
preparation is necessary. If you created a VM image yourself or used
a generic VM image, then you must register the VM with the SQL VM
resource provider (recommended and covered in the next section) or
perform the steps in the blog post at
https://cloudblogs.microsoft.com/sqlserver/2014/09/25/using-ssds-in-
azure-vms-to-store-sql-server-tempdb-and-buffer-pool-extensions/.

Manage SQL Server virtual machines in the Azure
portal

https://cloudblogs.microsoft.com/sqlserver/2014/09/25/using-ssds-in-azure-vms-to-store-sql-server-tempdb-and-buffer-pool-extensions/


The Azure portal provides support for managing VMs with SQL
Server installed. When you create a VM from an image that includes
SQL Server, the VM is registered with the SQL VM resource provider.
If you create a VM without SQL Server pre-installed and install SQL
Server yourself, you can register the VM with the resource provider.

Caution
If you are using Azure Hybrid Benefit licensing (discussed later
in this chapter), you must register the VM with this resource
provider. As of this writing, you no longer need to restart the
SQL Server service, which is an appreciated improvement. The
steps to register a VM where you installed SQL Server yourself
are found at https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/sql-agent-extension-manually-register-
single-vm.

Beyond this compliance requirement, the SQL VM resource provider
extends the default VM management options to include automated
patching, automated backup, and additional monitoring capabilities.
You can take advantage of automated backup and patching, but you
are not required to. Both automated management features are
discussed in additional detail below. The automated features depend
on the SQL Server IaaS Agent extension, which is installed in the VM
when the SQL VM resource provider is installed in Full mode.

Inside OUT
What about the SQL Server configuration tab?

Before the availability of the SQL VM resource provider, a
SQL Server configuration tab was available for managing SQL
Server from the VM resource. With the advent of the SQL VM
resource provider, this tab is now deprecated. It is the only
method, however, that can be used to manage SQL Server
versions that have reached end of support—namely SQL

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/sql-agent-extension-manually-register-single-vm


Server 2008, SQL Server 2008 R2, and SQL Server 2012.
You must still register those VMs with the SQL VM resource
provider if you are taking advantage of the Azure Hybrid
Benefit.

Automated backup
There are a few requirements for the automated backup feature.
Chief among them is that only specific versions of SQL Server
running on specific Windows Server versions are supported.
Additionally, the user databases selected for automated backup must
be running in the full recovery model.

 Read more about recovery models in Chapter 10, “Develop,
deploy, and manage data recovery.”

You can configure automated backup to retain backups between 1
and 30 days in an Azure storage account of your choice. Optionally,
backups can be encrypted. When encryption is enabled, a certificate
is generated that is protected by a password. The certificate is stored
in the same storage account where the backups are kept.

Starting with SQL Server 2016, Automated Backup v2 is available.
This offers additional control, including the ability to include the
system databases in the backups. The system databases are not
required to run in the full recovery model.

In v2 as in v1, the backup schedule can be determined automatically
by Azure, in which case the log growth is used to determine the
frequency of backups. In addition, v2 allows the administrator to set
the frequency of the full and log backups.

This service can be particularly advantageous to enterprises short on
staff, particularly in the DBA skill set.

 For more information about the automated backup service for
SQL Server, visit https://learn.microsoft.com/azure/azure-

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/automated-backup


sql/virtual-machines/windows/automated-backup.

Note
In addition to this automated backup feature, which is
convenient but somewhat limited, Azure also supports backing
up SQL Server using Azure Backup for SQL VMs. For more
information, visit https://learn.microsoft.com/azure/azure-
sql/virtual-machines/windows/backup-restore#azbackup.

Automated patching
If you want the Azure infrastructure to patch Windows and SQL
Server, you can enable automated patching for SQL Server VMs. You
choose a day of the week, a start hour (which is in the server’s time
zone), and a maximum duration for the maintenance.

Every week at that time, Windows Updates marked as Important will
be downloaded and installed while the maintenance window is active.
If the maintenance window is too short for all patches to be applied,
the remaining patches will be installed during the next scheduled
maintenance period. After installing patches, the system might be
rebooted, thus incurring downtime.

Note
SQL Server cumulative updates are not included in the
automated patching; you are still responsible for installing
those.

Because of the possibility of multiple periods of performance impact
and downtime each month, automated patching might not be
appropriate for production systems that must be highly available. On
the other hand, configuring automated patching for development and
test VMs can reduce the burden on administrators, allowing them to
focus on the health of the production systems.

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/automated-backup
https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/backup-restore#azbackup


 More information about the automated patching service is
available at https://learn.microsoft.com/azure/azure-sql/virtual-
machines/windows/automated-patching.

Confidential VMs
Introduced in 2022, Azure confidential VMs ensure that the data
storage, memory, OS, and processor activity are strongly protected
against host access inside the datacenter. These boundaries are
hardware-enforced and provide an extra layer of protection for the
most sensitive of data and adherence to strict compliance
requirements. In October 2022, Microsoft announced the first SQL
Server images available for provisioning on confidential VMs.

The use case for confidential VMs is for extremely sensitive data
and/or to achieve special privacy certification for Azure VMs. Azure
confidential VMs use AMD Secure Encrypted Virtualization-Secure
Nested Paging (SEV-SNP) technology, which is a fancy way of
securing the hypervisor and other host management access. The
processor’s state and memory are encrypted by keys generated by
the processor itself. Confidential VMs also feature new UEFI boot
features and a dedicated virtual Trusted Platform Module (TPM). No
further adaption of the operating system, code, or database platforms
on the VM are necessary to achieve this level of protection. In the
future, we may see these enhanced security features become
mainstream on modern operating systems and virtual hosting
platforms.

At the time of this book’s writing, Azure offers four generations of
scalable hardware in both general purpose and memory optimized
sizing, each with a C in the second letter of their name: DCasv5,
ECasv5, DCadsv5, ECadsv5. For more information, see
https://learn.microsoft.com/azure/confidential-computing/confidential-
vm-faq-amd.

Platform as a service

https://learn.microsoft.com/azure/azure-sql/virtual-machines/windows/automated-patching
https://learn.microsoft.com/azure/confidential-computing/confidential-vm-faq-amd


With PaaS resources, you can focus on a task without having to
worry about the administration and maintenance surrounding that
task. This makes it a lot easier to get up and running. You can use
DBaaS resources—including Azure SQL Database, Azure Synapse
Analytics, and Azure SQL Managed Instance—to complement or
replace your organization’s data platform requirements. This section
introduces the currently available PaaS SQL Server offerings in the
Azure cloud.

 Complete coverage of Azure SQL Database is found in
Chapter 17. Complete coverage of Azure SQL Managed
Instance is found in Chapter 18.

Azure SQL Database provides a single database or set of databases
logically grouped in an elastic pool and the freedom to not concern
yourself with resource allocation (CPU, RAM, storage, licensing, OS),
installation, and configuration of that database. You also don’t need to
worry about patching or upgrades at the OS or instance level,
tempdb, backups, corruption, or redundancy. In fact, the built-in
support for database recovery is excellent (including point-in-time
restores). You can even add long-term backup retention to keep your
backups for up to 10 years. Microsoft’s Data Platform is about
choosing the right component to solve a particular problem, as
opposed to one offering being all things to all people.

Azure SQL services (including Azure SQL Database, Azure SQL
Managed Instance, and Azure Synapse Analytics) are part of a larger
vision, combining the strengths of the Database Engine with other
Azure components, breaking the mold of a self-contained or
standalone system. A change in mindset is necessary to appreciate it
for what it offers, instead of criticizing it for its perceived
shortcomings.

Azure SQL Database purchase models
Azure SQL Database charges are calculated based on one of two
purchasing models: by database transaction units (DTUs) or by
vCores. In general, Microsoft recommends the vCore purchasing



model for most production workloads, but DTU offers a lower end of
performance that is simpler and cheaper. You may find databases in
the DTU purchasing model easier to manage for pre-production
environments and the vCore purchasing model better for high-
performance production environments. If you are migrating legacy
applications to Azure SQL Database, you may find better parallels to
on-premises performance in the vCore purchasing model.

In this section, you’ll learn what DTUs and vCores are and how to
choose the right purchasing model for your needs.

Note
It is possible to convert from the DTU-based purchasing model
to the vCore model, and vice versa, without incurring downtime.

Database transaction units (DTUs)
DTUs are likely the Azure SQL Database concept that new adopters
struggle with the most. DBAs must comprehend what it means and
come to terms with the fact that this single measure is how you
determine the level of performance to expect for your database.

A DTU is a blended measure of hardware resources provided for the
database, including CPU, memory, and data and transaction log I/O.
An increase in DTU results in a linear increase in each of the
hardware resources. Thus, when doubling the DTUs for a database,
you effectively double how much CPU, memory, and I/O is assigned
to your database. Microsoft determined the relative mix of these
hardware measures using a benchmark developed for this purpose.
This benchmark, called the DTU benchmark, is designed to be
representative of common OLTP workloads.

 To read a detailed description of the benchmark, visit
https://learn.microsoft.com/azure/azure-sql/database/service-
tiers-dtu#dtu-benchmark.

https://learn.microsoft.com/azure/azure-sql/database/service-tiers-dtu#dtu-benchmark


As you’ll learn in Chapter 17, when creating a database using the
DTU purchasing model, you specify the number of DTUs for that
database by specifying the pricing tier and service objective.
Additional differences between the pricing tiers are also discussed in
that chapter.

Inside OUT
How do you know how many DTUs to provision?

Accurately provisioning DTUs for your database workload
prevents slow response times or excessive charges. Aside
from the workload monitoring you should do anyway to right-
size workloads in the cloud, Microsoft does provide a tool to
perform initial SKU estimations for cloud services. This tool
helps to estimate the DTUs for Azure SQL Database, but also
the compute and storage tiers to choose for Azure SQL
Managed Instance or SQL Server on Azure VMs. The
Database Migration Assistant (DMA) plays a helpful role in
this exercise, which is currently provided in a .NET Core
console application. For more information on the
SqlAssessment.exe utility, see
https://learn.microsoft.com/sql/dma/dma-sku-recommend-sql-
db.

 For more information on QPI, see
https://learn.microsoft.com/azure/azure-sql/database/query-
performance-insight-use.

Selecting a DTU pricing tier and service objective
The DTU model offers three service tiers: Basic, Standard, and
Premium. Because Azure SQL Database is billed by the hour, the
selection of a service tier and service objective determines how much
you will be charged for your database. However, there are additional

https://learn.microsoft.com/sql/dma/dma-sku-recommend-sql-db
https://learn.microsoft.com/azure/azure-sql/database/query-performance-insight-use


considerations. Specific pricing and other details might change by the
time the ink on this page has dried; thus, we focus more on general
concepts that you should be aware of and how they will influence
your selection of a tier.

Note
You can find current pricing for Azure SQL Database at
https://azure.microsoft.com/pricing/details/azure-sql-database/.

The Basic tier provides the lowest available DTUs. You pay
significantly less, but sacrifice performance and some availability
guarantees. This tier is suitable for development purposes and
perhaps very small-scale applications.

The Standard and Premium tiers are the two main choices for
production databases. At first glance, you will notice that the Premium
tier provides considerably more DTUs and does so at a higher cost
per DTU compared to Standard. This is because of architectural
differences between these tiers. The database files in Standard tier
databases are stored in Azure Storage. This means the files are not
local to the Database Engine. In the Premium tier, they are stored on
local SSDs. This difference in the locality of the database files has
performance implications, as you might expect. Further, there is also
a difference in how intra-region high availability (HA) is handled. HA
for Standard tier databases is ensured through the replication of the
back end storage. In the Premium tier, HA is achieved by using
availability group technology.

vCore
For some workloads, the DTU purchasing model might not be
appropriate. Or, your workload may not fit into the pre-selected DTU
balance of resources. For example, Microsoft recommends using the
vCore purchasing model for most production Azure SQL Database
deployments, especially for migrations from on-premises SQL Server
applications. The vCore model allows the administrator to select a

https://azure.microsoft.com/pricing/details/azure-sql-database/


combination of hardware generation, number of CPU cores, and
memory that is assigned to a single database or elastic pool. This
makes it easier to compare the capacity you pay for with on-premises
capacity.

Be careful about comparing cloud or hybrid performance with on-
premises performance. There are a lot of factors that affect the
performance of the Database Engine that won’t be evident when
comparing CPU and memory capacity.

Note
The lowest end of the vCore purchasing model is significantly
more powerful, and therefore more expensive, than the lowest
service objective with the DTU purchasing model. For
comparison purposes, a single vCore is roughly equivalent to
100 DTUs in the standard tier and 125 DTUs in the premium
tier.

Another difference is that the vCore model includes no storage. You
will be billed for the actual storage consumed at the rate of Azure
premium storage in the region where your database is hosted.

Like the DTU model, the vCore model offers service tiers: General
Purpose, Business Critical, and Hyperscale. The main differences
between the General Purpose and Business Critical tiers are found in
the use of remote Azure Blob Storage versus local solid-state storage
(resulting in 10 times higher IOPS at the lowest end and about 28
times higher at the highest end) and support for in-memory objects.
Both differences are much like the difference between the Standard
and Premium service tiers in the DTU purchasing model. The
Business Critical tier also offers the option to provision additional
replicas for HA.

 The architecture of the Hyperscale service tier is so different, it
is covered in the “Hyperscale service tier” subsection below.



 Read-scale replicas are discussed in the “Read scale-out”
section later in this chapter.

Note
vCore is your only option when considering Azure SQL
Managed Instance. This is also the case for the Hyperscale
service tier and serverless compute tier offerings. The
serverless compute tier is discussed later in this section.

Reserved capacity
For scenarios where you can determine a minimum amount of Azure
SQL Database resources you will use, you can reduce your total cost
by prepaying for capacity. Capacity is reserved for a specific region,
deployment type, performance tier (confusingly, another name for
service tier that is used in this context), and a term of one or three
years. When you reserve capacity, any database resources that meet
those criteria are billed at the reserved capacity rate, which is
prepaid. Bear in mind that the prepaid rate does not include charges
that aren’t ordinarily included in the normal billing rates—notably
software, networking, and storage charges.

Note
You do not need to reserve capacity for all your Azure SQL
Database needs if you’re uncertain of your requirements for
certain instances, such as dev/test. You can purchase reserved
capacity for those instances that you are confident you will
need, and additional capacity will be invoiced at your normal
billing rate.

Note
Reserved capacity is available only with the vCore purchasing
model and with Azure SQL Managed Instance.



 Discussing the entire process of reserving capacity for
licensing benefits is outside the scope of this book. For
guidance, visit https://learn.microsoft.com/azure/sql-
database/sql-database-reserved-capacity.

Serverless compute tier
Consider the serverless compute tier for “spiky” workloads requiring
heavy, unpredictable resource utilization followed by periods of
relatively low utilization, or even no utilization, when the service can
auto-pause and auto-resume itself.

The serverless compute tier affords the DBA the ability to select a
minimum and maximum number of vCores to assign to a single
database. Based on workload, the Azure service fabric will
automatically scale up and down how many cores are assigned.

Combined with the auto-scaling of vCores comes an automatic
calculation of a minimum and maximum amount of memory that will
be assigned. The maximum storage size is determined by the DBA
and billed separately. vCores are charged on a per vCore-per-second
basis, taking minimum RAM and storage into account.

Note
Compute tier is another level of differentiation in Azure SQL
Database and is different from the service tier or the purchasing
model. Beyond the auto-scaling of CPU and RAM, the entire
database can be paused after a configurable number of hours
of inactivity. This brings Azure SQL Database even closer to the
ideal of cloud computing: Pay exactly for what you need, when
you need it.

There is a downside to the serverless tier, especially when auto-
pausing is enabled. When database activity resumes, there is a delay
due to the warm-up period required. Even when auto-pausing is not

https://learn.microsoft.com/azure/sql-database/sql-database-reserved-capacity


enabled, frequent memory trimming and the occasional need for the
Azure fabric to load-balance databases between servers might cause
delays and dropped connections. The good news is that if serverless
turns out to be a poor choice for your database, you can move it to
the provisioned compute tier without downtime.

 Additional details on the serverless compute tier can be found
at https://learn.microsoft.com/azure/azure-
sql/database/serverless-tier-overview.

Hyperscale service tier
The Hyperscale service tier offers significantly larger database sizes
combined with other benefits to ensure that managing these very
large databases (VLDBs) doesn’t affect availability.

Architecturally, the Hyperscale tier is quite different from the General
Purpose and Business Critical tiers. Hyperscale introduces a very
different deployment style for the SQL Server Database Engine: The
query processing engine is separated from the storage engine and
the log service, and these components run on different systems. This
radical departure from how SQL Server is deployed allows storage
and compute resources to scale completely independently from each
other. Figure 16-2 illustrates the architecture of the Hyperscale tier.

https://learn.microsoft.com/azure/azure-sql/database/serverless-tier-overview


Figure 16-2 High-level overview of the Hyperscale architecture.

More than just greater maximum size, the Hyperscale architecture
allows for several other impressive feats:

Instantaneous backups that require no CPU or storage
operations on the compute nodes (by leveraging Azure Storage
snapshots).

Warm buffer pools after startup, thanks to persisting the buffer
pool using an in-memory table that is stored on fast local solid-
state storage, a concept known as Resilient Buffer Pool
Extensions (RBPEX).

A recovery point objective (RPO) of 0 minutes with a recovery
time objective (RTO) of less than 10 minutes; moreover, RTO is
not affected by database size.



The ability to migrate databases to the Hyperscale tier and back,
or to “reverse migrate” from the Hyperscale tier, was made
generally available in September 2022.

 For a technical deep dive into the Hyperscale architecture, read
the paper presented by the Microsoft Azure and Microsoft
Research teams at SIGMOD ’19 at
https://www.microsoft.com/research/uploads/prod/2019/05/socrat
es.pdf.

Choose between the DTU and vCore purchasing
model
The DTU model is a good choice for low-end needs. The monthly
cost of the lowest service tier in the DTU model is about seven times
less than the cost of the lowest vCore offering.

The vCore offering is more attractive for medium-sized databases
that nevertheless have significant compute or memory requirements
because storage and compute are scaled independently in the vCore
model.

It’s possible to switch from the DTU model to the vCore and back
again without downtime. Switching to a different purchase model is
subject to the same restrictions you would encounter when scaling
down a database. Mainly, you cannot scale down to a service tier that
allows a maximum database size that is less than the current size of
your database.

Alternatively, you can place your databases in an elastic pool.
Databases in elastic pools use a single instance of the Database
Engine and share the same pool of resources. It becomes easier to
manage those varying workloads with unpredictable usage patterns
by balancing the group in the pool instead of individual databases.
We discuss elastic pools later in this chapter.

Differences from SQL Server

https://www.microsoft.com/research/uploads/prod/2019/05/socrates.pdf


SQL Server is a complete, standalone relational database
management system (RDBMS) designed to create and manage
multiple databases and the associated processes around them. It
includes a great many tools and features, including a comprehensive
job scheduler.

Think of Azure SQL Database, then, as an offering at the database
level. Because of this, only database-specific features are available.
You can create objects such as tables, views, user-defined functions,
and stored procedures, as well as memory-optimized objects. You
can write queries, and you can connect an application to it.

What you can’t do with Azure SQL Database is run scheduled tasks
directly via Windows Task Scheduler or SQL Agent, though other
cloud-based automation solutions are available, detailed later in this
section.

Querying other databases within Azure SQL Database is limited,
though elastic database queries are a preview feature. Azure SQL
Managed Instance allows cross-database queries just like a SQL
Server instance.

You can’t restore an Azure SQL database from a SQL Server backup,
but with new features introduced in Azure SQL Managed Instance,
version parity does allow for backups to be restored into and out of a
SQL managed instance.

In Azure SQL Database and Azure SQL Managed Instance, you don’t
have access to a file system, so importing data is more complicated.
You can’t manage system databases, and in particular, you can’t
manage tempdb, though Azure SQL Managed Instance does allow
for some tempdb configuration.

There is currently no support for user-defined SQL Server common
language runtime (CLR) procedures (instead, consider Azure SQL
Managed Instance). However, the native SQL CLR functions, like
those necessary to support the hierarchyid and geospatial data
types, are available.



On-premises environments typically use only integrated
authentication to provide single sign-on (SSO) and simplified login
administration. In such environments, SQL Server Authentication is
often disabled. Disabling SQL Server Authentication is not supported
in Azure SQL Database. Instead of integrated authentication, there
are several Azure AD authentication scenarios supported. These are
discussed in more detail in Chapter 17.

Azure SQL Database does not support multiple filegroups or files. By
extension, several other Database Engine features that use
filegroups are unavailable, including FILESTREAM and FileTable.

 You can read more about FILESTREAM and FileTable in
Chapter 7, “Understand table features.”

Database limitations
Azure SQL Database is subject to certain size limitations, such as the
maximum database size. The maximum database size varies based
on the purchase model and the pricing tier. In the DTU purchase
model, the database size includes only the size of the data; the size
of transaction logs is not counted. In the vCore purchase model, you
are billed for the actual amount of storage consumed by your
database, including the transaction log and backups.

If you are designing an application for the cloud, size limitations are
less of a restriction when deciding whether to adopt Azure SQL
Database. This is because an application designed to operate at
cloud-scale should shard its data across several database instances.
In addition to overcoming database size limitations, the benefits of
sharding also include faster DR and the ability to locate the data
closer to the application if the application runs in different Azure
regions.

To provide predictable performance for Azure SQL Database, there
are limits to the number of concurrent requests, concurrent logins,
and concurrent sessions. These limits differ by service tier and



service objective. If any limit is reached, the next connection or query
attempt will fail with error code 10928.

 You can find an exhaustive list of these operational limits
online at https://learn.microsoft.com/azure/azure-
sql/database/resource-limits-logical-server.

One final limitation to be aware of is that a single server has an upper
limit on the total DTUs it can host as well as on the total number of
databases. For a large deployment, this might require distributing
databases across servers. We recommend against operating at or
near this limit because overall performance can become suboptimal.
As of this writing, you should limit the number of databases per server
to around 5,000.

Note
Any limitations discussed in this chapter are subject to change
frequently, so be sure to review current limitations before
deciding whether Azure SQL Database is right for you. You can
do so here: https://learn.microsoft.com/azure/azure-
sql/database/resource-limits-logical-server.

The resource limits—whether DTUs or vCores—force us to rethink
how we best use the service. It is easy to waste a lot of money on
Azure SQL Database because it requires a certain DTU service level
at certain periods during the day or week, but at other times it is idle.
It is possible to scale an Azure SQL database up and down as
needed, but if this happens regularly, it makes the usage, and
therefore the cost, unpredictable. Elastic pools (see the upcoming
section on this) are a great way to get around this problem by
averaging out resource usage over multiple databases with elastic
DTUs or vCores.

Other SQL Server services

https://learn.microsoft.com/azure/azure-sql/database/resource-limits-logical-server
https://learn.microsoft.com/azure/azure-sql/database/resource-limits-logical-server


In addition to the Database Engine, an on-premises deployment of
SQL Server might include the following:

SQL Server Agent. To schedule maintenance tasks or other
activities

SQL Server Integration Services (SSIS). To load or extract
data

SQL Server Reporting Services (SSRS). To provide report
functionality

SQL Server Analysis Services (SSAS). To support analytical
workloads

These services are not included in Azure SQL Database. Instead,
comparable functionality is often available through separate Azure
services. A complete discussion of the available alternatives in Azure
is beyond the scope of this book. The descriptions that follow are
intended to merely name some of the alternatives and their high-level
uses and direct you to an online starting point to learn more:

SQL Server Agent alternatives. To schedule recurring tasks for
Azure SQL Database instances, DBAs should consider using
Azure Automation. This service makes it possible to reliably
execute potentially long-running PowerShell scripts. You can
use Azure Automation to automate management of any Azure or
third-party cloud service, including Azure SQL Database. In
addition, there is a gallery of reusable scripts available.

If you only require execution of T-SQL statements in your
recurring tasks and you don’t need complex job branching logic
between steps, elastic database jobs might also be a suitable
replacement. These are covered in the upcoming “Elastic
database jobs” section.

 For more information on using Azure Automation with Azure SQL
Database, see https://learn.microsoft.com/azure/azure-
sql/database/automation-manage.

https://learn.microsoft.com/azure/azure-sql/database/automation-manage


 Find an introduction to Azure Automation at
https://learn.microsoft.com/azure/automation/overview.

SSIS alternatives. Instead of SSIS, use Azure Data Factory to
perform tasks such as extracting data from various sources,
transforming it by using a range of services, and finally
publishing it to data stores for consumption by business
intelligence (BI) tools or applications. Azure Data Factory
includes an SSIS-compatible integration runtime, which allows
you to run SSIS packages in Azure.

You can use SSIS to extract data from and load data to Azure
SQL Database, and you can use Data Factory to extract data
from and load data to on-premises data stores. The decision
about which service to use depends largely on where most of
your data resides, which services you plan to use to transform
the data, whether you allow a cloud service to connect to your
on-premises environment using a gateway service, and the cost
of data egress if you are bringing your data back on-premises.

 You can learn more about Data Factory at
https://learn.microsoft.com/azure/data-factory/.

SSRS alternatives. Microsoft Power BI is a recommended
cloud-native replacement for SSRS. Power BI is a powerful tool
to create interactive visualizations using data from various
sources. You can embed Power BI dashboards and reports in
applications. You can also access them directly using a web
browser or mobile app. Power BI Premium supports paginated
reports, the type of reports you would develop with SSRS in the
past. If you must have SSRS, you can run it in a VM on Azure,
but you must pay for or provide a SQL Server license.

 You can learn more about Power BI at
https://aka.ms/powerbidocs.

SSAS alternatives. There are several alternative Azure
services to replace SSAS. Foremost, there is Azure Analysis

https://learn.microsoft.com/azure/automation/overview
https://learn.microsoft.com/azure/data-factory/
https://aka.ms/powerbidocs


Services. It is built on SSAS; as such, existing tabular models
can be migrated from on-premises SSAS deployments to the
cloud. Alternatively, Power BI also includes tabular model
functionality that might replace SSAS and has significant
investment from Microsoft as the path forward for analytical
workloads. For new development of enterprise data
warehousing and analytical solutions, you should consider
Azure Synapse Analytics, an enterprise analytical solution to
unify non-relational and relational data in dedicated SQL and
serverless SQL pools. Power BI, SQL data warehousing, Spark
compute pools, machine learning, and easy low-code, web-
based development are all included in the broad Azure Synapse
platform.

 In addition to these replacements, we include a brief overview of
other data services in Azure in the last section of this chapter,
“Other data services in Azure.”

Note
Some of the limitations described in this section can be
addressed by using Azure SQL Managed Instance. We cover
Azure SQL Managed Instance in detail in Chapter 18.

That said, Azure SQL Database is not going to completely replace
SQL Server. Some systems are not designed to be moved into this
type of environment, and there’s nothing wrong with that. Microsoft
will continue to release a standalone SQL Server product. On the
other hand, Azure SQL Database is perfect for supporting web
applications that can scale up as the user base grows. For new
development, you can enjoy all the benefits of not having to maintain
a database server at a predictable cost.

Read scale-out
If you’re thinking a read scale-out replica is a secondary database
instance that provides read-only access to your data, you are correct.
Provisioning these replicas in Azure SQL Database is supported in



the Premium, Business Critical, and Hyperscale service tiers. In the
Premium and Business Critical tiers, it is also enabled by default
when you create a new database.

Note
Some features are not available on the replica database. These
features are the Query Store, Extended Events, SQL Profiler,
and, crucially perhaps in regulated environments, Audit. It is
possible to disable the read scale-out feature. However,
database-scoped Extended Events can collect data.

An application indicates its intent for a read-only or read-write
connection using the ApplicationIntent property in the connection
string. Specifically, a value of ReadOnly causes the connection
gateway to direct the connection to a read-only replica, if available.
Not specifying ApplicationIntent or specifying a value of ReadWrite
directs the connection to the primary replica.

Inside OUT
What’s the difference between a read-scale replica and a
readable secondary?

A readable secondary database is a feature of geo-replication,
which is discussed in detail in Chapter 17. As a feature of
geo-replication, secondary databases are created by the DBA
and generally located in a different region from the primary.
Read scale-out is configured by the Azure infrastructure and
the replicas live in the same region as the primary. Read
scale-out comes with no extra cost, unlike geo-replication.

Microsoft recommends that if read scale-out is enabled on
geo-replicated databases, it should also be enabled on the
secondary database(s).



Although there is some overlap in the functionality between
these two features, read-scale replicas are primarily designed
for load balancing, while readable secondaries are designed
for HA and DR.

Elastic pools
As noted, Azure SQL Database has limits on its size and resources.
Like Azure VMs, Azure SQL Database is pay-per-usage. Depending
on what you need, you can spend a lot or a little on your databases.

Elastic pools increase the scalability and efficiency of your Azure SQL
Database deployment by providing the ability to pool several
databases to share resources, whether priced according to DTUs or
vCores.

Without elastic pools, each database might be provisioned with
enough resources to handle its peak load. This can be inefficient. If
you group databases with different peak load times in an elastic pool,
the Azure fabric automatically balances the resources assigned to
each database depending on their load. You can set limits to ensure
that a single database does not starve the other databases in the
pool of resources.

The best use case for elastic pools is one in which databases in the
pool have low average resource utilization with spikes that occur from
time to time. This might be due to a reporting-type query that runs
once a day, or a help desk system that experiences a lot of traffic at
certain times of the day, for instance. The elastic pool evens out
these spikes over the full billing period, giving you a more predictable
cost for an unpredictable workload across multiple databases.

Note
An elastic pool is tied to a single logical server. It’s not possible
to pool databases hosted on various logical servers in a single



overarching pool. This has been in preview for a few years and
there is no date for general availability.

Multitenant architecture
Azure SQL databases in an elastic pool enable you to provision new
databases with predictable growth and associated costs. Managing
these databases is much easier in this environment because the
administrative burden is lowered. Performance is also predictable
because the pool is based on the combined resource utilization.

However, not all scenarios benefit from the use of elastic pools. The
most beneficial are those in which databases experience their peak
load at separate times. Imagine a software company with clients
around the world, with each using a different Azure SQL Database in
the elastic database pool. Each “tenant” database peaks at different
times of day, using the majority of the pool’s resources at peak
operating hours. You must monitor the usage patterns of each
customer and balance the elastic database pools according to your
expected business model.

 For more information on multitenancy in Azure SQL Database,
visit
https://learn.microsoft.com/azure/architecture/guide/multitena
nt/service/sql-database.

Database consolidation
In an on-premises environment, database consolidation means
finding a powerful enough server to handle the workload of many
databases, each with its own workload pattern. Similarly, with elastic
database pools, the number of databases is limited by the pool’s size.
For example, in the DTU purchasing model, the current maximum
elastic pool size is 4,000 elastic DTUs (eDTUs) in a premium pool.
This means you can operate up to 160 databases (at 25 DTUs each)
in that single pool, sharing their resources.

https://learn.microsoft.com/azure/architecture/guide/multitenant/service/sql-database


In the vCore purchasing model, the maximum elastic pool size on the
Business Critical tier gives you as many as 128 virtual cores along
with 3,767 GB of RAM and 4 TB of data storage.

Combined with autoscale settings, depending on resource
boundaries, consolidation makes a lot of sense for an organization
with many small databases, just as it does with an on-premises SQL
Server instance.

Elastic database tools
Scale-out in Azure SQL Database is also achieved using the elastic
database tools client library, which is available for .NET and Java
applications. Applications developed using this library can save their
data in different Azure SQL databases based on data-dependent
routing rules while retaining the ability to run SELECT queries across all
shards. This is a popular model for SaaS applications because you
can assign each SaaS customer its own database.

 You can find more information on the elastic database tools at
https://learn.microsoft.com/azure/azure-sql/database/elastic-
scale-get-started.

Azure SQL Database elastic query
Perhaps the most surprising limitation in Azure SQL Database is that
support for cross-database queries is very limited. This means it is
not possible to write a query that uses a three- or four-part object
name to reference a database object in another database or on
another server. Consequently, semantic search is not available.

Azure SQL Database elastic query, which is still in preview at the time
of writing, aims to provide a solution. For both vertically and
horizontally partitioned databases, this feature can provide a way to
write T-SQL statements that are executed across databases by
leveraging the external data sources and external tables feature.

https://learn.microsoft.com/azure/azure-sql/database/elastic-scale-get-started


Caution
Azure SQL Database elastic query is not recommended for
extract, transform, load (ETL) operations. When multiple
sources are involved in a query, if a source is unavailable, the
entire query will fail. You must include retry logic in your
application as a best practice.

There are some limitations, however. On the Standard tier, the first
query can take several minutes to run because the functionality to run
the query needs to be loaded first. Additionally, access is currently
read-only for external data. Performance does improve on the higher
tiers as costs increase, but this is not meant to replicate home-grown
systems that have many databases tightly bound together.

 Read more about Azure SQL Database elastic query, and
horizontal and vertical database partition scenarios, at
https://learn.microsoft.com/azure/azure-sql/database/elastic-
query-overview.

Elastic database jobs
A SQL Server instance can run the same query against multiple
databases from a list of registered servers or a central management
server. In a similar manner, the elastic database jobs feature enables
you to run a script written in T-SQL against multiple databases in
Azure SQL Database. For example, if your organization offers its
customers a SaaS solution, each customer might receive their own
database instance, and the schemas of all databases must be kept
synchronized.

Elastic jobs remain in public preview as of the writing of this book, but
a generally available (GA) announcement is expected. Let’s discuss
what elastic database jobs can do for your Azure SQL environment.

An elastic database job can target the databases that are part of a
custom group of databases. A job is inserted into a job database,

https://learn.microsoft.com/azure/azure-sql/database/elastic-query-overview


which is a standalone Azure SQL Database on a logical server
referred to as the agent server. An Azure resource called an elastic
job agent is created, pointed at the agent server and job database.
Job credentials, which allow the agent to connect to the target
databases, are stored in the job database, as is the list of target
databases itself. Elastic database jobs can consist of multiple steps
and can have a rudimentary schedule with simple recurrence rules.
(See Figure 16-3.) Finally, the results can be stored in the job
database, and diagnostics are available from the Elastic Job Agent
pane in the Azure portal. This flow is very similar to a SQL Server
Agent job.

Figure 16-3 Elastic database job flow.

 You can read about elastic scale in Chapter 17 and find out
more about elastic database jobs, such as their architecture
and setup, at https://learn.microsoft.com/azure/azure-
sql/database/elastic-jobs-overview.

https://learn.microsoft.com/azure/azure-sql/database/elastic-jobs-overview


Note
Some on-premises use cases for the SQL Server Agent might
be addressed with elastic database jobs. For other use cases,
you must use other Azure functions to automate tasks. Refer to
the “Other SQL Server services” section earlier in this chapter
for a brief intro to Azure Automation.

Shard databases with split-merge
Azure SQL Database is designed for SaaS scenarios because you
can start small and grow your system as your customer base grows.
This introduces several interesting challenges, however, including, for
example, what happens when a database reaches its maximum
resource limit and size.

Sharding is a technique by which data is partitioned horizontally
across multiple nodes to improve either the performance or the
resiliency of an application. In the context of Azure SQL Database,
sharding refers to distributing data across more than one database
when it grows too large. (If this sounds like table partitioning, you’re
mostly right.)

It is all very well to add more databases (shards) to support your
application, but how do you distribute your data evenly across those
new databases? The split-merge tool can move data from
constrained databases to new ones while maintaining data integrity. It
runs as an Azure web service, which means there is an associated
cost. The tool uses shard map management to decide what data
segments (shardlets) go into which database (shard) using a
metadata store (an additional standalone Azure SQL Database) and
is completely customizable.

 To read about how this process works in detail, visit
https://learn.microsoft.com/azure/azure-sql/database/elastic-
scale-overview-split-and-merge.

https://learn.microsoft.com/azure/azure-sql/database/elastic-scale-overview-split-and-merge


Hybrid cloud with Azure
Azure SQL Database is not designed to completely replace SQL
Server. Many thousands of organizations all over the world are quite
happy with the security, performance, and low latency offered by
hosting their environment on-premises, but would like to use certain
components in the cloud.

The most common implementation of a hybrid cloud is with Azure AD.
Instead of having to manage user accounts in two places (on-
premises and in Azure, for Microsoft 365, for example), you can
synchronize your Active Directory Domain Service (AD DS) with
Azure AD and manage it all in one place.

Mixing your on-premises and Azure environments, in whichever way
you do it, falls under the definition of a hybrid cloud. Microsoft has
some interesting ways of helping you achieve this, especially around
the data platform and SQL Server.

Azure Hybrid Benefit
Users can obtain significant savings on SQL Server VM or Azure
SQL Database list prices if they have active Windows or SQL Server
core licenses with Software Assurance. This is called the Azure
Hybrid Benefit. Exactly which type of licenses can be converted or
reused, and how they map to Azure offerings, is covered in detail in
the Azure Hybrid Benefit FAQ found at
https://azure.microsoft.com/pricing/hybrid-benefit/faq/.

 You can calculate the expected savings using the Azure
Hybrid Benefit Savings Calculator at
https://azure.microsoft.com/pricing/hybrid-benefit/.

Azure Hybrid Benefit is available for SQL Server VMs, Azure SQL
Database using the vCore purchase model, and Azure SQL Managed
Instance. In other words, Azure SQL Database in the DTU purchase
model is not eligible for discounted rates using Azure Hybrid Benefit.

https://azure.microsoft.com/pricing/hybrid-benefit/faq/
https://azure.microsoft.com/pricing/hybrid-benefit/


Note
Azure Hybrid Benefit is a feature unique to Azure. It is different
from the Software Assurance license mobility benefit, which
might be used to reassign SQL Server core licenses to third-
party providers offering unmanaged services, such as VMs or
hosted SQL Server.

Automate backups with SQL Server managed
backups
With SQL Server on Azure VMs, you can automate SQL Server
native backups that write directly to Azure Blob Storage. (This works
with an on-premises version of SQL Server, as well, but latency can
be an issue.)

By default, the schedule depends on the transaction workload, so a
server that is idle will have fewer transaction log backups than a busy
server. This reduces the total number of backup files required to
restore a SQL Server database in a DR scenario.

You can also use advanced options to define a schedule. However,
you must set this up before enabling managed backups to avoid
unwanted backup operations. Additionally, the retention period is
customizable, with the maximum being 30 days.

You can configure these backups at the instance or database level,
providing much-needed flexibility for smaller database environments
that would not ordinarily have a full-time database administrator on
hand.

You can fully encrypt backups through SQL Server backup
encryption, and Azure Blob Storage is encrypted by default (for data
at rest).

 You can read more about encryption in Chapter 13, “Protect
data through classification, encryption, and auditing.”



There is an associated cost with the Azure Storage container
required to store these database backups, but when the retention
period is reached, older files are cleared out, keeping the costs
consistent. If you were building your own custom backup solution,
you would incur similar costs anyway, and there is a good chance the
managed backup storage costs will be lower.

 To read more about SQL Server managed backup to Microsoft
Azure, visit https://learn.microsoft.com/sql/relational-
databases/backup-restore/sql-server-managed-backup-to-
microsoft-azure.

Azure SQL Edge
For the Internet of Things (IoT), a lot of effort is expended in getting
sensors and other devices to report their data to a SQL Server
instance or Azure SQL Database in the cloud. Azure SQL Edge is a
repackaged SQL Server instance that can run on low-power and IoT
edge computing devices, with either 64-bit ARM or Intel x64 CPUs—
for example, a Raspberry Pi computer. Edge includes the full SQL
Server Database Engine running on Linux, along with some analytics
features, including data streaming and time-series support.

Typical use cases for Azure SQL Edge include sitting on the factory
floor, in supervisory control and data acquisition (SCADA) settings, or
other continuously streamed, lightweight processing applications
where low-voltage processes win on convenience, durability, and/or
survivability.

 You can read more about Azure SQL Edge at
https://azure.microsoft.com/products/azure-sql/edge/.

Azure Stack
This is Microsoft’s version of an edge and hybrid cloud in which you
can install certain Azure services on-premises on Microsoft-approved
hardware. This brings the power of Azure to your own datacenter.

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-managed-backup-to-microsoft-azure
https://azure.microsoft.com/products/azure-sql/edge/


 Hardware requirements can be found on Microsoft Docs, at
https://learn.microsoft.com/azure-stack/hci/concepts/system-
requirements.

After you have developed the solutions that best suit your
organization, you can deploy your applications and solutions to the
Azure region that makes the most sense, or just keep them on-
premises, hosted on Azure Stack.

You can use the Azure Stack Hub to expose Azure SQL databases
as a service; or, use the SQL resource provider for virtual machines
hosting SQL Server instances. This enables your users to create
databases without having to provision a VM every time. Think of it as
an on-premises version of Azure SQL Database.

Keep in mind that certain features like elastic pools, and scaling
databases, are not available at this time.

 You can read more about SQL databases on Azure Stack at
https://learn.microsoft.com/azure-stack/operator/azure-stack-
sql-resource-provider-deploy.

Azure Arc–enabled data services
Azure Arc–enabled data services provide the ability to run data
services on-premises, on the edge, in the cloud, or multi-cloud using
an underlying Kubernetes infrastructure.

At the time of this writing, this option is available for Azure SQL
Managed Instance and Azure Database for PostgreSQL Hyperscale
(Citus). Hyperscale (Citus) is a new Azure platform offering
horizontally scaled PostgreSQL clusters.

With Azure Arc–enabled data services, you can run cloud services
close to the workload for improved performance, services such as
patching, new features and frequent updates, and the Microsoft
Defender security module.

https://learn.microsoft.com/azure-stack/hci/concepts/system-requirements
https://learn.microsoft.com/azure-stack/operator/azure-stack-sql-resource-provider-deploy


You can run services such as self-service provisioning, automated
backup and restore, and monitoring locally with or without a network
connection to Azure, ensuring continued functionality if connectivity is
lost.

 You can read more about Azure Arc–enabled data services at
https://azure.microsoft.com/products/azure-arc/hybrid-data-
services/.

Private networking between on-premises and
Azure
Many organizations want to ensure a secure channel between their
environments, whether that is using Azure VNets or their on-premises
network and Azure. You can achieve this using a VPN.

A VPN encrypts traffic over any network (including the Internet)
through a tunnel that it creates. All traffic that travels through the
tunnel is secure, which means no attackers can monitor the traffic.
However, there is a performance overhead with encrypting that traffic,
which makes the connection slightly slower.

There are two main ways that Azure implements connections
between your on-premises environment and Azure itself. One of
these is through a traditional VPN service over the Internet (site-to-
site), and the other is through a dedicated connection that does not
use the public Internet (Azure ExpressRoute).

Site-to-site VPN
There are two scenarios when connecting systems to an Azure VNet:
connecting two Azure VNets together and connecting an external
network to an Azure VNet.

To connect two Azure VNets together in the same region, you can
create a peering network—in other words, no part of the VNet goes
out to the Internet—which is priced per gigabyte transferred.

https://azure.microsoft.com/products/azure-arc/hybrid-data-services/


If you want a VPN gateway instead, which creates a connection
between your on-premises network and an Azure VNet, those are
priced according to the maximum bandwidth you would require (100
Mbps, 650 Mbps, 1 Gbps, and 1.25 Gbps) and charged at an hourly
rate (which, depending on what you need, is also reasonably priced).

Azure ExpressRoute
If the speeds of site-to-site VPNs are not satisfactory, and you want to
connect your on-premises network to your Azure VNet, you can use
ExpressRoute. With its low latency, ExpressRoute expands your
existing network to the virtually limitless services available in Azure,
depending on your budget, of course. Microsoft recommends
ExpressRoute for data migration, replication, and other HA and DR
strategies.

 For more information about ExpressRoute, see
https://azure.microsoft.com/services/expressroute.

This type of bandwidth gives you the flexibility to move entire VMs
from on-premises to Azure for test environments and migrations. Your
customers can use Azure web services that take data from your on-
premises environment without ever going over the public Internet.

You can also use it to create a DR site, using SQL Server log
shipping. Perhaps you want to extend your availability group to the
cloud, which you can do by using a distributed availability group (see
Chapter 2). Using ExpressRoute, you can treat Azure as an
extension of your own network, as illustrated in Figure 16-4.

https://azure.microsoft.com/services/expressroute


Figure 16-4 Azure VNets can connect to an on-premises network
in various ways.

Inside OUT
How fast can data be transferred over a VPN connection?

Network speed is measured in bits per second (bps). Because
there are 8 bits in a byte, a single byte would take 8 seconds
to be transmitted at 1 bps, at the theoretical maximum
throughput (perfect network conditions).

For speeds in the gigabit-per-second (Gbps) range, it takes at
least 8 seconds to transfer 1 GB at a speed of 1 Gbps. It will
take slightly longer due to latency and other overhead, like
encryption.



Transferring data over large distances incurs latency due to
the universal speed limit known as the speed of light. A
network packet will take approximately 65 milliseconds to
move across the continental United States and back again.
You must consider both network speed and latency when
planning migrations, as well as DR and HA scenarios.

Cloud security
Although we didn’t include a comprehensive discussion of cloud
security in this book, this section does provide a few considerations
for DBAs considering a cloud migration.

First, many SQL Server offerings in the cloud support the same
security features as on-premises. This is true for SQL Server in Azure
VMs, and largely true for Azure SQL Database and Azure SQL
Managed Instance. Specific security considerations for the PaaS
offerings are discussed in Chapters 17 and 18, respectively.

An important aspect of managing security in Azure is Microsoft
Defender for Cloud. Found in the Azure portal, it provides an
integrated view of the security posture for all your Azure resources.
Microsoft Defender for Cloud also provides metrics and
recommendations to help you improve the security of your resources,
including the SQL resources. Some Microsoft Defender for Cloud
features are available in the paid Standard tier, while many are
included with the cost of your existing resources.

 Learn more about Microsoft Defender for Cloud at
https://learn.microsoft.com/azure/defender-for-cloud/defender-
for-cloud-introduction.

SQL recommendations you might receive from Microsoft Defender for
Cloud include enabling auditing on Azure SQL Databases and
enabling vulnerability assessment on a SQL Server VM.

https://learn.microsoft.com/azure/defender-for-cloud/defender-for-cloud-introduction


Deploying SQL resources in Azure means you must understand
security in Azure in general. As a DBA, you must know who has
access to view and especially manage SQL resources. Permissions
to manage resources can be given at the account, subscription,
resource group, and individual resource level. You must know how to
monitor changes to Azure resources. Further, you must learn about
networking in Azure.

Note
If you work in any sort of government or military setting, you're
likely familiar with the acronym Security Technical
Implementation Guide (STIG). The United States Department of
Defense's Defense Information Systems Agency (DISA)
released the first STIG for Microsoft Azure SQL Database in
November 2022. A STIG may go a long way to helping certify
Azure SQL-based applications for high security clearance. For
more information, visit
https://public.cyber.mil/announcement/disa-releases-the-
microsoft-azure-sql-database-security-technical-
implementation-guide/.

Other data services in Azure
Azure offers more data services than we cover in this book. We
mention these here briefly because in today’s multi-platform
environments, there is more to our world than SQL Server. Each of
these different offerings have their strengths and weaknesses.
Deploying a modern application might involve mixing these different
services to create a single solution to serve a business need.

Azure Synapse Analytics
The most closely related offering is Azure Synapse Analytics, which
includes the Azure platform formerly known as Azure SQL Data

https://public.cyber.mil/announcement/disa-releases-the-microsoft-azure-sql-database-security-technical-implementation-guide/


Warehouse, Power BI, Azure Data Factory, the open-source
SynapseML library of machine learning pipelines, and much more.
Built on Apache Spark compute and Azure Data Lake Storage, Azure
Synapse Analytics (not to be confused with Synapse Analytics, a
different company) is a broad PaaS service optimized for parallel
query processing and large data volumes.

Azure Synapse can scale a variety of different relational and non-
relational storage and compute independently by leveraging Azure
Storage and a massively parallel processing engine. This makes it
suitable for storing enormous amounts of disparate data that arrive in
the cloud in different ways.

 Learn more about Azure Synapse Analytics at
https://learn.microsoft.com/azure/synapse-analytics/.

Azure Synapse Link
New for SQL Server 2022 is Azure Synapse Link. It provides a direct
connection between Azure Synapse and SQL Server 2022, allowing
on-premises data to be sent in a bulk upload—and then at regular
intervals—using change data capture (CDC)—to Azure Synapse.
From there, Azure Synapse can consume your relational data from
an on-premises SQL Server side-by-side with streamed, IoT, delta
store, non-relational, and other data.

 You can learn more about connecting Azure Synapse Link to
SQL Server 2022 at
https://learn.microsoft.com/azure/synapse-analytics/synapse-
link/connect-synapse-link-sql-server-2022.

Non-relational Azure data offerings
Azure provides several services and features for non-relational data
management. These services enable you to work with data in a
variety of formats outside of relational data. This would include graph,
spatial data, key-value pairs, JSON, and XML documents.

https://learn.microsoft.com/azure/synapse-analytics/
https://learn.microsoft.com/azure/synapse-analytics/synapse-link/connect-synapse-link-sql-server-2022


Multi-model capabilities in Azure SQL
A recent addition to Azure SQL Database and Azure SQL Managed
Instance is multi-model capabilities. This is valuable for when you
have small amounts of unstructured data that you must incorporate
into a typically relational database architecture. It can be useful for in-
memory technologies to improve the performance of analytics. Or you
can create copies of your data and offload some analytic workloads
from the primary database for performance or convenience when
using transactional replication or readable replicas.

You don’t need specialized APIs for access. You can use JSON Path
expressions, XQuery/XPath expressions, spatial functions, and graph
query expressions in the same T-SQL query—in your preferred tool
or programming language—to access the data in the database.

 Read more about multi-model data capabilities at
https://learn.microsoft.com/azure/azure-sql/multi-model-
features.

Cosmos DB
Outside the realm of relational database management systems,
Azure Cosmos DB is noteworthy. This is a globally distributed
database service that supports multiple data models, including key-
value, document, graph, and relational. Azure Cosmos DB provides
multiple distinct APIs atop a single global database service.

Various APIs include the API for NoSQL, Apache Gremlin, Apache
Cassandra, MongoDB, Azure Table storage, and PostgreSQL.

 Learn more about Azure Cosmos DB at
https://learn.microsoft.com/azure/cosmos-db/.

Third-party fully managed data platforms
Azure also offers third-party fully managed database platforms—
namely Azure Database for MariaDB, Azure Database for MySQL,

https://learn.microsoft.com/azure/azure-sql/multi-model-features
https://learn.microsoft.com/azure/cosmos-db/


and Azure Database for PostgreSQL. These are all relational
databases offered as PaaS, with similar scaling and flexibility options
to Azure SQL Database.

 You can learn more about these services at
https://azure.microsoft.com/products/category/databases/.

https://azure.microsoft.com/products/category/databases/


Chapter 17

Provision Azure SQL
Database

Provision an Azure SQL Database logical server
Provision a database in Azure SQL Database
Provision an elastic pool
Manage database space
Security in Azure SQL Database
Prepare Azure SQL Database for disaster recovery

This chapter delves into Azure SQL Database, a cloud database
service that provides SQL Server relational Database Engine. Azure
SQL Database is a platform as a service (PaaS) offering designed for
cloud applications to take advantage of relational database services,
without most of the overhead of managing the Database Engine.
Azure SQL Database is also designed to meet various requirements,
from hosting a single database associated with an organization’s line-
of-business application to hosting thousands of databases for a
global software as a service (SaaS) offering. This chapter looks at
Azure SQL Database concepts and how to provision and manage
databases.



 For an overview of cloud concepts and an introduction to the
different SQL Server offerings in Microsoft Azure, see Chapter
16, “Design and implement hybrid and Azure database
infrastructure.” Azure SQL Managed Instance is covered in
Chapter 18, “Provision Azure SQL Managed Instance.”

In this chapter, you’ll learn how to create your first server and
database, with thorough coverage of the available options and why
each one matters. Next, this chapter explains how to create and
manage elastic pools.

Security must be on your checklist when deploying any database,
and perhaps even more so in the cloud. This chapter includes
coverage of the security features specific only to Azure SQL
Database. Finally, this chapter reviews features designed to prepare
your cloud-hosted database for disaster recovery.

 For security features common to SQL Server, refer to Chapter
12, “Administer instance and database security and
permissions,” and Chapter 13, “Protect data through
classification, encryption, and auditing.”

Throughout this chapter, you will find many PowerShell samples to
complete tasks. This is important because the flexibility of cloud
computing offers quick setup and teardown of resources. Automation
through scripting becomes a must-have skill—unless you prefer to
work overtime in the web GUI.

 If you need an introduction to PowerShell 7, we discussed it in
the previous chapter. Also refer to
https://github.com/PowerShell/PowerShell/tree/master/docs/le
arning-powershell.

The scripts for this book are all available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

https://github.com/PowerShell/PowerShell/tree/master/docs/learning-powershell
https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


Inside OUT
How do I keep up with new Azure SQL Database
features?

Database as a service (DBaaS) platforms move faster than
releases of SQL Server. Many new Database Engine features
arrive on Azure SQL Database first, then show up in the next
release of SQL Server. Azure SQL Database and Azure SQL
Managed Instance likely have had new features announced
since this book was published. It’s also true that some
features arrive in SQL Server first, then are later introduced to
Azure SQL platforms.

New features often move from “(preview)” to “generally
available (GA)” in a few months, but sometimes they stay in
preview for longer as Microsoft continues to gather feedback
and telemetry on adoption.

Keep up with the latest new features in Azure SQL Database
on the “What’s new” page:
https://learn.microsoft.com/azure/azure-sql/database/doc-
changes-updates-release-notes-whats-new.

Provision an Azure SQL Database
logical server
The Azure SQL Database service introduces a concept called an
Azure SQL logical server (note the lowercase server). This server is
quite different from what you might be used to on-premises. A logical
server is best described as a connection endpoint rather than an
instance. For example, the Azure SQL logical server (just called
logical server or just server from here on) does not provide compute
or storage resources. It does not provide much configuration. And
although there is a virtual master database, there is no model,

https://learn.microsoft.com/azure/azure-sql/database/doc-changes-updates-release-notes-whats-new


tempdb, or msdb database—those are abstracted away. In addition to
missing several features of an on-premises SQL Server, there are
also features that are unique to logical SQL servers: firewall
configuration and elastic pools to name just two.

 You can find more information about firewall configuration later
in this chapter. We covered elastic pools in Chapter 16.

You should consider that your server determines the geographic
region where your data will be stored. When a single logical server
hosts multiple databases, these databases are collocated in the same
Azure region, but they might not be hosted on the same hardware.
That is of no consequence to you when using the databases, but the
point serves to illustrate the purely logical nature of logical servers.

Creating a logical server is the first step in the process of deploying a
database. The logical server determines the region that will host the
database(s), provides the basis for access control and security
configuration (more on that later), and provides the fully qualified
domain name (FQDN) of the endpoint.

Note
Using the Azure portal, it is possible to provision a new logical
server while creating a new database. All other methods require
two separate steps or commands, so for consistency, we will
discuss each separately in this chapter. This will allow the focus
to remain on each distinct element (server and database) of
your provisioning process.

You might be interested to know that provisioning a logical server
does not incur usage charges. Azure SQL Database is billed based
on the resources assigned to each database or elastic pool. The
logical server acts only as a logical container for databases and
provides the connection endpoint. This is also why there are no
performance or sizing specifications attached to a logical server.



Inside OUT
When should you create a new logical server?

The logical server determines the region where the databases
are located. Your databases should be in the same region as
the applications or users that access them, both to avoid
cross-region traffic charges and to have the lowest possible
latency when running queries.

Security considerations can also dictate how many logical
servers you operate. Because the server admin login and
Azure Active Directory (Azure AD) principal assigned as
server admins have complete control and access to all
databases on a logical server, you might set up different
logical servers for different applications or different
environments, such as development, test, and production. On
the other hand, the threat detection feature (discussed in
detail in the section “Security in Azure SQL Database” later in
this chapter) is charged per logical server. Therefore, you’ll
likely want to strike a balance between manageability, cost,
and security.

The final factors when considering creating a new logical
server or reusing an existing one are the database life cycle
and billing aggregation. The database life cycle is tied directly
to the logical server, so if you operate databases with very
different life cycles, you could benefit from improved
manageability by hosting those on different logical servers.

As it relates to billing, because your usage is charged per
database, you might find benefits in aggregating charges for
specific databases. You can aggregate charges by using a
resource group or by using tags. Recall that all databases are
tied to the resource group of the logical server where they are
hosted. If you want to aggregate charges for several
databases, these databases could be deployed to the same
logical server, or you could assign the same tag and value to



each database even if they are hosted on different servers in
different resource groups.

Create an Azure SQL Database server using the
Azure portal
To provision a server using the Azure portal, use the search feature to
find SQL Database and then use the Create SQL Database Server
page. You must provide the following information to create a server:

Subscription. The subscription in which you create the server
determines which Azure account will be associated with
databases on this server. Database usage charges are billed to
the subscription.

Resource group. The resource group where this server will
reside. Review the section “Azure governance” in Chapter 16 to
learn about the importance of resource groups.

Server name. The logical server name becomes the DNS name
of the server. The domain name is fixed to
database.windows.net. This means your logical server name
must be globally unique and lowercase. There are also
restrictions as to which characters are allowed, though these
restrictions are comparable to on-premises server names.

Location. The Azure region where any databases are physically
located. Azure SQL Database is available in most regions
worldwide. You should carefully consider the placement of your
servers and, by consequence, your databases. Your data should
be in the same region as the compute resources (Azure Web
Apps, for example) that will read and write the data. When you
locate the applications that connect to the server in the same
region, you can expect latency in the order of single-digit
milliseconds. Another consequence of locating resources in
other regions is that you might end up paying per gigabyte for
the egress from the region where the data is located. Not all



services incur these charges, but you must be aware before
going this route.

Authentication method. You have the option to use only SQL
Authentication, only Azure AD Authentication, or both SQL and
Azure AD Authentication.

Server admin login. This username is best compared to the sa
account in a SQL Server. However, you cannot use sa or other
common SQL Server identifiers for this username; they are
reserved for internal purposes. You should choose a generic
name rather than one derived from your name because you
cannot change the server admin login later.

Password. The password associated with the server admin
login. It is required only when you choose to use SQL
Authentication. The admin password should be very strong and
carefully guarded—ideally stored in Microsoft Azure Key Vault.
Unlike the login itself, Azure users with specific roles can
change it.

Azure AD Admin. If you choose to use Azure AD Authentication
on the logical server, you must specify an Azure AD user or
group as the Azure AD Admin.

 You can read more about applying role-based access control
(RBAC) to your Azure SQL Database resources later in this
chapter.

When you create a new SQL Database logical server using the Azure
portal, you can enable the new server’s firewall to accept connections
from all Azure resources. Before deploying any databases, we
recommend that you either use a virtual network (VNet) service
endpoint or configure the firewall to only allow connections from
known IP addresses, as described in Chapter 16.

 You can read more about the firewall in the section “Server-
and database-level firewall” later in this chapter.



Another decision you’ll make at the server level is whether to enable
Microsoft Defender for SQL, which is covered later in this chapter.

As with all Azure resources, you can add tags to the Azure SQL
logical server resource, as well as the databases, SQL elastic pools,
storage accounts, and so on. Tags are name-value pairs that enable
you to categorize and view resources for billing or administrative
purposes. Tags are highly recommended for your own enterprise
organization, and they can also be used in reporting. Most commonly,
you’ll want to add a “Created By” tag, so that others in your
environment know who created the resource.

There are other settings you might want to configure when you create
a server, but they are found on the resource page after the server has
been provisioned. For example, you can choose to use a service-
managed key or a customer-managed key for transparent data
encryption (TDE). You might also want to enable the system-assigned
managed identity (SMI), which is useful for allowing the server to
access other resources such as an Azure Key Vault. You can also
create user-assigned managed identities (UMIs). These options are
all covered later in this chapter.

Create a server using PowerShell
To provision a server using PowerShell, use the New-AzSqlServer
cmdlet, as demonstrated in the following code example. You must
modify the values of the variables in lines 1 through 6 to fit your
needs. These commands assume the following objects already exist:

A resource group with the name SSIO2022

An Azure Key Vault with a secret named SQLAdminPwd

The server will be created in the active Azure tenant and subscription,
so be sure to set your context appropriately before creating your
server.
Click here to view code image



$resourceGroupName = "SSIO2022" 
$location = "southcentralus" 
$serverName = "ssio2022" 
$adminSqlLogin = "SQLAdmin" 
$adminSqlSecret = Get-AzKeyVaultSecret -VaultName 'SSIO-KV' -
Name 'SQLAdminPwd' 
$cred = $(New-Object -TypeName 
System.Management.Automation.PSCredential -ArgumentList 
$adminSqlLogin, $($adminSqlSecret.SecretValue) ) 
$tags = @{"CreatedBy"="Kirby"; "Environment"="Dev"} 
New-AzSqlServer -ResourceGroupName $resourceGroupName ` 
   -ServerName $serverName ` 
   -Location $location ` 
   -SqlAdministratorCredentials $cred ` 
   -AssignIdentity ` 
   -IdentityType "SystemAssigned" ` 
   -Tags $tags

The New-AzSqlServer PowerShell cmdlet allows you to create
managed identities, specify the key to be used for TDE, specify the
minimum TLS version, and disable public network access while
provisioning the server.

The preceding script creates a server with the (SQL Authentication)
server administrator specified. You might also want to specify the
Azure AD admin as well.

In this script, the Get-AzKeyVaultSecret cmdlet is used to obtain the
password for the SQLAdmin server administrator. This cmdlet retrieves
the secret object from the key vault. Then the secret value is used to
create a PowerShell credential object. The secret value is a secure
string, so the plain text password is never exposed by the script. All
values needed to create a server are provided as parameters to the
New-AzSqlServer cmdlet. The script also creates a system-assigned
managed identity for the server.

Note
All the sample Azure PowerShell scripts throughout this chapter
build on the existence of an Azure SQL Database logical server



named ssio2022 in a resource group named SSIO2022. You
must choose your own server name because it must be globally
unique. The sample scripts available for download are all
cumulative and define the value just once, which makes it easy
to make a single modification and run all the sample scripts.

Establish a connection to your server
With a server created, you can establish a connection. Azure SQL
Database supports only one protocol for connections: TCP. In
addition, you have no control over the TCP port number; it is always
1433.

Note
Some corporate networks might block connections to Internet IP
addresses with a destination port of 1433. If you have trouble
connecting, check with your network administrators.

Figure 17-1 shows the different values entered in the Connect to
Server dialog box after you use SQL Server Management Studio
(SSMS) to connect to the newly created server. When you first
establish the connection, SSMS prompts you to create a firewall rule
to allow this connection (see Figure 17-2). You must sign in with your
Azure account to create the firewall rule.



Figure 17-1 The Connect to Server dialog box, showing values to
connect to the newly created Azure SQL Database
logical server.



Figure 17-2 The New Firewall Rule dialog box that opens if the IP
address attempting to connect is not included in any
existing firewall rule.

Connections to Azure SQL Database are always encrypted, even if
this is not specified in the connection string. For older client libraries,
you might need to specify encryption explicitly in the connection string
because these libraries might not support the automatic upgrade of
the connection. If you neglect to specify it explicitly when using these
older client libraries, you might receive an error message. Use



Encrypt=True in the connection string if needed to successfully
connect.

You might be tempted to look up the IP address of your server and
use the IP address instead of the FQDN to connect. This is not
recommended because the IP address for the server is really the IP
address of a connection gateway. This IP address is subject to
change at any time as the Azure infrastructure conducts updates or
failovers.

Note
During Azure upgrade windows or infrastructure failures, you
might experience a brief period of connectivity loss while the
DNS infrastructure and your client(s) retain the cached IP
address. The downtime after a maintenance operation is
typically under 10 seconds, but you might have to wait up to 2
minutes for DNS records to be updated and clients to clear
cached IP addresses.

Delete a server
Deleting a server is a permanent, irreversible operation. You should
delete a server only if the following conditions are true:

You no longer need that server’s name.

You are confident that you will not need to restore any
databases that are or were hosted on it.

You are approaching the limit of servers permitted in a
subscription.

Note
As of this writing, the default maximum number of servers in a
single subscription is 20 in a single region. You can request an



increase up to 250 servers per subscription in a single region by
contacting Azure Support.

Provision a database in Azure SQL
Database
After provisioning a server, you are ready to provision your first
database. Provisioning a database incurs charges associated with
the service tier that you select. As a reminder, pricing for Azure SQL
Database is per database or elastic pool, not per logical server.

The sections that follow discuss the process of provisioning a
database using the Azure portal, PowerShell, Azure CLI, and
Transact-SQL (T-SQL).

Note
You can provision a new Azure SQL Database logical server
while provisioning a new database only by using the Azure
portal. All other methods require two separate steps or
commands.

Create a database using the Azure portal
There are several ways to create a new database in Azure SQL
Database using the Azure portal. One is to start from the Overview
pane of an existing server. You can also start from the Create New
Service pane. The method you choose determines which values you
must provide:

Subscription. Select the subscription that will be used to bill the
charges for this database. The subscription you select here will
narrow down the list of server choices later. This parameter is
not shown when the process is started from a server.



Resource Group. Choose to create a new resource group or
use an existing one. If you choose to create a new resource
group, you must also create a new server. Choosing an existing
resource group does not narrow the list of server choices later.

Database Name. The database name must be unique within the
server and meet all requirements for a database name in SQL
Server.

Server. You can select an existing logical server in the selected
subscription or create a new one. If you select a server in a
different resource group from the one you selected, the resource
group value will be updated automatically to reflect the correct
selection. This is because the life cycle of a database is tied to
the life cycle of the server, and the life cycle of the server is tied
to the resource group. Therefore, a database cannot exist in a
different resource group than its server. This server value is
locked when the process is started from a logical server.

Elastic Database Pool. We discuss elastic pools in detail in the
“Provision an elastic pool” section later in this chapter. From the
Create SQL Database pane, you can select an existing elastic
pool or create a new one.

Backup Storage Redundancy. This affects how your point-in-
time restore and long-term retention backups are replicated. As
of this writing, you can choose locally redundant, zone-
redundant, or geo-redundant backup storage.

Data Source. You select one of three values that match the
previously mentioned options: Blank Database, Sample, or
Backup. You can create a database from one of three sources:

Blank. A blank database is just that: There are no user
database objects.

Sample. The new database will have the lightweight
Adventure Works schema and data.



Backup. You can restore the most recent daily backup of
another Azure SQL Database in the subscription.

Collation. The collation selected here becomes the database’s
default collation. Unlike on-premises, there is no GUI to set the
new database’s collation name. You can type the collation name
from memory or use a basic UI to search the list of valid SQL
Server collation names.

Backup. You are prompted to provide this only if you select
Backup as the data source. The database you select will be
restored to its most recent daily backup, which means it might
be up to 24 hours old.

 You can read more about options for restoring database backups
in the “Understand default disaster recovery features” section
later in this chapter.

Service and Compute Tier. When creating a standalone
database, you must select a service tier and a compute tier. The
service tier determines the hourly usage charges and several
architectural aspects of your database. (Chapter 16 discusses
service tiers and compute tiers.) It is possible to mix service tiers
of databases within a logical server, underscoring the fact that
the server is merely a logical container for databases and has
no relationship to any performance aspects. The compute tier
specifies whether you want a serverless or provisioned
database. When selecting the service and compute tier, you can
also set a maximum database size. Your database will not be
able to run INSERT or UPDATE T-SQL statements when the
maximum size is reached.

Maintenance Window. When creating a standalone database,
you might have the option to change the maintenance window
while creating the database. Although the drop-down is always
present in the Azure portal, the maintenance windows available
depend on the region in which you are provisioning your
database, which itself depends on your logical server’s region.



Inside OUT
How do you choose the right hardware?

At the time of this book’s writing, standard-series (Gen5)
hardware is recommended for a balance of memory and
compute that suits most workloads. Other hardware
configurations become available over time, and some are
being retired.

Gen4 hardware is being retired. At the time of this writing, it is
still possible to create an Azure SQL Database on Gen4
hardware, but it is not recommended. As of the time of this
book’s writing, in March 2023, remaining Gen4 hardware will
be automatically upgraded to Gen5. Hardware generation
options for Azure SQL change periodically.

M-series hardware has also been retired and is no longer
available, and existing M-series hardware will be migrated to
comparable standard-series (Gen5) hardware by September
2023.

Create a database using PowerShell
The following script illustrates how to create a new general purpose
standalone database with two vCores on an existing server named
ssio2022. The database collation is set to Latin1_General_CI_AS.
The -Vcore, -ComputeGeneration, -ComputeMode, -CollationName,
and -Edition parameters are optional. We show them here as an
example of a commonly specified configuration. The default collation
for Azure SQL Database is SQL_Latin1_General_CP1_CI_AS, which
might not be desirable.

 Collation is discussed in detail in Chapter 4, “Install and
configure SQL Server instances and features.”



Pay attention to the server name. It is lowercase because the
parameter value must match exactly. Logical server names cannot
contain uppercase characters.
Click here to view code image

$resourceGroupName = "SQL2022" 
$serverName = "ssio2022" 
$databaseName = "Contoso4" 
$tags = @{"CreatedBy"="Kirby"; "Environment"="Dev"} 
New-AzSqlDatabase -ResourceGroupName $resourceGroupName ` 
   -ServerName $serverName ` 
   -Edition "GeneralPurpose" ` 
   -Vcore 2 ` 
   -ComputeGeneration "Gen5" ` 
   -ComputeMode "Provisioned" ` 
   -CollationName "Latin1_General_CI_AS" ` 
   -DatabaseName $databaseName ` 
   -Tags $tags

Other optional parameters include the following:

CollationName. Similar to the database collation in SQL Server,
this is the collation for the SQL database user data.

CatalogCollation. This parameter determines the collation of
character data in the database’s metadata catalog. Note that
you cannot set this database property in the GUI. This value
defaults to SQL_Latin1_General_CP1_CI_AS. The catalog
collation, used for system metadata, cannot be changed. This is
a concept specific to Azure SQL Database and not SQL Server.
This is a multitenancy feature, allowing you to have a consistent
collation for schema but client-specific collations for user data.

ElasticPoolName. When specified, this database will be added
to the existing elastic pool on the server. Elastic pools are
covered later in this chapter.

MaxSizeBytes. Sets the maximum database size in bytes. You
cannot set just any value here; there is a list of supported



maximum sizes. The available maximum sizes depend on the
selected service tier.

SampleName. Specify AdventureWorksLT if you want the
database to have the available sample schema and data.

LicenseType. Use this parameter to take advantage of Azure
Hybrid Benefit discounted pricing.

Tags. This parameter is common to many Azure cmdlets. You
can use it to specify an arbitrary number of name-value pairs.
Tags are used to add custom metadata to Azure resources. You
can use both the Azure portal and PowerShell to filter resources
based on tag values. You can also obtain a consolidated billing
view for resources with the same tag values. An example is -
Tags @{"Tag1"="Value 1";"Tag 2"="Value 2"}, which
associates two name-value pairs with the database. The name
of the first tag is Tag1 with Value 1, and the name of the second
tag is Tag 2 with Value 2.

After creating the database, you can retrieve information about it by
using the Get-AzSqlDatabase cmdlet, as shown here:
Click here to view code image

$resourceGroupName = "SSIO2022" 
$serverName = "ssio2022" 
$databaseName = "Contoso" 
Get-AzSqlDatabase -ResourceGroupName $resourceGroupName ` 
-ServerName $serverName ` 
-DatabaseName $databaseName

Create a database using Azure CLI
The Azure CLI enables you to use the same set of commands to
manage Azure resources regardless of the platform of your
workstation: Windows, macOS, Linux, and even using the Azure
portal’s Cloud Shell.



Note
Installing the Azure CLI on different operating systems is not
covered in this text. Guidance for each OS is available at
https://learn.microsoft.com/cli/azure/install-azure-cli.

The following Azure CLI command creates a database with the same
parameters as those found in the preceding PowerShell script. After
creating the database, the new database’s properties are retrieved.

 You can find the full list of supported CLI commands for Azure
SQL Database at https://learn.microsoft.com/cli/azure/sql/db.

Click here to view code image

  az sql db create \ 
   --resource-group SSIO2022 \ 
   --server ssio2022 \ 
   --name Contoso \ 
   --collation Latin1_General_CI_AS \ 
   --edition GeneralPurpose \ 
   --capacity 2 \ 
   --family Gen5 \ 
   --compute-model Provisioned \ 
   --tags Environment=Dev CreatedBy=Kirby 
  az sql db show --resource-groupSIO2022 --server ssio2022 --
name Contoso

Note
For clarity, long parameter names are used in the preceding
example. Many parameters for the az command also have a
shorthand version. For example, instead of using --resource-
group, you can use -g. The --help (shorthand: -h) parameter
shows both the long and shorthand parameter names, if a
shorthand version is available. As with PowerShell, we
recommend using the long parameter names to aid
maintenance and understanding.

https://learn.microsoft.com/cli/azure/install-azure-cli
https://learn.microsoft.com/cli/azure/sql/db


Create a database using T-SQL
The following T-SQL script creates a new Azure SQL database with
the same properties as in both previous examples. To create a new
database, connect to the server on which the new database will
reside—for example, using SSMS or Azure Data Studio:
Click here to view code image

CREATE DATABASE Contoso COLLATE Latin1_General_CI_AS 
(EDITION = 'GeneralPurpose', SERVICE_OBJECTIVE = 
'GP_Gen5_2');

Because the T-SQL command is run in the context of a server, you do
not need to, nor can you, provide a server name or resource group
name. You cannot use T-SQL to create a database based on the
AdventureWorksLT sample, but you can use it to restore a database
backup from a database on the same or a different server using the
AS COPY OF clause, as shown here:
Click here to view code image

CREATE DATABASE Contoso_copy AS COPY OF Server1.Contoso;

Inside OUT
How do you copy an Azure SQL database from another
server?

It is possible to create a database as a copy of another
database on a different server, but there are some additional
conditions that must be met. You must sign into the master
database on the target server using a login that is either the
server administrator or a member of the dbmanager role. The
login must have the same name and password as the
database owner of the source database on the source server.



It is possible to copy a database from another server in a
different subscription, or even a different tenant. This must be
done using a SQL Authentication login. Copying a database in
another tenant is not supported when either the source or
target server has Azure AD Authentication enabled.

Remember, this uses the last available backup of the source
database. The operation might take some time to complete.
The state_desc column in sys.databases will show the value
'COPYING' while the copy operation is in progress. To monitor
the copying progress, you can query the
sys.dm_operation_status catalog view. The percent_complete
column in sys.dm_operation_status will provide a progress
report of the restore operation.

You do not have to use the same service objective for the new
copy of the database, but you must choose a service objective
within the same tier. Be careful to make it large enough to
provide sufficient resources to complete the copy operation.

Scale up or down
Azure SQL Database scale operations are conducted with minimal
disruption to the availability of the database. A scale operation is
performed by the service using a replica of the original database at
the new service level. When the replica is ready, connections are
switched over to the replica. Although this does not cause data loss
and is completed in a time frame measured in seconds, active
transactions might be rolled back. The application should be
designed to handle such events and to retry the operation.

Scaling down might not be possible if the database size exceeds the
maximum allowed size for the lower service objective or service tier. If
you know you will likely scale down your database, you should set the
current maximum database size to a value equal to or less than the
future maximum database size for the service objective to which you
might scale down.



In most tiers, scaling is initiated by an administrator. Only the
serverless tier supports autoscaling. If the serverless tier does not
meet your needs, you can consider deploying databases to an elastic
pool (discussed shortly) to automatically balance resource demands
for a group of databases. Another option to scale without
administrator intervention is to use Azure Automation to monitor
resource usage and initiate scaling when a threshold has been
reached. You can use the PowerShell Set-AzSqlDatabase cmdlet to
set a new service tier with the -Edition parameter, and a new service
objective with the -RequestedServiceObjectiveName parameter.

Provision a named replica for a Hyperscale
database
In June 2022, the named replica feature for Azure SQL Database
Hyperscale became generally available. Named replicas enable you
to scale out read-only workloads to up to 30 replicas. Named replicas
share the same storage, but not compute. Each replica can have a
different service-level objective (compute size). Named replicas allow
isolated access, where a user can be granted read-only access to a
specific replica without being granted access to the primary or other
replicas.

 See Chapter 16 for more information on the Hyperscale tier of
Azure SQL Database.

 For more information on use cases for Azure SQL Database
Hyperscale named replicas, see this post on the Azure SQL
blog: https://techcommunity.microsoft.com/t5/azure-sql-
blog/azure-sql-database-hyperscale-named-replicas-feature-
is/ba-p/3455674.

Named replicas allow for several differences from the primary replica
that are not supported in normal high availability replicas, including
the following:

They can have a different database name from the primary
replica.

https://techcommunity.microsoft.com/t5/azure-sql-blog/azure-sql-database-hyperscale-named-replicas-feature-is/ba-p/3455674


They can be located on a different logical server from the
primary replica, as long as they are in the same region.

You can configure different authentication for each named
replica by creating different logins on logical servers hosting
named replicas.

Unlike high availability (HA) replicas, named replicas appear as
regular databases in the Azure portal and REST API. They cannot be
used as a failover target.

To create a named replica using the Azure portal, locate the existing
Hyperscale database. Then, in the Data Management section in the
left menu, choose Replicas. Next, on the Replicas page, choose
Create Replica. (See Figure 17-3.) Be sure to select Named Replica
for the replica type on the Basics page of the wizard that starts.

Figure 17-3 Selections in the Azure portal to create a named
replica for a Hyperscale database.

 For detailed instructions to create a named replica in the Azure
portal, T-SQL, PowerShell, or Azure CLI, review
https://learn.microsoft.com/azure/azure-sql/database/service-
tier-hyperscale-replicas.

Provision an elastic pool

https://learn.microsoft.com/azure/azure-sql/database/service-tier-hyperscale-replicas


Chapter 16 discussed the benefits and use cases of elastic database
pools. Elastic pools are created per server, and a single server can
have more than one elastic pool. The number of eDTUs or vCores
available depends upon the service tier, as is the case with
standalone databases.

Beyond the differences between tiers described in Chapter 16, which
also apply to elastic pools, the relationship between the maximum
pool size, and the selected eDTU or vCore and the maximum number
of databases per pool, are also different per tier.

You can create elastic pools with the Azure portal, PowerShell, the
Azure CLI, or the REST API. After an elastic pool is created, you can
create new databases directly in the pool. You also can add existing
single databases to a pool and move databases out of pools.

In most of the following sections, no distinction is made between
standalone databases and elastic pool databases. Managing
standalone databases is similar to managing databases in elastic
pools. Also, whether a database is in an elastic pool or standalone
makes no difference for establishing a connection.

Use the following PowerShell script to create a new elastic pool on
the ssio2022 server and move the existing Contoso database to the
pool:
Click here to view code image

$resourceGroupName = "SIO2022" 
$serverName = "ssio2022" 
$databaseName = "Contoso" 
$poolName = "Contoso-Pool" 
# Create a new elastic pool 
New-AzSqlElasticPool -ResourceGroupName $resourceGroupName ` 
   -ServerName $serverName ` 
   -ElasticPoolName $poolName ` 
   -Edition "GeneralPurpose" ` 
   -Vcore 4 ` 
   -ComputeGeneration Gen5 ` 
   -DatabaseVCoreMin 0 ` 
   -DatabaseVCoreMax 2 



# Now move the Contoso database to the pool 
Set-AzSqlDatabase -ResourceGroupName $resourceGroupName ` 
   -ServerName $serverName ` 
   -DatabaseName $databaseName ` 
   -ElasticPoolName $poolName

This script creates a new pool named Contoso-Pool in the general
purpose service tier and provides four total vCores. A single database
will be assigned no more than two vCores. The parameters -Vcore, -
DatabaseVCoreMin, and -DatabaseVCoreMax have a list of valid values
depending on the selected tier and each other.

 For more information on the vCore-related PowerShell
parameters, see
https://learn.microsoft.com/powershell/module/az.sql/set-
azsqlelasticpool.

 To understand the possible values for vCore-related
PowerShell parameters, refer to
https://learn.microsoft.com/azure/azure-
sql/database/resource-limits-vcore-elastic-pools.

Manage database space
The Azure SQL Database service manages the growth of data and
log files. For log files, the service also manages shrinking the log file.
Data files are not automatically shrunk because of the potential
impact on performance. Each service tier has an included maximum
database size. When your database size approaches that maximum,
you can choose to pay for extra storage space (up to a certain limit,
again determined by the service tier) or scale your database up.

In some cases, the database data space might be allocated for your
database but no longer in use. This effect can be especially
significant in elastic pools. If many databases in a single pool have a
significant amount of unused space, the pool maximum size might be
reached sooner than expected.

https://learn.microsoft.com/powershell/module/az.sql/set-azsqlelasticpool
https://learn.microsoft.com/azure/azure-sql/database/resource-limits-vcore-elastic-pools


 For a discussion on how to determine the amount of unused
allocated space for all databases in a pool, visit
https://learn.microsoft.com/azure/sql-database/sql-database-
file-space-management#understanding-types-of-storage-
space-for-an-elastic-pool.

If you don’t expect your databases to need the unused space, you
might consider reclaiming that space. Beware of the need to rebuild
indexes after shrinking and the fact that rebuilding indexes will cause
the data file to grow again to some extent. All other caveats related to
shrinking database files and rebuilding indexes apply. If you decide to
shrink the database file, use the standard T-SQL statement:
Click here to view code image

DBCC SHRINKDATABASE ('Contoso'); 
-- Rebuild all indexes after shrink!

 See Chapter 8, “Maintain and monitor SQL Server,” for
information on rebuilding indexes.

Note
As with on-premises SQL Server databases, Azure SQL
Database supports auto-shrink. There are no valid reasons to
enable auto-shrink.

Security in Azure SQL Database
As with many PaaS cloud services, certain security operations are
handled for you by the cloud provider. As it relates to security in
Azure SQL Database, this includes patching the OS and the
database service.

Other aspects of security must be managed by you, the cloud DBA.
Some Azure SQL Database security features, such as transparent
data encryption (TDE), are shared with on-premises SQL Server.

https://learn.microsoft.com/azure/sql-database/sql-database-file-space-management#understanding-types-of-storage-space-for-an-elastic-pool


Others are specific to Azure SQL Database and include firewall
configuration, access control, and auditing and threat detection. We
discuss these features of Azure SQL Database in the upcoming
sections. Microsoft’s commitment regarding Azure SQL Database is
to not differentiate the service tiers with security features. All the
features discussed in this section are available in all service tiers,
though some features incur additional charges.

Security features shared with SQL Server 2022
An important security consideration is access control. Azure SQL
Database implements the same permission infrastructure that’s
available in SQL Server 2022. This means database and application
roles are supported, and you can set very granular permissions on
database objects and operations using the data control language
(DCL) statements GRANT and REVOKE. Refer to Chapter 12 for more
information.

TDE is enabled by default for any new database. This hasn’t always
been the case, so if your database has been around for a long time,
you should verify whether it is enabled. When TDE is enabled for a
database, not only are the database files encrypted, but the geo-
replicated backups are, too. You will learn more about backups in the
“Prepare Azure SQL Database for disaster recovery” section later in
this chapter. TDE is covered in Chapter 13.

Other security features shared with SQL Server 2022 are dynamic
data masking, row-level security, and Always Encrypted. Chapter 13
looks at these features in detail.

Server- and database-level firewall
A server is accessed using an FQDN, which maps to a public IP
address. To maintain a secure environment, you must manage
firewall entries to control which IP addresses can connect to the
logical server or database.



Note
You can associate a server with a VNet, offering enhanced
network security when connecting to other Azure resources in
the same VNet. VNets can be used to communicate with on-
premises resources as well as other Azure resources. They can
be peered with other VNets to allow traffic to flow through.
VNets offer a more secure way to connect to databases.
However, there might still be times when you must add IP
addresses in a firewall rule. This might be because a resource
doesn’t have service endpoints or private endpoints, or the rare
case when you have a truly customer-facing database. But
whenever possible, consider connecting to your database
through VNets.

When creating a new server using the Azure portal, you might choose
to allow any Azure resource through the server-level firewall. This is
convenient, but it leaves the server open to unauthorized connection
attempts from an attacker who merely needs to create an Azure
service such as a web app. Servers created using other methods—
for example, PowerShell—do not have any default firewall rules,
which means any connection attempt is refused until at least one
firewall rule is created.

Database-level firewall rules take precedence over server firewall
rules. After you have created database firewall rules, you can remove
the server firewall rule(s) and still connect to the database. However,
if one server will be hosting several databases that each need to
accept connections from the same IP addresses, keeping the firewall
rules at the server level might be more sensible. It is also convenient
to keep server-level firewall rules in place for administrative access.

You can find server-level firewall rules in the virtual master database
in the sys.firewall_rules catalog view. Database-level firewall rules are
in the user database in the sys.database_firewall_rules catalog view.
This makes the database more portable, which can be advantageous
in combination with contained users. Especially when using geo-



replication, discussed in the “Prepare Azure SQL Database for
disaster recovery” section later in this chapter, having portable
databases avoids unexpected connection issues when failing-over
databases to another server.

 Learn more about contained databases in Chapter 12.

Configure the server-level firewall
You can create server-level firewall rules using the Azure portal,
PowerShell, Azure CLI, or T-SQL. As seen earlier, SSMS might
prompt you to create a firewall rule when establishing a connection,
though you would not use this method to create firewall rules for your
application’s infrastructure. To create a firewall rule, you provide the
following:

Rule Name. This has no impact on the operation of the firewall;
it exists only to create a human-friendly reminder about the rule.
The rule name is limited to 128 characters. The name must be
unique in the server.

Start IP Address. This is the first IPv4 address of the range of
allowed addresses.

End IP Address. This can be the same as the start IP address
to create a rule that allows connections from exactly one
address. The end IP address cannot be lower than the start IP
address.

Note
When configuring server-level IP firewall rules, the maximum
number allowed is 128. There can be up to 256 database-
level IP firewall rules.

Managing firewall rules in a dynamic environment can quickly
become error prone and resource intensive. For example, when
databases on a server are accessed from numerous Azure Web App
instances, which often scale up and down and out and in, the rules



must be updated frequently. Rather than resorting to allowing any
Azure resource to pass through the server-level firewall, you should
consider automating firewall rule management.

The first step in such an endeavor is to create a list of allowed IP
addresses. This list could include static IP addresses, such as from
your on-premises environment for management purposes, and
dynamic IP addresses, such as from Azure Web Apps or Azure virtual
machines (VMs). In the case of dynamic IP addresses, you can use
the Az PowerShell module to obtain the current IP addresses of Azure
resources.

After you build the list of allowed IP addresses, you can apply it by
looping through each address, attempting to locate that IP address in
the current firewall rule list, and adding it if necessary. In addition, you
can remove any IP addresses in the current rule list that are not on
your allowed list.

This is not always an option. There are Azure services whose IP
addresses are impossible to obtain. In this scenario, you should
review if those services can be joined to a VNet where your server
has an endpoint. If not available, you must allow access from all
Azure services or re-architect your solution to avoid using those
services.

In PowerShell, the New-AzSqlServerFirewallRule cmdlet provides the
-AllowAllAzureIPs parameter as a shortcut to create a rule to allow
all Azure services. You do not need to provide a rule name, start, or
end IP address. Using the CLI to achieve the same outcome, you
create a rule with 0.0.0.0 as both the start and end IP address. You
must provide a rule name for the command to work, but you’ll find
that in the Azure portal, the rule is not shown. Instead, the toggle
switch is in the on position.

Note
When SSMS offers to create a server-level firewall rule, you
must sign in with an Azure AD user account whose default



directory matches the directory associated with the subscription
where the logical server exists. Otherwise, the creation of the
firewall rule will fail with an HTTP status code 401 error.

Inside OUT
How do you set a firewall rule with an Azure AD B2B
user?

Azure AD supports business-to-business (B2B) or guest
users. A B2B user is a user created in one tenant and added
to another tenant as a guest. That user accesses Azure
resources using the same Azure AD credentials as in their
default directory (home tenant) but has access to resources in
both their home tenant and the external tenant to which they
have been added. B2B users can be granted access to the
Azure SQL Database logical server resource in Azure, in the
control plane. B2B users can also be granted access to the
server for data plane purposes, such as connecting to the
server with SSMS.

A member user in their home tenant can use the SSMS New
Firewall Rule dialog box to add their IP address to the
allowed list. SSMS doesn’t support a B2B user adding a
firewall rule through the dialog box. But B2B users with proper
permissions can still add firewall rules through the Azure
portal, PowerShell, Azure CLI, or REST API.

Once the firewall rule is added, a B2B user who authenticates
to the server using Azure AD Authentication will be able to
connect. Even if a B2B user has access on the data plane
with a SQL Authentication user, they would still have to use
the Azure AD credentials to access the control plane to add a
server-level firewall rule.



Configure the database-level firewall
To configure database-level firewall rules, you must have already
established a connection to the database. This means you must at
least temporarily create a server-level firewall rule to create
database-level firewall rules. You can create and manage database-
level firewall rules only using T-SQL. Azure SQL Database provides
the following stored procedures to manage the rules:

sp_set_database_firewall_rule. Creates a new database-level
firewall rule or updates an existing firewall rule.

sp_delete_database_firewall_rule. Deletes an existing
database-level firewall rule using the name of the rule.

The following T-SQL script creates a new database-level firewall rule
allowing a single (fictitious) IP address, updates the rule by
expanding the single IP address to a range of addresses, and finally
deletes the rule:
Click here to view code image

EXEC sp_set_database_firewall_rule N'Headquarters', 
'1.2.3.4', '1.2.3.4'; 
EXEC sp_set_database_firewall_rule N'Headquarters', 
'1.2.3.4', '1.2.3.6'; 
SELECT * FROM sys.database_firewall_rules; 
EXEC sp_delete_database_firewall_rule N'Headquarters';

Integrate with virtual networks
Azure SQL Database can be integrated with one or more VNet
subnets. By integrating a logical server with a VNet subnet, other
resources in that subnet can connect to the server without requiring a
firewall rule.

In addition to removing the need to create firewall rules, the traffic
between these resources stays within the Azure backbone and does



not go across public Internet connections at all, thereby providing
further security and latency benefits.

VNet integration and the public endpoint of the Azure SQL server can
be used simultaneously.

 Chapter 16 discusses VNets in more detail.

Azure Private Link for Azure SQL Database
Azure SQL Database now supports the Azure Private Link feature,
which creates a private endpoint for use by various Azure services.
This private endpoint becomes an IP address that can only be used
by certain services within Azure, including a VNet.

By using Private Link endpoints, you can further reduce the network
surface area of an Azure SQL Database. You should make an effort
to eliminate all public access to your Azure SQL Database that is
secured by only a username and password. A Private Link’s network
traffic uses only the Microsoft infrastructure network and not the
public Internet.

Azure SQL Database integration with Private Link continues. For
more on the features and capabilities possible, visit
https://learn.microsoft.com/azure/azure-sql/database/private-
endpoint-overview.

 For more information, see the “Networking in Azure” section in
Chapter 16.

Control access using Azure AD
To set up single sign-on (SSO) scenarios, easier login administration,
and secure authentication for application identities, you can enable
Azure AD Authentication. When Azure AD Authentication is enabled
for a server, an Azure AD user or group is given the same
permissions as the server admin login. In addition, you can create
contained users referencing Azure AD principals. So, user accounts

https://learn.microsoft.com/azure/azure-sql/database/private-endpoint-overview


and groups in an Azure AD domain can authenticate to the databases
without needing a SQL Authentication login.

For cases in which the Azure AD domain is federated with an Active
Directory Domain Services (AD DS) domain, you can achieve true
SSO comparable to an on-premises experience. The latter case
excludes any external users or Microsoft accounts that have been
added to the directory; only federated identities can take advantage
of this. Furthermore, it also requires a client that supports it.

Note
The principal you set as the Azure AD admin for the server
must reside in the directory associated with the subscription
where the server resides. The directory associated with a
subscription can be changed, but this might have effects on
other configuration aspects, such as role-based access control
(RBAC), which we describe in the next section. If users from
other directories need to access your SQL Server, add them as
guest users in the Azure AD domain backing the subscription.

To set an Azure AD admin for a server, you can use the Azure portal,
PowerShell, or Azure CLI. You use the PowerShell Set-
AzSqlServerActiveDirectoryAdministrator cmdlet to provision the
Azure AD admin. The -DisplayName parameter references the Azure
AD principal. When you use this parameter to set a user account as
the administrator, the value can be the user’s display name or user
principal name (UPN). When setting a group as the administrator,
only the group’s display name is supported.

If the group you want to designate as administrator has a display
name that is not unique in the directory, the -ObjectID parameter is
required. You can retrieve the ObjectID value from the group’s
properties in the Azure portal or via PowerShell using the Get-
AzADGroup cmdlet.

Note



If you decide to configure an Azure AD principal as server
administrator, it’s always preferable to designate a group
instead of a single user account.

After you set an Azure AD principal as the Azure AD admin for the
server, you can create contained users in the server’s databases.
Contained users for Azure AD principals must be created by other
Azure AD principals. Users authenticated with SQL Authentication
cannot validate the Azure AD principal names, and, as such, even the
server administrator login cannot create contained users for Azure
AD principals.

Contained users are created by using the T-SQL CREATE USER
statement with the FROM EXTERNAL PROVIDER clause. The following
sample statements create an external user for an Azure AD user
account with UPN l.penor@contoso.com and for an Azure AD group
Sales Managers:
Click here to view code image

CREATE USER [l.penor@contoso.com] FROM EXTERNAL PROVIDER; 
CREATE USER [Sales Managers] FROM EXTERNAL PROVIDER;

By default, these newly created contained users will be members of
the public database role and will be granted CONNECT permission. You
can add these users to additional roles or grant them additional
permissions directly like any other database user. Azure B2B users
can be added as contained users with the same CREATE statement
used for users whose default directory is the same directory tied to
the Azure subscription containing the database and server. For guest
users, use their UPN in their default tenant as the username. For
example, suppose Earl is a user in the ProseWare, Inc. tenant with
UPN earl@proseware.com. To grant access to the Contoso database,
first make sure the user has been added as a guest user in the
Contoso tenant, then create the user earl@proseware.com in the
Contoso database. Chapter 12 has further coverage of permissions
and roles.



Inside OUT
What happens if users are unable to connect using Azure
AD credentials?

The workstation from which users connect must have .NET
Framework 4.6 or later and the Microsoft Active Directory
Authentication Library for Microsoft SQL Server installed.
These prerequisites are installed with certain developer and
DBA tools, but they might not be available on end-user
workstations. If not, you can obtain them from the Microsoft
Download Center.

Grant access to Azure AD managed identities
Most Azure resources have a system-assigned managed identity
(SMI or SAMI) and can also be assigned a user-assigned managed
identity (UMI or UAMI). A managed identity is a special type of
service principal that can only be used with a specific Azure resource.
When the managed identity is deleted, the corresponding service
principal is automatically removed. With a managed identity, there is
no need to manage credentials—you have no access to the
password. Managed identities can be used to access other Azure
resources. By default, a new SMI is created and enabled, but you can
additionally configure one or more UMIs.

UMIs can serve as service identity for one or more Azure SQL
databases or SQL managed instances. When you create a UMI, you
can choose to disable the SMI.

A user interface update in September 2022 to the Azure portal
displays the SMI for the Azure SQL logical server in the Properties
page.

 For more on SMIs vs UMIs, including how to get and set them,
see https://learn.microsoft.com/azure/azure-

https://learn.microsoft.com/azure/azure-sql/database/authentication-azure-ad-user-assigned-managed-identity


sql/database/authentication-azure-ad-user-assigned-
managed-identity.

Services such as Azure Data Factory, Azure Machine Learning
Services, Azure Synapse Link for Azure SQL Database, and Azure
Automation support authentication via managed identities. Contained
users can be created in an Azure SQL database for these managed
identities. From there, you can add these users to built-in or custom
roles or directly grant permissions, just as you would any other user
account.

To create a user in a database for a managed identity, you need the
display name of the managed identity. For system-assigned managed
identities, this is the name of the resource to which it belongs. The
following example creates an external user for the system-assigned
managed identity that is associated with an Azure Data Factory
named MyFactory.
Click here to view code image

CREATE USER [MyFactory] FROM EXTERNAL PROVIDER;

Caution
Different resource types have different scopes within which the
resource name is required to be unique. For example, data
factories must be globally unique across all of Azure, but logic
apps only have to be unique within the resource group. Be
careful when granting access to managed identities when there
are multiple service principals with the same display name. If
you have three logic apps with the same name in the same
tenant as your database, you will encounter problems when
trying to grant database access to the managed identity for one
of the logic apps.

 For recommendations for Azure resource naming conventions
in Microsoft’s Cloud Adoption Framework for Azure, visit

https://learn.microsoft.com/azure/azure-sql/database/authentication-azure-ad-user-assigned-managed-identity


https://learn.microsoft.com/azure/cloud-adoption-
framework/ready/azure-best-practices/naming-and-tagging.

Use Azure role-based access control
All operations discussed thus far have assumed that your user
account has permission to create servers, databases, and pools, and
can then manage these resources. If your account is the service
administrator or subscription owner, no restrictions are placed on your
ability to add, manage, and delete resources. Most enterprise
deployments, however, require more fine-grained control over
permissions to create and manage resources. Using Azure role-
based access control (RBAC), administrators can assign permissions
to Azure AD users, groups, or service principals at the subscription,
resource group, or resource level.

RBAC includes several built-in roles to which you can add Azure AD
principals. The built-in roles have a fixed set of permissions. You also
can create custom roles if the built-in roles do not meet your needs.

 For a comprehensive list of built-in roles and their permissions,
visit https://learn.microsoft.com/azure/active-directory/role-
based-access-built-in-roles.

Three built-in roles relate specifically to Azure SQL Database:

SQL DB Contributor. This role can primarily create and
manage Azure SQL databases, but not change security-related
settings. For example, this role can create a new database on
an existing server and create alert rules.

SQL Security Manager. This role can primarily manage security
settings of databases and servers. For example, it can create
auditing policies on an existing database but cannot create a
new database.

SQL Server Contributor. This role can primarily create and
manage servers, but not databases or security-related settings.

https://learn.microsoft.com/azure/cloud-adoption-framework/ready/azure-best-practices/naming-and-tagging
https://learn.microsoft.com/azure/active-directory/role-based-access-built-in-roles


Permissions do not relate to server or database access; instead, they
relate to managing Azure resources. Indeed, users assigned to these
RBAC roles are not granted any permissions in the database—not
even the CONNECT permission.

Note
An Azure AD user in the SQL Server Contributor role can
create a server and thus define the server administrator login’s
username and password. Yet, the user’s Azure AD account
does not obtain any permissions in the database at all. If you
want the same Azure AD user to have permissions in the
database, including creating new users and roles, you must use
the steps in this section to set up Azure AD integration and
create an external database user for that Azure AD account.

Audit database activity
Microsoft Defender for SQL provides auditing and threat-detection for
Azure SQL Database, allowing you to monitor database activity using
Azure tools. In on-premises deployments, Extended Events are often
used for monitoring. SQL Server builds on Extended Events for its
SQL Server Audit feature (discussed in Chapter 13). This feature is
not present in Azure SQL Database in the same form, but a large
subset of Extended Events is supported in Azure SQL Database.

 You can find more details about support for Extended Events
at https://learn.microsoft.com/azure/sql-database/sql-
database-xevent-db-diff-from-svr.

Azure SQL Database auditing creates a record of activities that have
taken place in the database. The types of activities that can be
audited include permission changes, T-SQL batch execution, and
auditing changes themselves.

 Audit actions are grouped in audit action groups. A list of audit
action groups is available in the PowerShell reference for the

https://learn.microsoft.com/azure/sql-database/sql-database-xevent-db-diff-from-svr


Set-AzSqlDatabaseAudit cmdlet at
https://learn.microsoft.com/powershell/module/az.sql/set-
azsqldatabaseaudit#parameters.

Note
By default, all actions are audited. The Azure portal does not
provide a user interface for selecting which audit action groups
are included. Customizing audited events requires the use of
the PowerShell cmdlet or the REST API.

Auditing and advanced threat protection are separate but related
features. Investigating alerts generated by advanced threat protection
is easier if auditing is enabled. Auditing is available at no initial
charge, but there is a monthly fee per server for activating Microsoft
Defender for SQL, which contains the Advanced Threat Protection
functionality. There are also charges for writing and storing logs in a
storage account or a Log Analytics workspace.

You can enable auditing at the server and database level. When
auditing is enabled at the server level, all databases hosted on that
server are audited. After you enable auditing on the server, you can
still turn it on at the database level as well. This does not override any
server-level settings; rather, it creates two separate audits. This is not
usually desired, though in environments with specific compliance
requirements that only apply to one or a few databases on a single
server, it can make sense. These compliance requirements might
include longer retention periods or additional action groups that must
be audited.

In addition to auditing normal operations on the databases and
server, you can also enable auditing of Microsoft Support operations
for Azure SQL Server. This allows you to audit Microsoft support
engineers’ operations when they need to access your server during a
support request.

Auditing events are stored in an Azure Storage account or sent to a
Log Analytics workspace or Event Hub. The configuration of Event

https://learn.microsoft.com/powershell/module/az.sql/set-azsqldatabaseaudit#parameters


Hubs is beyond the scope of this book. The other two options are
covered later in this chapter.

Configure auditing to a storage account
When configuring auditing in the Azure portal, the target storage
account must be in the same region as the server. This limitation
does not exist when configuring auditing using PowerShell, Azure
CLI, or the REST API. Be aware that you might incur data transfer
charges for audit data or deal with latency if you choose a storage
account in a different region from the server. Many types of storage
accounts are supported, but Premium page blobs are not.

You can configure the storage account to require storage account
keys or managed identity for access. If you choose to use managed
identity, the Allow trusted Microsoft services to access this
storage account setting will be enabled, and the server’s managed
identity will be assigned the Storage Blob Data Contributor RBAC
role.

To configure auditing, you must create or select an Azure Storage
account. We recommend that you aggregate logging for all databases
in a single storage account. When all auditing is done in a single
storage account, you will benefit from having an integrated view of
audit events.

You also must decide on an audit log retention period. You can
choose to keep audit logs indefinitely or you can select a retention
period. The retention period can be at most 3,285 days, or about 9
years.

The following PowerShell script sets up auditing for the Contoso
database on the ssio2022 server:
Click here to view code image

$resourceGroupName = "SSIO2022" 
$location = "southcentralus" 
$serverName = "ssio2022" 
$databaseName = "Contoso" 



# Create your own globally unique name here 
$storageAccountName = "azuresqldbaudit" 
# Create a new storage account 
$storageAccount = New-AzStorageAccount -ResourceGroupName 
$resourceGroupName ` 
   -Name $storageAccountName -Location $location -Kind 
Storage ` 
   -SkuName Standard_LRS -EnableHttpsTrafficOnly $true 
# Use the new storage account to configure auditing 
$auditSettings = Set-AzSqlDatabaseAudit ` 
    -ResourceGroupName $resourceGroupName ` 
    -ServerName $serverName -DatabaseName $databaseName ` 
    -StorageAccountResourceId $storageAccount.Id -
StorageKeyType Primary ` 
    -RetentionInDays 365 -BlobStorageTargetState Enabled

The first cmdlet in the script creates a new storage account with the
name azuresqldbaudit. Note that this name must be globally unique,
so you must update the script with a name of your choosing before
running the script. Storage account names can contain only
lowercase letters and digits.

 For more details on the New-AzStorageAccount cmdlet, see
https://learn.microsoft.com/powershell/module/az.storage/new
-azstorageaccount.

The second cmdlet, Set-AzSqlDatabaseAudit, configures and
enables auditing on the database using the newly created storage
account. The audit log retention period is set to 365 days.

Note
To set auditing at the server level, use the Set-
AzSqlServerAudit cmdlet. This cmdlet uses the same
parameters, except you’ll omit the -DatabaseName parameter.

View audit logs from a storage account

https://learn.microsoft.com/powershell/module/az.storage/new-azstorageaccount


There are several methods you can use to access the audit logs.
Which method you use largely depends on your preferences and the
tools you have available on your workstation. This section discusses
some of these methods in no particular order.

If your goal is to quickly review recent audit events, you can see the
audit logs in the Azure portal. In the Auditing pane for a database,
select View Audit Logs to open the Audit records pane. This pane
shows the most recent audit logs, which you can filter to restrict the
events shown by, say, the latest event time or to only show suspect
SQL injection audit records, for example. This approach is rather
limited because you cannot aggregate audit logs from different
databases, and the filtering capabilities are minimal.

A more advanced approach is to use SQL Server Management
Studio (SSMS). SSMS 17 introduced support for opening audit logs
directly from Azure Storage. Alternatively, you can use Azure Storage
Explorer to download audit logs and open them using older versions
of SSMS or third-party tools.

Audit logs are stored in the sqldbauditlogs blob container in the
selected storage account. The container follows a hierarchical folder
structure:
logicalservername\DatabaseName\SqlDbAuditing_AuditName\yyyym
mdd. The blobs within the date folder are the audit logs for that date,
in Coordinated Universal Time (UTC). The blobs are binary Extended
Event files (.xel).

Note
Azure Storage Explorer is a free and supported tool from
Microsoft. You can download it from
https://azure.microsoft.com/features/storage-explorer/.

After you obtain the audit files, you can open them in SSMS. On the
File menu, select Open, and select Merge Audit Files to open the
Add Audit Files dialog box, shown in Figure 17-4.

https://azure.microsoft.com/features/storage-explorer/


Figure 17-4 SSMS 17 introduced support for opening and
merging multiple Azure SQL Database audit files
directly from an Azure Storage account.

A third way of examining audit logs is by querying the
sys.fn_get_audit_file system function with T-SQL. You can use this
to perform programmatic evaluation of the audit logs. The function
works with locally downloaded files or you can obtain files directly
from the Azure Storage account. To obtain logs directly from the
Azure Storage account, you run the query using a connection to the
database whose logs are being accessed. The following T-SQL script
example queries all audit events logged to the azuresqldbaudit
storage account from October 16, 2022, for the Contoso database on
the ssio2022 server:
Click here to view code image

SELECT * FROM sys.fn_get_audit_file 
('https://azuresqldbaudit.blob.core.windows.net/ 
sqldbauditlogs/ssio2022/Contoso/SqlDbAuditing_Audit/2022-10-
16/', default, default);



 Find more information on sys.fn_get_audit_file at
https://learn.microsoft.com/sql/relational-databases/system-
functions/sys-fn-get-audit-file-transact-sql.

The output from the system function can be visualized and analyzed
using Power BI. To get started, a sample Power BI dashboard
template is available for download from the Microsoft Tech
Community. Using the template, you only need to provide the server
name, storage account name, and credentials. You can use the
template as is or customize it. The template can be used directly in
the free Power BI Desktop tool. You might also choose to publish it to
your organization’s Power BI service.

 The template and a walkthrough on using it are available from
the Microsoft Tech Community at
https://techcommunity.microsoft.com/t5/Azure-Database-
Support-Blog/SQL-Azure-Blob-Auditing-Basic-Power-BI-
Dashboard/ba-p/368895.

Configure auditing to a Log Analytics workspace
When configuring audit events to be sent to a Log Analytics
workspace using the Azure portal, the Log Analytics workspace must
be in the same subscription as the SQL server and database. The
workspace must exist before you configure the database audit
because the Azure portal does not offer you the ability to create a
new workspace while configuring auditing.

There are additional logs and metrics that can be configured to be
sent to the Log Analytics workspace (or archived in Azure Blob
Storage). You configure these by adding a diagnostic setting.
Information that can be captured in a diagnostic setting includes the
following:

SQL insights

Automatic tuning

Query Store runtime statistics

https://learn.microsoft.com/sql/relational-databases/system-functions/sys-fn-get-audit-file-transact-sql
https://techcommunity.microsoft.com/t5/Azure-Database-Support-Blog/SQL-Azure-Blob-Auditing-Basic-Power-BI-Dashboard/ba-p/368895


Query Store wait statistics

Database wait statistics

Timeouts

Blocks

Deadlocks

SQL security audit events

Metrics

View audit logs in a Log Analytics workspace
There are several ways to access audit logs stored in a Log Analytics
workspace. You can access the logs for a single database or server
in the Azure portal on the Logs pane for the resource. You can also
go to the Logs pane for the Log Analytics workspace in the Azure
portal. Or you can go to the Auditing pane for the resource and
select View Audit Logs.

One advantage of using a Log Analytics workspace is that you can
send the logs for many SQL servers and databases to one
workspace to spot trends and outliers across resources. You can also
send logs from many different types of resources to the same
workspace and track an issue or security event across your tech
stack. Log Analytics also allows you to create dashboards from data
stored in a workspace.

To query a Log Analytics workspace, you must use a Kusto query.
Kusto Query Language (KQL) uses schema entities organized in a
hierarchy similar to SQL: databases, tables, and columns. The
following sample Kusto query requests the count of database
authentication failures grouped by client IP address.
Click here to view code image

AzureDiagnostics 
|where action_name_s == 'DATABASE AUTHENTICATION FAILED' 



|summarize count() by client_ip_s

 For a KQL quick start guide, visit
https://learn.microsoft.com/azure/data-explorer/kql-quick-
reference.

Microsoft Defender for SQL
As discussed in Chapter 13, Microsoft Defender for SQL is the
collective name for two services that are enabled at the logical server
level and apply to all databases on that server. These services are:

Vulnerability assessment. Assesses your database against
security best practices

Advanced Threat Protection. Provides alerts when potentially
malicious activity is detected in the database

Understand vulnerability assessment
Vulnerability assessment consists of a set of rules that are evaluated
against one or more databases on the server. Optionally, you can
schedule weekly automatic scans of all databases on the server.
Unfortunately, at the time of this writing, the schedule for these
weekly scans is not customizable. This means the vulnerability scan
might run at a time when your database is under heavy load.
Fortunately, though the impact on compute utilization is measurable,
the scan completes quickly.

Because one size does not fit all when it comes to best practices,
many rules can be configured with a custom baseline. If your
environment uses user-defined roles, you must review the current
configuration and approve it as a baseline. Then, during the next
scan, the rule will fail only if the membership is different from the
baseline.

The value of vulnerability assessment is further enhanced by the
actionable steps and, when appropriate, T-SQL scripts provided to

https://learn.microsoft.com/azure/data-explorer/kql-quick-reference


remediate the failure. A scan itself will not modify the database or
server automatically; the scan is read-only. However, with a single
tap, the suggested remediation script can be opened in the Azure
portal’s online query editor.

Inside OUT
Should you use SSMS or the Azure portal to conduct the
vulnerability assessment?

Although SSMS has a built-in vulnerability assessment
scanner, and the rule sets between SSMS and the Azure
portal are the same, this section discusses configuring
vulnerability assessment using the Azure portal as part of
Advanced Data Security.

There is a difference in the evaluation that is conducted
between both. In addition to examining the user databases,
the periodic recurring scans that can be configured in the
Azure portal also include the virtual master system database.
Further, when configuring custom baselines for rules using
SSMS, the baselines are stored in a folder local to the
computer where SSMS is installed. Custom baselines
approved in the Azure portal are stored in the portal with the
database metadata and are thus available to any user who
runs or reviews vulnerability assessment scans.

Our recommendation is to take advantage of the periodic
recurring scans in the Azure portal and examine the weekly
reports. Customize the baselines as needed. In addition,
administrators in highly regulated environments should
consider running the vulnerability analysis also from SSMS,
where the baselines can be stored locally or potentially in a
source control system, for enhanced control.



 For directions on how to use SSMS to run a vulnerability
assessment scan, see
https://learn.microsoft.com/sql/relational-
databases/security/sql-vulnerability-assessment.

Configure Advanced Threat Protection
Advanced Threat Protection examines the database activity for
anomalies. If an anomaly is detected, it then alerts Azure service
administrators and co-administrators or a list of configured email
addresses. As of this writing, there are more than a dozen different
alerts for SQL Database, including:

A possible vulnerability to SQL injection

Attempted logon by a potentially harmful application

Login from a principal user not seen in 60 days

Login from a suspicious IP

Potentially unsafe action

Potential SQL brute force attempt

Unusual export location

 Additional information about these threats is at
https://learn.microsoft.com/azure/sql-database/sql-database-
threat-detection-overview#advanced-threat-protection-alerts.

You can disable each threat type individually if you do not want to
detect it.

The configuration of Advanced Threat Protection allows the DBA to
specify one or more email addresses that should receive alerts.
Optionally, subscription administrators and owners can also receive
alerts via email. DBAs should consider including the enterprise
security team’s alert address in the list for rapid triage and response.

https://learn.microsoft.com/sql/relational-databases/security/sql-vulnerability-assessment
https://learn.microsoft.com/azure/sql-database/sql-database-threat-detection-overview#advanced-threat-protection-alerts


 For elementary guidance on using the Azure Security Center
for incident response, visit
https://learn.microsoft.com/azure/security-center/security-
center-incident-response.

Advanced Threat Protection does not require auditing to be enabled
for the database or server, but auditing records will provide for a
better experiencing investigating detected threats. Audit records are
used to provide context when Advanced Threat Protection raises an
alert.

To effectively analyze detected threats, the following audit action
groups are recommended:

BATCH_COMPLETED_GROUP

SUCCESSFUL_DATABASE_AUTHENTICATION_GROUP

FAILED_DATABASE_AUTHENTICATION_GROUP

Enabling these groups will provide details about the events that
triggered the threat detection alert.

Prepare Azure SQL Database for
disaster recovery
Hosting your data on Microsoft’s infrastructure does not excuse you
from preparing for disasters. Even though Azure has high levels of
availability, your data can still be at risk due to human error and
significant adverse events. Azure SQL Database provides default and
optional features that will ensure high availability (HA) for your
databases when properly configured.

Understand default disaster recovery features
Without taking any further action after provisioning a database, the
Azure infrastructure takes care of several basic disaster recovery

https://learn.microsoft.com/azure/security-center/security-center-incident-response


(DR) preparations. First among these is the replication of data files
across fault and upgrade domains within the regional datacenters.
This replication is not something you see or control, but it is there.
This is comparable to the on-premises use of availability groups or
storage tier replication. The exact method of replication of the
database files within a datacenter depends on the chosen tier. As
Azure SQL Database evolves, the methods Microsoft employs to
achieve local HA are of course subject to change.

Regularly scheduled backups are also configured by default. A full
backup is scheduled weekly, differential backups take place every few
hours, and transaction log backups every 5 to 10 minutes. The exact
timing of backups is managed by the Azure fabric based on overall
system workload and the database’s activity levels. These backups
are retained for a period of 7 days (by default, and the maximum for
the Basic service tier) to 35 days (maximum).

You can use backups to restore the database to a point-in-time within
the retention period. You also can restore a database that was
accidentally deleted to the same server from which it was deleted.
Remember: Deleting a server irreversibly deletes all databases and
backups. You should generally not delete a server until the backup-
retention period has expired, just in case. After all, if Microsoft
Defender for SQL is disabled, there is no cost associated with a
server without databases.

You also can restore databases to another Azure region. This is
referred to as a geo-restore. This restores databases from backups
that are geo-replicated to other regions using Azure Storage
replication. If your database has TDE enabled, the backups are also
encrypted.

Although these default features provide valuable DR options, they are
likely not adequate for production workloads. For example, the
estimated recovery time (ERT) for a geo-restore is less than 12
hours, with a recovery point objective (RPO) of less than 1 hour.
Further, the maximum backup retention period is 35 days for the
Standard and Premium tiers, and only 7 days for the Basic tier. Some
of these values are likely unsuitable for mission-critical databases, so



you should review the optional DR features covered in the next
sections and configure them as needed to achieve an acceptable
level of risk for your environment.

Manually export database contents
In addition to the automatic, built-in backup discussed in the
preceding section, you might need to export a database. This could
be necessary if you need to restore a database in an on-premises or
infrastructure as a service (IaaS) environment. You might also need
to keep database backups for longer than the automatic backups’
retention period, though we encourage you to read the “Use Azure
Backup for long-term backup retention” section later in this chapter to
understand all options for long-term archival.

The term backup is inappropriate when referring to a BACPAC file.
(You can read more about BACPAC files in Chapter 6, “Provision and
configure SQL Server databases.”) A significant difference between a
database backup and an export is that the export is not
transactionally consistent. During the data export, data manipulation
language (DML) statements in a single transaction might have
completed before and after the data in different tables that were
extracted. This can have unintended consequences and can even
prevent you from restoring the export without dropping foreign key
constraints.

Databases can be exported via the Azure portal, PowerShell, Azure
CLI, the SQLPackage utility, SSMS, or Azure Data Studio. The
SQLPackage utility might complete and export more quickly, as it
allows you to run multiple sqlpackage.exe comments in parallel for
subsets of tables to speed up export operations.

Inside OUT
Do BACPAC exports require a firewall rule to allow all
Azure services?



The Azure SQL Database Export Service, which is used to
export to a BACPAC file, can run anywhere in the Azure
region of the source database server. Because the IP address
of the host running the service is not known in advance, you
must open the server firewall to allow all Azure IP addresses
to access the server. For more information, review the
“Server- and database-level firewall” section earlier in this
chapter.

Enable zone-redundant configuration
Applicable only to the general purpose, premium, and business
critical (with Gen5 or newer hardware) service tiers, zone-redundant
configuration is an optional setting that distributes the default HA
nodes between different datacenters in the same region. Zone-
redundant configuration provides fault tolerance for several classes of
failures that would otherwise require handling by geo-replication.
Zone redundancy places multiple replicas within an Azure datacenter
but in different availability zones within the physical infrastructure.
Availability zones are physically discrete from each other and more
tolerant to localized disasters affecting the datacenter. They’re a low
cost and fast way to increase survivability without geo-replication.

Unlike geo-replication, which is discussed in the next section, there is
no change to the connection string required if a single datacenter
suffers an outage.

There is no additional cost associated with this feature, so your
decision to enable it is entirely based on the workload’s ability to
accept a few extra milliseconds of latency before transactions
commit.

 For additional information about zone-redundant configuration,
visit https://learn.microsoft.com/azure/sql-database/sql-
database-high-availability#zone-redundant-configuration.

https://learn.microsoft.com/azure/sql-database/sql-database-high-availability#zone-redundant-configuration


Zone-redundant deployments increase the service-level agreement’s
(SLA’s) availability guarantee from the normal 99.99 percent to at
least 99.995 percent.

Configure geo-replication
If your DR needs are such that your data cannot be unavailable for a
period of up to 12 hours, you will likely need to configure geo-
replication. When you geo-replicate a database, all transactions are
replicated to one or more active secondary databases. Geo-
replication takes advantage of the availability groups feature also
found in on-premises SQL Server.

You can configure geo-replication in any service tier and any region.
To configure geo-replication, you must provision a server in another
region, though you can do this as part of the configuration process if
you are using the Azure portal.

In the event of a disaster, you are alerted via the Azure portal of
reliability issues in the datacenter hosting your primary database. You
then need to manually fail over to a secondary database. Using geo-
replication only, there is no automatic failover (but keep reading to
learn about failover groups, which do provide automatic failover
capability). Failover is accomplished by selecting (one of) the
secondary database(s) to be the primary.

Because the replication from primary to secondary is asynchronous,
an unplanned failover can lead to data loss. The RPO for geo-
replication, which is an indicator of the maximum amount of data loss
expressed as a unit of time, is 5 seconds. Although no more than 5
seconds of data loss during an actual disaster is a sound objective,
when conducting DR drills, no data loss is acceptable. A planned
change to another region, such as during a DR drill or to migrate to
another region permanently, can be initiated as a planned failover. A
planned failover will not lead to data loss because the selected
secondary will not become primary until replication is completed.



Unfortunately, a planned failover cannot be initiated from the Azure
portal. However, the Set-AzSqlDatabaseSecondary PowerShell cmdlet
with the -Failover parameter and without the -AllowDataLoss
parameter will initiate a planned failover. If the primary is not available
due to an incident, you can use the portal or PowerShell to initiate a
failover with the potential for some data loss, as just described. If you
have multiple secondaries, after a failover, the new primary will begin
replicating to the remaining available secondaries without a need for
further manual configuration.

Note
When you first configure geo-replication using the Azure portal,
it informs you of the recommended region for the geo-replicated
database. You are not required to configure the secondary in
the recommended region, but doing so will provide optimal
performance for the replication between regions. The
recommendation is based on Microsoft’s knowledge of
connectivity between its datacenters in different regions.

For each secondary database, you are charged the same hourly rate
as for a primary database, with the same service tier and service
objective. A secondary database must have the same service tier as
its primary, but it does not need to have the same service objective or
performance level. For example, a primary database in the Standard
tier with service objective S2 can be geo-replicated to a secondary
database in the Standard tier with service objective S1 or S3, but it
cannot be geo-replicated to a secondary in the Basic or Premium tier.

To decide whether your service objective for secondaries can be
lower than that of the primary, you must consider the read-write
activity ratio. If the primary is write-heavy—that is, most database
operations are writes—the secondary will likely need the same
service objective to be able to keep up with the primary. However, if
the primary’s utilization is mostly toward read operations, you could
consider lowering the service objective for the secondary. You can
monitor the replication status in the Azure portal or use the



PowerShell Get-AzSqlDatabaseReplicationLink cmdlet to ensure
that the secondary can keep up with the primary.

Caution
If one or more secondary databases cannot keep up with the
rate of change at the primary database, the primary database
will be throttled to allow all secondaries to catch up.

As of this writing, geo-replication introduces a limitation on the
scalability of databases. When a primary database is in a geo-
replication relationship, its service tier cannot be upgraded (for
example, from Standard to Premium) without first upgrading all
secondaries. To downgrade, you must downgrade the primary before
any secondaries can be downgraded. As a best practice, when
scaling up or down, you should ensure that the secondary database
has the higher service objective longer than the primary. In other
words, when scaling up, scale up secondary databases first; when
scaling down, scale down secondary databases second.

Inside OUT
What are other uses for geo-replication?

The judicious configuration of geo-replication and application
programming can enable you to downgrade your primary
Azure SQL database to a lower service objective. Because
secondaries are readable, you can use them to run read-only
queries. If you direct some of the read queries, such as for
reporting or data integration purposes, to secondary
databases, the primary might be able to consume fewer
resources.

In addition to potentially lowering service objective
requirements, you also can use active geo-replication during



application upgrades to move a database to another region
with minimal downtime.

Set up failover groups
As discussed in the previous section, geo-replication represents a
very capable option for DR planning. Geographically distributing
relational data with an RPO of 5 seconds or less is a goal that few on-
premises environments can achieve. However, the lack of automatic
failover and the need to configure failover on each database
individually creates overhead in any deployment, whether it has a
single database in an organization with a single DBA or many
hundreds or thousands of databases. Further, because a failover
causes the writable database to be hosted on a different logical
server with a different DNS name, connection strings must be
updated, or the application must be modified to try a different
connection.

Failover groups build on geo-replication to address these
shortcomings. Configured at the server level, a failover group can
include one, multiple, or all databases hosted on that server. All
databases in a group are recovered simultaneously. By default,
failover groups are set to automatically recover the databases in case
of an outage, though you can disable this. With automatic recovery
enabled, you must configure a grace period. This grace period offers
a way to direct the Azure infrastructure to emphasize either
availability or data guarantees. By increasing the grace period, you
emphasize data guarantees, because the automatic failover does not
occur if it will result in data loss until the outage has lasted as long as
the grace period. By decreasing the grace period, you emphasize
availability. In practical terms, this means that if the secondary
database in the failover group is not up to date after the grace period
expires, the failover will occur, resulting in data loss.

When you configure a failover group, two new DNS CNAME records are
created:



The first CNAME record refers to the read-write listener and it
points to the primary server. During a failover, this record is
updated automatically so it always points to the writable replica.
The read-write listener’s FQDN is the name of the failover group
prepended to database.windows.net. This means your failover
group name must be globally unique.

The second CNAME record points to the read-only listener, which
is the secondary server. The read-only listener’s DNS name is
the name of the failover group prepended to
secondary.database.windows.net. If the failover group name is
ssio2022, the FQDN of the read-write listener will be
ssio2022.database.windows.net and the FQDN of the secondary
will be ssio2022.secondary.database.windows.net.

Note
As of this writing, a failover group can have only one
secondary. For high-value databases, you should still
configure additional secondaries to ensure HA isn’t lost in
case of a failover.

You can create failover groups with existing geo-replication already in
place. If the failover group’s secondary server is in the same region
as an existing geo-replication secondary, the existing secondary will
be used for the failover group. If you select a region for the failover
secondary server where no replica is configured yet, a new
secondary server and database will be created during the deployment
process. If a new secondary database is created, it will be created in
the same tier and with the same service objective as the primary.
(Recall that these replicas incur service charges.)

Unlike with geo-replication, the Azure portal supports the initiation of
a planned failover for failover groups. You can also initiate a planned
failover by using PowerShell. Planned failovers do not cause data
loss. Both interfaces also support the initiation of a forced failover,
which, as with geo-replication’s unplanned failover, can lead to data
loss within the 5-second RPO window.



Inside OUT
How can you effectively provision auditing and Microsoft
Defender for SQL with geo-replication?

When configuring auditing for geo-replicated databases, you
should configure auditing at the server level on both the
primary and secondary server. You should not enable auditing
at the database level. By configuring auditing at the server
level, the audit logs will be stored in the same region as the
server, thereby avoiding cross-region traffic.

As a side effect of configuring auditing on the secondary
databases’ server, you can set a different retention period,
though we do not recommend this configuration because
valuable correlations between events on the primary and
secondary can be lost. As described in the security section,
you can use SSMS to merge audit files from different servers
and databases to analyze them together. You should apply
the same configuration for Microsoft Defender for SQL.

Note
DR and business-continuity planning should not just consider
Azure SQL Database resources, but also other Azure services
your application uses. These might include Azure Web Apps,
VMs, DNS, storage accounts, and more. For more information
on designing HA services that include Azure SQL Database,
see https://learn.microsoft.com/azure/sql-database/sql-
database-designing-cloud-solutions-for-disaster-recovery.

Use Azure Backup for long-term backup retention
To meet compliance and regulatory requirements, you might need to
maintain a series of long-term database backups. Azure SQL

https://learn.microsoft.com/azure/sql-database/sql-database-designing-cloud-solutions-for-disaster-recovery


Database can provide a solution using long-term retention (LTR). You
can elect to retain full backups for a maximum of 10 years. Retained
backups are stored in Azure Blob Storage, which is created for you;
you don’t need to provide a storage account.

Long-term backup retention is configured at the server level, but
databases on the server can be selectively included or excluded. To
begin, you create a retention policy. As its name indicates, the
retention policy determines how long the backups are retained. After
you configure retention, the next full backups that meet the criteria for
weekly, monthly, or yearly will be retained. In other words, existing
backups are not included in the long-term retention. A different
retention period can be specified for weekly, monthly, and yearly full
backups. You can also choose a simpler configuration, to keep only
some of the backups.

 For more information on creating a vault as well as step-by-
step guidance, see https://learn.microsoft.com/azure/sql-
database/sql-database-long-term-backup-retention-configure.

When a database is deleted, you will continue to be charged for the
backup’s contents; however, the charges will decrease over time as
backup files older than the retention period are deleted.

You can configure long-term backup retention by using the Azure
portal or PowerShell. Although only primary or standalone databases
are backed up and will therefore be the only databases that have
backups added to storage, you should also configure long-term
backup retention on geo-replicated secondaries. This ensures that in
case of a failover, backups from the new primary database will be
added to its vault, without further intervention. After a failover, a full
backup is immediately taken, and that backup is added to long-term
storage. Until a failover takes place, no additional costs are incurred
for configuring retention on the secondary server.

Note

https://learn.microsoft.com/azure/sql-database/sql-database-long-term-backup-retention-configure


When the server hosting a database is deleted, the database
backups are immediately and irrevocably lost. This does not
apply to long-term backup retention. If you configured LTR for a
database, the LTR backups can be used to restore databases
to a different server in the same subscription.



Chapter 18

Provision Azure SQL
Managed Instance

What is Azure SQL Managed Instance?
Create a SQL managed instance
Delete a SQL managed instance
Establish a connection to a SQL managed instance
Migrate data to Azure SQL Managed Instance
Azure SQL Managed Instance administration features
Azure SQL Managed Instance security features
Azure SQL Managed Instance data protection features

Azure SQL Managed Instance is a fully managed, always up-to-date
instance of SQL Server running in Azure. It was designed with almost
full compatibility with the latest SQL Server Database Engine. With
the release of SQL Server 2022, it also includes a new compatibility
feature to allow for failover and failback from SQL Server 2022
instances to managed instances.

There are many new features currently in preview for Azure SQL
Managed Instance at the time of this book’s writing. Like many
platform as a service offerings, Azure SQL Managed Instance is
actively developed and in a state of constant improvement. The



Azure SQL Managed Instance platform is a focus of considerable
engineering investment for Microsoft. This chapter highlights as many
new preview features as possible, given the time of this book’s
writing.

Several new features were added to Azure SQL Managed Instance in
the “November 2022 feature wave,” an opt-in program for rolling out
new features first to dev/test subscriptions, then to production
subscriptions. Depending on where you’re reading this, your SQL
managed instance may have access to some features covered in this
chapter. For more information on the November 2022 feature wave,
visit https://learn.microsoft.com/azure/azure-sql/managed-
instance/november-2022-feature-wave-enroll.

Inside OUT
How do I keep up with all the new Azure SQL Managed
Instance features?

New features often move from “(preview)” to “generally
available (GA)” in a few months, but sometimes they stay in
preview for longer as Microsoft continues to gather feedback
and telemetry on adoption. A lot has been introduced to Azure
SQL Managed Instance since it was first announced in 2017.
As it is on its own development cycle, much has changed in
this chapter over the past three editions of this book.

Keep up with the latest new features in Azure SQL Managed
Instance on the “What’s new” page:
https://learn.microsoft.com/azure/azure-sql/managed-
instance/doc-changes-updates-release-notes-whats-new.
Also pay attention to the various items in the November 2022
feature wave as they progress to being generally available to
all SQL managed instances.

https://learn.microsoft.com/azure/azure-sql/managed-instance/november-2022-feature-wave-enroll
https://learn.microsoft.com/azure/azure-sql/managed-instance/doc-changes-updates-release-notes-whats-new


With Azure SQL Managed Instance, database administrators don’t
have access to the underlying virtual operating system (OS)—there is
no Remote Desktop connection, for example. Otherwise, an Azure
SQL managed instance is a SQL Server instance.

Azure SQL Managed Instance significantly simplifies administrator
effort in the following ways:

Hardware and infrastructure is completely managed and easily
upgradeable over time. (The latest premium series and memory-
optimized premium series hardware offerings were introduced in
mid-2022.)

Backups are automated, and user-initiated backups are also
available.

Point-in-time restores are possible with retention limits, initiated
through the Azure portal, Azure CLI, and PowerShell. Even
restores of deleted databases are possible.

Geo-restores of SQL Managed Instance databases to another
region are easily accomplished thanks to geo-redundant backup
storage.

High availability (HA) is automated (and user-customizable), and
auto-failover groups are easily created via the Azure portal or
PowerShell. A listener endpoint allows for both read/write and
read-only application access to the cluster.

Unlike Azure SQL Database, SQL Managed Instance provides
an isolated environment with dedicated compute, storage, and
virtual networks (VNets). The same security and authentication
features, like transparent data encryption (TDE), Azure Active
Directory (Azure AD) integration, SQL Audit, and Advanced
Threat Protection are available.

With the new link feature for Azure SQL Managed Instance and
SQL Server 2022, you can synchronize a database from your
infrastructure to a managed instance, and failover and failback
from SQL Server 2022 to SQL Managed Instance. We discuss



this exciting new feature throughout this chapter. For even more
information, see Chapter 11, “Implement high availability and
disaster recovery.”

Azure SQL Managed Instance offers easy migration from on-
premises installations via the new link feature for Azure SQL
Managed Instance (more on this later). Designed specifically to
offer 99.99 percent or better availability with minimal
management, a SQL managed instance is ideal for migrating
existing enterprise on-premises SQL Server instances. In
comparison, migrating legacy on-premises applications to Azure
SQL Database can be more difficult.

Inside OUT
What’s actually included in Azure SQL?

It can be confusing in documentation, and even in this book,
to keep track of which marketing names cover which products.

When you see SQL Server alone, it is assumed to be the
user-installed, year-versioned product like SQL Server 2022,
sometimes referred to anachronistically as the box product.
SQL Server may also be used in the context of the SQL
Server Database Engine, or just Database Engine, the
common query optimizer and storage engine that all Microsoft
SQL products use.

SQL Server can run on-premises or in Azure Virtual Machines
(VMs); it can even be installed for you as part of a VM image
from the Azure Marketplace.

Azure SQL includes Azure SQL Database and Azure SQL
Managed Instance. Early Microsoft marketing used phrasing
like Azure SQL Database managed instance but that was
shortened to Azure SQL Managed Instance. You might,
however, see managed instance when we’re talking in proper



context about your managed instance—that is, a specific
managed instance.

Just because you see “Applies to SQL Server” in Microsoft
Learn docs doesn’t mean it applies to Azure SQL Database or
Azure SQL Managed Instance as well. Recently, a vast
internal team at Microsoft has been reviewing the tens of
thousands of documentation articles for SQL Server, adding
“Applies to Azure SQL Managed Instance” where appropriate.

Various features, like the intelligent query processing (IQP)
features discussed in Chapter 14, “Performance tune SQL
Server,” sometimes arrive on Azure SQL Database or Azure
SQL Managed Instance before arriving in SQL Server, and
vice versa. For various marketing and technological reasons,
these products are still often grouped together because the
products themselves are still extremely similar.

SQL Server, Azure SQL Database, and Azure SQL Managed
Instance orbit each other, increasingly independently. For
example, you’ve likely seen many Microsoft Learn docs
shared by Azure SQL Database and Azure SQL Manage
Instance split up. This is especially important as the vCore tier
hardware becomes more distinct, for example.

What is Azure SQL Managed Instance?
Azure SQL Managed Instance is a platform as a service (PaaS)
offering for SQL Server. It has nearly 100 percent compatibility with
the current Enterprise edition of the Database Engine and
automatically upgrades its versions. A managed instance never
requires a prolonged outage for patching or even major version
upgrades.

Azure SQL Managed Instance has its own internal database version
number, which, until the release of SQL Server 2022, was higher than
any version of SQL Server. Starting around the SQL Server 2022



release, Azure SQL managed instances run with a new compatibility
level setting. New managed instances receive the compatibility
setting by default, and existing managed instances will see it enabled
automatically. More on this new compatibility level later.

Azure SQL Managed Instance features allow for an easy lift and shift
from on-premises to the cloud with minimal to no application or
database changes. The isolation and security of your SQL managed
instance is protected with its own VNet and private IP addresses.

It is also important when choosing a SQL managed instance to
understand what it is not. A SQL managed instance is not an
alternative for many secondary SQL Server features. A SQL
managed instance is intended for a traditional OLTP workload, but
not to replace the other SQL Server services.

A quick rundown of feature differences:

SQL Server Integration Services (SSIS) is not also hosted inside
the SQL managed instance. Instead, you should migrate
existing SSIS packages with an Azure Integration Runtime (IR)
inside Azure Data Factory, another PaaS offering. Your SQL
managed instance can host the SSISDB catalog for the SSIS IR,
however.

SQL Server Analysis Services (SSAS) is not provided by Azure
SQL Managed Instance. You can host it in a separate SQL
Server instance in an Azure VM or as a PaaS offering with
Azure Analysis Services, but the modern direction is to move
this workload to Power BI Premium services.

You must replace SQL Server Reporting Services (SSRS) with
either Power BI paginated reports or a SQL Server instance with
SSRS in an Azure VM. A SQL managed instance can host your
SSRS catalog databases for that Azure VM, however.

Availability groups are built in and pre-configured for SQL
managed instances, and are also configurable through the
Azure portal, to dramatically simplify your SQL HA solution.



Other features that aren’t supported in Azure SQL Database are
supported in Azure SQL Managed Instance, such as SQL
Agent, Database Mail, a fully configurable Query Store, change
data capture (CDC), linked servers, and transactional
replication.

Service Broker was not initially supported in Azure SQL
Managed Instance, but support was later introduced in 2021.
For specific limitations, see
https://learn.microsoft.com/sql/database-engine/configure-
windows/sql-server-service-broker#service-broker-and-azure-
sql-managed-instance.

Security features like Always Encrypted, dynamic data masking,
row-level security, SQL Audit, and TDE are all supported.

Like Azure SQL Database, Azure SQL Managed Instance
provides support for Azure AD integration, with the CREATE
LOGIN … FROM EXTERNAL PROVIDER syntax.

Although many items that comprise a SQL managed instance are
similar to the latest version of SQL Server, there are a few things that
make it different as well.

Differences between SQL Server and Azure SQL
Managed Instance
When assessing the benefits of a SQL managed instance, it is
important to compare like servers and services. The SQL managed
instance benefits from always being up to date in the cloud, which
means that some features in on-premises SQL Server may be either
unnecessary or have alternatives. There are also specific cases when
a particular feature works in a slightly different way.

High availability
High availability (HA) is built in and pre-configured using technology
similar to availability groups (AGs). If you currently use AGs, you will

https://learn.microsoft.com/sql/database-engine/configure-windows/sql-server-service-broker#service-broker-and-azure-sql-managed-instance


find there are several operations that are not supported, including:

Creating AGs

Altering AGs

Dropping AGs

Creating endpoints for database mirroring

The SET HADR clause of the alter database statement

There are a few HA features used in SQL managed instances that
are different from on-premises:

INSTANCE_LOG_GOVERNOR wait. This is a Resource
Governor constraint that slows down logging to ensure replicas
do not get out of sync. Index rebuilds, for example, are an
activity that can be affected by this governor.

HADR_DATABASE_FLOW_CONTROL and
HADR_THROTTLE_LOG_RATE_SEND_RECV waits. You will
see these waits if the secondary replicas get behind. They slow
the primary to prevent data loss.

Azure SQL Managed Instance can also be a part of your hybrid HA
and disaster recovery (DR) solution with the addition of the link
feature for Azure SQL Managed Instance, introduced around the
same time as SQL Server 2022. More on this later in this chapter and
in Chapter 11.

Differences
Azure SQL Managed Instance and an on-premises SQL Server have
a few general differences that you should consider. These are
behavior changes that can affect your decision as to whether and
how to use Azure SQL Managed Instance.



All Azure SQL Managed Instance databases use the full
recovery model to guarantee HA and no data loss. If your on-
premises database uses the simple or bulk-logged model, you
may find SQL Managed Instance slower for bulk-logged
operations.

With SQL Managed Instance, TDE is enabled by default. This
can be disabled, but if any of the databases in an instance are
encrypted, tempdb will still be encrypted.

Version compatibility with SQL Server 2022
Before the time of the release of SQL Server 2022, Azure SQL
Managed Instance ran at a special version level higher than any
public SQL Server release, which meant restoring to SQL Server was
impossible. Migration to a managed instance used to be a one-way
ticket.

Starting around the SQL Server 2022 release, SQL managed
instances began running with compatibility to the latest SQL Server
2022 build. New SQL managed instances have SQL Server 2022
version compatibility by default and existing SQL managed instances
receive it automatically. Existing SQL managed instances actually
began receiving the rollout of the new compatibility level in the
months before the release of SQL Server 2022.

This means you can failover and failback from an on-premises SQL
Server version using the new link feature for Azure SQL Managed
Instance. Failing over and failing back from a SQL managed instance
is not supported for previous versions of SQL Server.

Thanks to the new compatibility option, migrations to Azure SQL
Managed Instance are no longer a one-way ticket, and can be
reversed if necessary. Multi-cloud SQL Server solutions involving
Azure SQL Managed Instance are possible. Including an Azure SQL
Managed Instance in an on-premises availability group is possible.

The new version compatibility feature for Azure SQL Managed
Instance cannot be disabled or opted out of at this time. New



Database Engine features that bump the database version are not
delivered to SQL managed instances until they are released in SQL
Server cumulative updates. Some Database Engine feature changes
with no on-disk metadata changes will also be released at the same
time on Azure SQL Managed Instance and SQL Server.

Microsoft has acknowledged that in the future, it’s possible that Azure
SQL Managed Instance may introduce functionality that requires
changes to the database format, making backups incompatible with
SQL Server 2022. At that point, customers would be offered a choice
between version compatibility and the new SQL managed instance–
only features.

Time to provision and start/stop
One limitation of Azure SQL Managed Instance was the delay in
provisioning. It could take many hours to provision a managed
instance, but this time has been reduced with recent announcements.
Provisioning Azure SQL Managed Instance has been faster with
recent changes behind the scenes.

There is also less reason to provision/de-provision SQL managed
instances now that there is a start/stop feature. The start/stop feature
allows SQL managed instances to be stopped to save money and
resumed quickly. This is especially useful for testing or proof-of-
concept (POC) environments. When stopped, all compute and
license costs are paused. Storage and backup storage for the SQL
managed instance remain billed. As of the time of this book’s writing,
the new stop/start feature for Azure SQL Managed Instance is in
preview as part of the November 2022 feature wave. For details, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/instance-stop-start-how-to.

Azure SQL Managed Instance is not an inexpensive cloud product to
consume, but now its costs can be mostly paused. This feature is in
preview at the time of this writing.

https://learn.microsoft.com/azure/azure-sql/managed-instance/instance-stop-start-how-to


Maintenance window and advance maintenance
alerts
A feature introduced in 2022 enables administrators to choose from a
few different pre-determined schedules for maintenance. This allows
you to schedule planned Azure maintenance windows around the
business.

Advance maintenance notifications 24 hours before each planned
maintenance window are also available, though for Azure SQL
Managed Instance, they are in preview at the time of this book’s
writing.

By default, Azure SQL Managed Instance can perform planned
maintenance and upgrades from 5 p.m. to 8 a.m., any day of the
week, in the time zone local to the Azure datacenter.

Two alternate maintenance windows are also available:

Weekdays. 10 p.m. to 6 a.m. Monday through Thursday, local to
the Azure datacenter.

Weekends. 10 p.m. to 6 a.m. Friday through Sunday, local to
the Azure datacenter.

Azure planned maintenance should typically complete well within a
single maintenance window, but sometimes it can span multiple
windows. On rare occasions, critical security patches might be
applied in the default maintenance window.

Backup and restore
Managed instances automatically handle backups for you. Much like
on-premises backups, a SQL managed instance takes full backups
every week, differential backups every 12 to 24 hours, and
transaction log backups about every 10 minutes, based on compute
size and database activity.



Backups are stored as Azure Storage blobs and replicated to another
datacenter for protection against datacenter outages or disasters.
Restores are automatically handled as well, as the system
determines which restore path to take.

Inside OUT
Can you restore an Azure SQL Managed Instance
database to your own SQL Server instance for testing?

Yes, but only for restores to SQL Server 2022.

This answer used to be a flat “no,” but as of November 2022,
the new version compatibility provides a way to back up and
restore from SQL Server 2022. You cannot restore from a
SQL Managed Instance database to older versions of SQL
Server, or to Azure SQL Database.

You can also synchronize to a SQL Server 2022 instance with
the link feature for Azure SQL Managed Instance. This allows
for bidirectional failover to SQL Server 2022.

You can upload a SQL Server backup to restore to a SQL
managed instance. You can also export the data from a SQL
managed instance to on-premises or testing environments.
Consider the scalable Azure Data Factory Copy activity or
other data movement strategies.

Backup storage
Azure SQL Managed Instance backups are written to geo-redundant
Azure Blob Storage by default, so your backups are immediately off
site. In order of ascending safety, backup redundancy can be set to
local-only, zone-redundant, geo-redundant (default), or geo-zone-
redundant storage (GZRS). GZRS takes advantage of availability



zones within Azure regions and zones in a geo-redundant paired
Azure region.

Inside OUT
Can you change your backup redundancy setting any
time?

When changing to a more broadly distributed redundancy for
your backup storage, like from local to geo-redundant storage,
there may be a 10+ minute delay for keys, storage, and other
automation to be created in the additional geographies. Then,
a full backup is immediately taken. If you don’t want to affect
your production systems during normal operating hours, don’t
change your backup storage redundancy setting until after
hours.

Note
For concerns about data residency or other regulations, you can
configure backup redundancy to local-only or zone-redundant
storage.

You cannot geo-restore backups to the paired Azure region if you
choose locally redundant storage (LRS) or zone-redundant storage
backups. The cheapest option is LRS, which replicates data three
times within a single datacenter in the primary region and provides
99.999999999 percent storage uptime. Of course, uptime isn’t the
entire story on data safety. LRS is safe, but not the safest in terms of
disaster survivability.

Manual backups in Azure SQL Managed Instance



The only type of backups you can manually initiate are copy-only full
backups, written to a registered Azure Blob Storage location using
BACKUP TO URL. You can then restore from that backup as desired to
SQL managed instances, including geo-restores in other Azure
datacenters in the event of a disaster. There are some hurdles to
using the backups elsewhere, however.

By default, you cannot restore this backup externally because of the
TDE key, which is service managed and itself cannot be exported.
This is a by-default security measure. There are two workarounds:

Create a customer-managed TDE key (a bring-your-own-key, or
BYOK) setup. Then you can manage the same TDE key in a
SQL Server instance outside the SQL managed instance. This is
a required preparation step for the link feature for Azure SQL
Managed Instance.

 For more information on providing your own key, see
https://learn.microsoft.com/azure/azure-sql/database/transparent-
data-encryption-byok-overview.

Choose reduced safety by disabling TDE for the database. This
may violate safety and privacy regulations in your industry. Not
recommended.

There is a limitation of 32 stripes for the SQL managed instance
backup and a stripe size of 195 GB, which is the maximum blob
object size, enough for 4 TB of compressed data storage.

Restores to a SQL managed instance
Azure SQL Managed Instance does not allow you to specify full
physical paths, so all corresponding scenarios are logically supported
differently. For example, RESTORE does not support WITH MOVE, and
CREATE DATABASE doesn’t allow physical paths.

The options to restore are:

https://learn.microsoft.com/azure/azure-sql/database/transparent-data-encryption-byok-overview


Restore to a point in time. This option restores a copy in the
same SQL managed instance or a different SQL managed
instance under the same subscription.

Restore a deleted database. This option restores a deleted
database to the SQL managed instance from which the backup
was taken.

Restore to a new region. This option creates a new database
in any existing server anywhere in the world and is used in case
of a geographic disaster.

Restore from a specific long-term backup. This option only
works if a long-term policy has been set. Long-term retention
can be configured for up to 10 years.

Backup retention policies
Short-term retention policies for backups include policies needed for
point-in-time restores, while long-term retention policies involve the
full backups commonly needed for regulatory compliance. These
policies can be configured per database.

Note
Review your short- and long-term backup retention policies
when creating a new SQL managed instance to comply with
your own regulatory or policy requirements.

By default, short-term retention is 7 days for the general purpose tier
and up to 35 days for business critical. By default, long-term retention
is not enabled. You can configure individual retention of:

Weekly backups

The first backup of each month

The nth week of each year, up to 10 years



The long-term policy does not apply until the next backup of that type
occurs.

Caution
If you reduce your retention period by changing tiers or
modifying retention policies, then all backups older than the new
retention period are no longer available.

Security
Azure SQL Managed Instance provides most of the same security
features as the latest SQL Server on-premises Enterprise edition.

 Additional information about managing instances and
database security can be found in Chapter 12, “Administer
instance and database security and permissions.”

A SQL managed instance can be created with SQL Authentication,
Azure AD Authentication, or both:

If SQL Authentication is enabled with a single SQL-
authenticated server administrator account, that account is the
administrator of the SQL managed instance. This is specified
during or after provisioning. It is a member of the sysadmin
server role and is separate from the built-in sa account, which
also exists in Azure SQL Managed Instance but is disabled by
default.

If Azure AD Authentication is enabled, the Azure AD admin
account must be linked to a user or group in Azure AD. This
account has sysadmin permissions and creates Azure AD and
SQL logins in the master database for the SQL managed
instance.

As of August 2022, Windows Authentication for Azure AD
principals is supported. You can now enable the use of Windows



Authentication for Azure SQL Managed Instance, allowing for a
more seamless experience for users in a hybrid infrastructure
environment. This is particularly useful for legacy applications
where Azure AD options don’t work. It allows enterprises to lift
and shift to Azure while leveraging existing and familiar
authentication methods. Windows Authentication for Azure AD
principals to SQL managed instances is available for servers
joined to an Active Directory (AD) in your own infrastructure, to
Azure AD, or to hybrid Azure AD. This is made possible in Azure
using Kerberos.

 For more information, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/winauth-azuread-overview.

Azure AD Authentication
A SQL managed instance needs permissions to read Azure AD to
perform tasks such as authenticate users in security groups and
create new users.

 For detailed information on how to create Azure AD server
principal logins for SQL managed instances, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/aad-security-configure-tutorial#create-an-azure-ad-
server-principal-login-for-a-managed-instance-using-ssms.

Note
Some features in this space rely on recent versions of SQL
Server Management Studio (SSMS). Always use the latest
version of SSMS when dealing with Azure SQL platforms.
SSMS 19 was introduced and previewed alongside SQL Server
2022. Get the latest version at https://aka.ms/ssms.

Azure AD database principals are created at the database level. This
account can be either a user or a group. It does not have to be an

https://learn.microsoft.com/azure/azure-sql/managed-instance/winauth-azuread-overview
https://learn.microsoft.com/azure/azure-sql/managed-instance/aad-security-configure-tutorial#create-an-azure-ad-server-principal-login-for-a-managed-instance-using-ssms
https://aka.ms/ssms


administrator, but it must be configured to use Azure AD to connect to
the database. Both server principals and admin accounts can overlap
in permissions. The server principal takes precedence in the event of
a conflict.

Certificates
SQL managed instances do not access file shares or folders. You
cannot create from or back up to a file share for certificates, nor can
you back up or create from a file or assembly.

 Find details on how to handle certificates at
https://learn.microsoft.com/sql/t-sql/statements/create-
certificate-transact-sql.

Contained database users
Like SQL Server and Azure SQL Database, Azure SQL Managed
Instance supports partially contained databases and contained
database users. You can map a user in a partially contained database
directly to an Azure AD account.

You should avoid logins (in the master database) and contained users
(in a user database) with the same name. This can cause confusion
because the contained user connection takes precedence over the
login when connecting to the user database.

Configuration differences
There are several configurations to note with SQL managed
instances that are different from SQL Server:

Buffer pool extensions are not supported.

The deprecated database mirroring feature is not supported.

Multiple log files are not supported.

https://learn.microsoft.com/sql/t-sql/statements/create-certificate-transact-sql


In-memory tables are a business critical tier–only feature.

SQL Server Agent is always running.

FILESTREAM and FileTable are not supported.

DBCC undocumented statements that are enabled in SQL Server
do not function.

Session-level trace flags are not supported.

R and Python external libraries and tables are not supported.

Note
Machine Learning Services in Azure SQL Managed Instance
are a different topic. R and Python scripts for in-database
machine learning are supported. For more information, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/machine-learning-services-overview.

Linked servers are supported for other managed instances, SQL
Server instances, and Azure SQL Database targets, and support
both SQL Authentication and Azure AD Authentication. In 2020,
support for linked servers to Azure Synapse serverless SQL
pools and dedicated SQL pools was added.

Cross-instance Service Broker message exchange is supported
only between SQL managed instances. Service Broker is
enabled by default and cannot be disabled.

Extended stored procedures (including xp_cmdshell) are not
supported.

Azure SQL Managed Instance automatically manages XTP
filegroup and files for databases containing in-memory OLTP
objects.

The tempdb database is split into 12 data files by default.
Starting in September 2022, you can configure the number of
tempdb data files the same way you can in SQL Server.

https://learn.microsoft.com/azure/azure-sql/managed-instance/machine-learning-services-overview


Changes to add or remove tempdb data files take effect
immediately without the need to restart, although the Database
Engine will use the new, empty tempdb data files first until all the
tempdb data files level out over time.

By default, tempdb data files have a growth rate of 254 MB, and
transaction log files have a growth rate of 64 MB. Starting in
September 2022, these growth rates can be reconfigured, just
like in SQL Server. The growth rate and current size of all
tempdb data files should always be the same.

Prior to SQL Server 2022, transaction log files could not benefit
from instant file initialization (IFI). Now, transaction log file
growth events less than or equal to 64 MB can benefit from IFI.
You should leave your transaction log file autogrowth rate set to
the default of 64 MB. Also, consider proactive growing data and
log files to avoid autogrowth events altogether. For more on IFI,
see Chapter 3, “Design and implement an on-premises
database infrastructure.”

Note
Data virtualization for Azure SQL Managed Instance became
generally available in September 2022 for external data
sources to Azure Data Lake Storage (ADLS) Gen2 and Azure
Blob Storage. This includes support for using a managed
identity authentication that automatically provides a managed
instance with authentication to Azure Storage. Though it is
data virtualization, it is not called PolyBase in Azure SQL
Managed Instance. PolyBase remains the name for the SQL
Server feature set for data virtualization. For more
information, see
https://techcommunity.microsoft.com/t5/azure-sql-blog/data-
virtualization-now-generally-available-in-azure-sql-
managed/ba-p/3624292.

There are several features and syntax that cannot be used in a SQL
managed instance. This is because the instance automatically
handles these features and therefore they are not relevant and can’t

https://techcommunity.microsoft.com/t5/azure-sql-blog/data-virtualization-now-generally-available-in-azure-sql-managed/ba-p/3624292


be changed. A list of these features can be found at the following
Microsoft Docs locations:

https://learn.microsoft.com/azure/azure-sql/database/features-
comparison

https://learn.microsoft.com/azure/azure-sql/managed-
instance/transact-sql-tsql-differences-sql-server

 You can keep track of known issues at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/doc-changes-updates-known-issues, and follow what’s
new in Azure SQL Managed Instance here:
https://learn.microsoft.com/azure/azure-sql/managed-
instance/doc-changes-updates-release-notes-whats-new.

Inside OUT
Does Azure SQL Managed Instance support distributed
transactions?

In short, yes. There is a feature to execute distributed
transactions between multiple databases on different SQL
managed instances. However, there’s some terminology to
sort out here.

Support for distributed database transactions across multiple
SQL managed instances is provided via ADO.NET and the
System.Transaction class, where the ability to perform
distributed transactions is native to Azure SQL Database and
Azure SQL Managed Instance. Distributed transactions that
write data are currently limited to other SQL managed
instances. This requires setting up a server trust group (STG)
containing the SQL managed instances needed for the
distributed transactions. For more information, see
https://learn.microsoft.com/azure/azure-sql/database/elastic-
transactions-overview.

https://learn.microsoft.com/azure/azure-sql/database/features-comparison
https://learn.microsoft.com/azure/azure-sql/managed-instance/transact-sql-tsql-differences-sql-server
https://learn.microsoft.com/azure/azure-sql/managed-instance/doc-changes-updates-known-issues
https://learn.microsoft.com/azure/azure-sql/managed-instance/doc-changes-updates-release-notes-whats-new
https://learn.microsoft.com/azure/azure-sql/database/elastic-transactions-overview


The distributed database transactions don’t involve or require
the Microsoft Distributed Transaction Coordinator (MSDTC),
which isn’t generally available in Azure SQL Managed
Instance. However, distributed transactions using a cloud-
managed MSDTC are coming soon. A product group blog
post in July 2022 announced a private preview for an Azure
cloud–managed DTC that allows for distributed transactions
between Azure SQL Managed Instance databases, SQL
Server instances hosted anywhere, and even non-Microsoft
database platforms. For more information, see
https://techcommunity.microsoft.com/t5/azure-sql-blog/ms-dtc-
for-azure-sql-managed-instance-extending-distributed/ba-
p/3576839.

If you need support for queries using the same MSDTC
functionality as you have with SQL Server, and they don’t
work in the limited scenarios supported by the cloud-managed
DTC preview, consider SQL Server on Azure VMs. This
distributed transaction capability is different from Azure SQL
Database elastic queries, a useful feature only for Azure SQL
Database that has been in preview status for years.

Create a SQL managed instance
You can create a SQL managed instance using the Azure portal
(recommended for your first time), PowerShell, the Azure CLI, ARM
and Bicep templates, or the REST API.

When creating a SQL managed instance for the first time, plan to
have a few hours to spare. Fortunately, the time it takes to provision a
managed instance has decreased recently. The Azure portal directs
you in which VNets to use, ensuring you have all the necessary items
before starting the deployment.

 A list of those regions can be found at
https://azure.microsoft.com/explore/global-

https://techcommunity.microsoft.com/t5/azure-sql-blog/ms-dtc-for-azure-sql-managed-instance-extending-distributed/ba-p/3576839
https://azure.microsoft.com/explore/global-infrastructure/products-by-region/?products=azure-sql&regions=all


infrastructure/products-by-region/?products=azure-
sql&regions=all.

A SQL managed instance is supported for the following subscription
types.

Enterprise Agreement (EA)

Pay-As-You-Go

Cloud Service Provider (CSP)

Enterprise Dev/Test

Pay-As-You-Go Dev/Test

Subscriptions with monthly Azure credit for Visual Studio
subscribers

Select a service tier and service objective
Azure SQL Managed Instance is based on the vCore purchasing
model. The intent is to make it easier to transition from SQL Server
on-premises so you can independently choose to scale out compute
and storage. Maximum instance storage scales up by the number of
vCores.

There are two different service tiers for SQL managed instances:

General purpose. Balances usage with scalable compute and
storage options. HA is built-in based on Azure Blob Storage and
the Azure Service Fabric. This is a technical distinction only—
HA replicas in the general purpose tier are “cold” as opposed to
“hot” because replication occurs at the storage level, not at the
database level.

Geo-replicated read-only replicas inside failover groups are
available at additional cost. The general purpose tier allows for
storage up to 16 TB with 5–10 ms latency. The tempdb system
database files are stored on SSDs local to the SQL managed

https://azure.microsoft.com/explore/global-infrastructure/products-by-region/?products=azure-sql&regions=all


instance (including in failover groups). The tempdb is allocated
24 GB per vCore.

Business critical. Typically used for applications with high I/O
requirements that can suffer only minimal impact due to
maintenance operations. It offers the highest resilience to
failures by using isolated replicas. HA is built-in based on a
technology similar to AGs and Azure Service Fabric. Failover
groups offer asynchronously replicated, read-only replicas that
can be used for reporting or other read-only workloads.

The business critical tier allows for storage up to 5.5 TB on
faster premium-series hardware (1–2 ms latency) than general
purpose. In memory-optimized premium series hardware,
business critical supports up to 16 TB of storage. All data and
log files, including tempdb files, are stored on solid-state drives
(SSDs) local to the SQL managed instance (including in failover
groups). They are limited only by the maximum available size of
storage.

 For more information about solid-state storage, see Chapter 2,
“Introduction to database server components.”

These resource limits are regularly increased and may have changed
since the time of this book’s writing. For current details, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/resource-limits.

All Azure SQL Server Managed Instance service tiers guarantee at
least 99.99 percent availability, and independently scale storage size
and compute, with up to 100 percent service credit for uptime
violations.

 See the service-level agreement (SLA) for more information, at
https://azure.microsoft.com/support/legal/sla/azure-sql-sql-
managed-instance.

https://learn.microsoft.com/azure/azure-sql/managed-instance/resource-limits
https://azure.microsoft.com/support/legal/sla/azure-sql-sql-managed-instance


Inside OUT
What if you need better than 99.99 percent availability?

If you need guaranteed HA higher than 99.99 percent (roughly
52 minutes per year of downtime), with no impact on
maintenance operations and outages, there are options to
consider.

First, selectable maintenance windows and maintenance
window alerts help you plan for and avoid planned impact to
business-critical time windows, as mentioned earlier in this
chapter.

In the business critical tier, the zone redundant configuration
offers an SLA to 99.995 percent (roughly 26 minutes per
year). Zone redundancy, as discussed in other places in this
book, is a way to increase data redundancy and survivability
without geo-replication, and could be particularly useful for
concerns over data residency. Zone redundancy replicates
data between the multiple physically isolated infrastructure
zones within a single Azure datacenter.

If the ability to handle critical servicing tasks, planned events,
and unplanned events is mission or life critical, consider the
general purpose, business critical, or Premium tiers of the
Azure SQL Database configured for zone redundant
deployments, which offer 99.995 percent uptime (roughly 26
minutes per year of downtime).

If 99.995 percent is still unacceptable for mission- or life-
critical operational needs, for the safety of those involved you
should consider investing in on-premises infrastructure and
other redundancies.

The service tier and compute hardware options are independent of
each other. Compute hardware options as of the writing of this book



are as follows:

Standard-series. Up to 80 logical CPUs based on Intel E5-2673
v4 (Broadwell) 2.3-GHz processors, vCore = 1 LP (hyper-
thread), 5.1 GB per vCore.

Premium-series. Up to 80 logical CPUs based on Intel Ice Lake
8370C 2.8-GHz processors, 7 GB RAM per vCore.

Premium-series memory optimized. Up to 64 logical CPUs
based on Intel Ice Lake 8370C 2.8-GHz processors. Almost
double the RAM per core at 13.6 GB RAM per vCore.

Gen4. Deprecated and unavailable for new instances. As of the
time of this book’s writing, in March 2023 remaining Gen4
hardware will be automatically upgraded to Gen5.

Previously, standard-series was known as Gen5. To reduce
confusion, Microsoft has moved away from numerically incrementing
these hardware generations, but still provides the base platform
hardware. Gen5, Gen6, and Gen7 hardware is all considered in the
standard-series label, has the same resource limits, and is not user-
selectable. In the future, Microsoft will simply upgrade the hardware
underneath standard-series and premium-series labels.

You can derive specific hardware information about your instance of
Azure SQL Managed Instance from the
sys.dm_user_db_resource_governance dynamic management view
(DMV). This information is not hidden and is documented at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/service-tiers-managed-instance-vcore.

There are some differences between the internal reporting and
marketing names. Hardware for standard-series is labeled as
standard-series (Gen5) but could use Broadwell, Skylake, or
Cascade Lake Intel processors. Hardware for instances reported as
Gen7 uses Intel 8272CL (Cascade Lake) processors, for example.
Premium-series hardware generations are reported in the DMV as
Gen8.

https://learn.microsoft.com/azure/azure-sql/managed-instance/service-tiers-managed-instance-vcore


 For up-to-date details on the different service tiers and
hardware options, and their resource limits, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/resource-limits. These limits regularly increase as
Microsoft continuously evolves the hardware.

With Software Assurance from your on-premises offering, you can
exchange existing licenses for discounted rates on a SQL managed
instance using Azure Hybrid Benefit for SQL Server at
https://azure.microsoft.com/pricing/hybrid-benefit.

Use the Azure portal to provision a SQL managed
instance
It is highly recommended that you use the Azure portal to provision
SQL managed instances until you fully understand the experience—
particularly the networking aspects. The Azure portal automates
much of this for you and limits the number of issues that can arise.

The following instructions can help you complete the task of creating
a SQL managed instance through the Azure portal:

1. Choose +Create A Resource.

2. In the search box, type managed instance, and choose Azure
SQL Managed Instance from options that appear. Select
Create.

The Basics tab contains the minimum required information.

3. In the Subscriptions drop-down list, choose the subscription.
(See the note earlier in “Create a SQL managed instance” about
available subscriptions.)

4. In the Resource group drop-down list, choose the resource
group. Alternatively, select Create New and follow the prompts
to create a new resource group.

https://learn.microsoft.com/azure/azure-sql/managed-instance/resource-limits
https://azure.microsoft.com/pricing/hybrid-benefit


5. In the Managed Instance Name box, type a name for the SQL
managed instance.

6. In the Region drop-down list, choose a region.

7. Select the Configure Managed Instance link in the Compute +
Storage section of the Basics tab.

8. Choose the General Purpose or Business Critical tier, and an
option in the Hardware Generation section. See the previous
section for more information.

9. Use the vCores slider to specify a number of vCores. Use the
Storage in GB slider to choose a maximum storage amount.
These settings can be adjusted in the future, but at the cost of a
brief service interruption.

10. If it’s available, select the Azure Hybrid Benefit check box. This
can save you money, as the SQL Server license is automatically
included in the cost of the SQL managed instance.

11. Choose a Backup option (discussed earlier in this chapter):

Geo-Redundant. The default.

Zone-Redundant. This might be useful to avoid data
residency concerns.

Locally Redundant. This can lower costs for pre-
production systems.

12. Select Apply.

13. At the bottom of the Basics tab, choose to allow Azure AD
Authentication, SQL Authentication, or both.

While fundamentally different in the integration with AD, this is
similar to deciding whether to enable Windows Authentication,
SQL Authentication, or Mixed mode when installing a SQL
Server.



If Azure AD Authentication is enabled, select an Azure AD
administrator account.

If SQL Authentication is enabled, provide a Managed Instance
admin login and Password. Then, select Next : Networking.

14. This is where you define the level of access, connection type,
VNet, and public endpoints (if desired). If you have a compliant
VNet, choose it from the Virtual Network/Subnet drop-down
list. Otherwise, it is recommended that you allow the Azure
portal to create a new one for you. Reusing the VNet from an
existing SQL managed instance can reduce the provisioning
time.

15. Open the Connection Type drop-down list and choose a
connection type for the private endpoint. The default value is
Proxy; however, we recommend you choose Redirect.

If you choose Proxy, all connections are proxied via Azure SQL
Managed Instance gateways. So, to enable connectivity, the
client must have outbound firewall rules that allow only the IP
address of the Azure SQL Managed Instance gateway port
1433.

With the Redirect option, clients establish connections directly
to the node hosting the database. So, you need outbound
firewall rules to allow all Azure IP addresses in the region using
network security groups (NSGs) with service tags for ports
11000–11999, not just the Azure SQL Managed Instance
gateway. This allows packets to go directly to the database,
reducing latency.

 For more information, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/connection-types-overview.

16. Optionally, enable the Public Endpoint setting.

For security reasons, Public Endpoint is disabled by default
because it allows access to the SQL managed instance without

https://learn.microsoft.com/azure/azure-sql/managed-instance/connection-types-overview


a VPN and can be a security risk.

When Public Endpoint is enabled, you’re given the option to
Allow access from: Azure Services, Internet, or No Access.
Ideally, you should choose No Access and enable only specific
endpoints later as needed.

 For information on using Azure SQL Managed Instance securely
with public endpoints, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/public-endpoint-overview.

Note
Connections for the link feature for Azure SQL Managed
Instance must be made via private endpoints. An Azure
ExpressRoute virtual private cloud connection between your
infrastructure and Azure is recommended. Other VPN
connections from your infrastructure to Azure are supported,
such as Azure site-to-site VPN and point-to-site VPN.

17. For the Minimum TLS Version setting, select the highest value
possible based on existing applications. Some legacy
connection drivers do not support the latest versions of
Transport Layer Security (TLS), so you might have to allow less
secure TLS versions until those issues can be resolved and the
drivers upgraded. TLS 1.3 support is introduced in SQL Server
2022 and Window Server 2022 and will likely be introduced for
Azure SQL Managed Instance after this book is published.
Select Next : Security.

18. You have the option to begin a free trial of an add-on Azure
service, the Microsoft Defender for SQL. Microsoft Defender
for SQL is an analytics-driven threat-detection service that
continuously identifies and mitigates potential database
vulnerabilities. For more information, see Chapter 16, “Design
and implement hybrid and Azure database infrastructure.”

19. For the Identity setting, choose one of the following options:

https://learn.microsoft.com/azure/azure-sql/managed-instance/public-endpoint-overview


System-Assigned Identity (SMI). This is the default. A
new system-assigned identity (SMI) will be created.

User-Defined Managed Identity (UMI). A UMI can serve
as service identity for one or more Azure SQL databases or
managed instances. UMIs have been generally available
for Azure SQL Database and Azure SQL Managed
Instance since June 2022.

You can create an SMI and choose one or more UMIs. This is
necessary to eventually allow Azure AD Authentication for your
managed instance. If you choose to use more than one UMI, you
also must specify which UMI is the primary and default UMI.

 For more information, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/winauth-azuread-kerberos-managed-instance.

Using UMI offers certain advantages. For example, you can
reuse a UMI for multiple instances. UMIs can also be created to
serve different features. For example, you might have one UMI
that serves up Azure AD Authentication and another UMI that
serves up TDE. You must also choose a UMI if you intend to
bring your own customer-managed key for TDE.

If you delete an Azure SQL Database logical server or a SQL
managed instance, the SMI is deleted as well. A UMI, however,
is independent of any servers or instances to which it is
assigned, and is not deleted automatically.

 For more on SMIs versus UMIs, see
https://learn.microsoft.com/azure/azure-
sql/database/authentication-azure-ad-user-assigned-managed-
identity.

20. Choose a Service Principal setting. The service principal is a
relatively new feature with a specific goal in mind: to enable
Windows Authenticated logins, via Kerberos, for Azure SQL
Managed Instance. This allows an even smoother lift-and-shift

https://learn.microsoft.com/azure/azure-sql/managed-instance/winauth-azuread-kerberos-managed-instance
https://learn.microsoft.com/azure/azure-sql/database/authentication-azure-ad-user-assigned-managed-identity


migration to Azure for existing applications with significant
investment in Windows Authenticated principals for
authentication.

21. Choose a Transparent Data Encryption (TDE) key. As stated,
TDE is enabled by default. You can disable it later, but this is not
recommended.

TDE prevents databases from being restored to another
instance without a certificate present. “Encryption of data at rest”
is a common regulatory requirement, so security policies often
require TDE. Specify whether you want to use a service-
managed key for TDE or bring your own user-managed key. You
use your own key if you want your backups to have more
portability between your managed instances. Select Apply, then
select Next : Additional Settings.

 For more information on providing your own key, see
https://learn.microsoft.com/azure/azure-sql/database/transparent-
data-encryption-byok-overview.

22. If you don’t want to use the default collation, select the Find a
Collation button and choose a collation.

23. Open the Time Zone drop-down list and choose a time-zone
setting.

24. Under Geo-Replication, choose Yes to specify that this SQL
managed instance should be the secondary to another SQL
managed instance in a geo-replicated Failover Group.

If you choose Yes, the primary SQL managed instance must
already exist, and you must take additional steps to create a
VPN gateway between the primary and secondary.

 For more on creating a SQL managed instance as a secondary
replica, see https://learn.microsoft.com/azure/azure-sql/managed-
instance/failover-group-add-instance-tutorial.

https://learn.microsoft.com/azure/azure-sql/database/transparent-data-encryption-byok-overview
https://learn.microsoft.com/azure/azure-sql/managed-instance/failover-group-add-instance-tutorial


25. Choose a Maintenance window schedule, as discussed earlier
in this chapter in the section “Maintenance window and advance
maintenance alerts.” Then select Next : Tags.

26. Add as many tags as you want to the SQL managed instance. At
the very least, add a tag that indicates you are the person who
created the SQL managed instance, and what role the resource
plays (dev, test, production, etc.). Then select Next : Review +
create.

27. Review your settings and the cost.

28. Select the Download a template for automation link at the
bottom of the tab to see how your current selections will look in
ARM JSON.

 For more on deploying via ARM templates programmatically, see
the next section.

29. Select Create to deploy, and monitor the progress in Azure
portal Notifications.

Inside OUT
Why is this taking so long?

Creating a SQL managed instance may take a full business
day, though the provisioning process has improved recently.
The first managed instance will take the longest; subsequent
instances in the same pool are quicker. The VNet setup is
usually what takes the most time.

Don’t cancel the provisioning operation. Regardless of how
long the process takes, it is best to let it fail on its own (if it is
going to fail), because it will make the subsequent steps
simpler.



If provisioning takes longer than 36 hours, it is likely because
the process failed and is rolling back. Allowing the process to
roll back will save you many hours of fixing, troubleshooting,
and determining how to get back to a clean start.

Use PowerShell to provision a SQL managed
instance
Creating a SQL managed instance using PowerShell and the Azure
Resource Manager (ARM) template requires an existing valid VNet
and subnet where you can deploy your SQL managed instance. It is
beneficial to use PowerShell or ARM JSON templates if you are
deploying more than one SQL managed instance, but it’s only
recommended once you have some experience with it.

Note
If you plan to deploy a lot of Azure resources programmatically,
consider diving into Bicep, a relatively new declarative language
that builds on ARM templates. (Bicep? ARM? Get it?) Bicep
files are more concise and easier to read than ARM JSON. For
more information, see https://learn.microsoft.com/azure/azure-
resource-manager/bicep/overview.

It can take a long time for the provisioning process to complete—and
for you to find out if you have missed a step or made a mistake. At
minimum, it is highly recommended that you complete at least one
SQL managed instance deployment in a test environment before
attempting this in production to ensure you understand all the steps
and pieces needed for the deployment.

VNet and subnet creation
Networking—specifically the VNet and subnet configuration—is the
most likely configuration component to cause a SQL managed

https://learn.microsoft.com/azure/azure-resource-manager/bicep/overview


instance provision failure. To remedy this, Azure SQL Managed
Instance has transitioned from manual to service-aided subnet
configuration. This means subnet configuration is now automated and
SQL Managed Instance can control the management traffic while
data traffic (TDS) is still under your control.

It is still possible to create your own subnet inside the VNet. If you
choose to do this, use a dedicated subnet. This subnet:

Cannot have any other cloud services associated with it

Cannot be a gateway subnet

Cannot contain any resource other than the SQL managed
instance

Must be delegated to the Microsoft.SQL/managedInstance
resource provider

 For additional details about VNets, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/virtual-network-subnet-create-arm-template.

Delegating a subnet to an Azure service allows that service to
establish basic network configuration rules for that subnet. It provides
the customer with full control over managing the integration of the
Azure service into its VNet.

An NSG must be associated with the SQL managed instance’s
subnet. You can use an NSG to control access to the SQL managed
instance’s data endpoint by filtering traffic on port 1433, and ports
11000–11999 when Azure SQL Managed Instance is configured for
redirect connections. Services automatically add the rules required to
allow uninterrupted flow of management traffic.

A route table is associated with the SQL managed instance’s subnet
and is automatically created. You can add entries to the route table to
route traffic that has on-premises private IP ranges as a destination
through the VNet gateway or network virtual appliance (NVA). The

https://learn.microsoft.com/azure/azure-sql/managed-instance/virtual-network-subnet-create-arm-template


November 2022 feature wave further simplified this once-manual
task, reducing the number of mandatory routes from 13 to 5.

 For more about the route table, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/connectivity-architecture-overviewnetwork-
requirements.

Service endpoints can be used to configure VNet rules and storage
accounts that keep backups and audit logs.

Pre-creating the VNet requires you to properly size the subnet for the
SQL managed instance because it cannot be resized after you put
resources inside it. However, you can move your SQL managed
instance to a different subnet after provisioning.

 For more information, see
https://learn.microsoft.com/azure/azure-sql/managed-
instance/vnet-subnet-move-instance.

Once the VNet is installed, you can complete the provisioning using
the Azure CLI locally. (Using the cloud shell is discouraged, as this
process can be quite lengthy.)

 The step-by-step guide is available at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/scripts/create-configure-managed-instance-cli.

Once you have the prerequisites and networking set up, you can
create a SQL managed instance either with PowerShell or an ARM
template.

 For PowerShell, see https://learn.microsoft.com/azure/azure-
sql/managed-instance/scripts/create-configure-managed-
instance-powershell.

 To create the SQL managed instance using ARM templates,
visit https://learn.microsoft.com/azure/azure-sql/managed-
instance/create-template-quickstart.

https://learn.microsoft.com/azure/azure-sql/managed-instance/connectivity-architecture-overviewnetwork-requirements
https://learn.microsoft.com/azure/azure-sql/managed-instance/vnet-subnet-move-instance
https://learn.microsoft.com/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-cli
https://learn.microsoft.com/azure/azure-sql/managed-instance/scripts/create-configure-managed-instance-powershell
https://learn.microsoft.com/azure/azure-sql/managed-instance/create-template-quickstart


 Both Bicep and ARM JSON templates are available at
https://learn.microsoft.com/azure/templates/microsoft.sql/man
agedinstances.

Delete a SQL managed instance
Just as provisioning a SQL managed instance is a lengthy and
complicated process, with many objects created in the background,
deleting a managed instance can take hours to properly remove the
objects.

In the REST API, deleting a SQL managed instance is a single
command:
Click here to view code image

DELETE 
https://management.azure.com/subscriptions/{subscriptionId}/r
esourceGroups 
/{resourceGroupName}/providers/Microsoft.Sql/managedInstances
/ 
{managedInstanceName}?api-version=2015-05-01-preview.

The API call is DELETE, followed by a space, and then the URL (as
shown), with all the items in the curly braces resolved with the names
of your SQL managed instance’s items.

This is relatively simple when the SQL managed instance is working
correctly. Issues arise when a SQL managed instance is not correctly
created and you want to start over. To avoid issues with deleting the
instance, do not cancel a deployment in progress. Complex
challenges arise when deployments are only partially complete, and
they are far more difficult to fix after the fact.

If the preceding API call does not resolve your issue, review your
networking settings. Check the “Network requirements for SQL
managed instances” section later in this chapter to confirm you have
the requirements set up correctly. Then try again. Do not try to delete
a subnet before the SQL managed instance has been deleted.

https://learn.microsoft.com/azure/templates/microsoft.sql/managedinstances


Establish a connection to a SQL
managed instance
After you have created your SQL managed instance, consider how
you will connect to it. The most secure and common way to connect
to a SQL managed instance is via a subnet, whether that is a
gateway subnet for your on-premises solutions, a Web App front-end
subnet, or an IaaS apps subnet. Figure 18-1 provides an overview of
the more common communication architectures.

Figure 18-1 Azure SQL Managed Instance connections diagram.

Create the endpoints via the Azure portal
The recommended way to create the public and private endpoints
shown in Figure 18-1 is to do so during the creation of the SQL
managed instance itself. It was briefly mentioned earlier in the section
“Use the Azure portal to provision a SQL managed instance” that you
can define your public and private endpoints in the Connection Type



section of the Networking tab of the Create Azure SQL Managed
Instance wizard.

As discussed, Proxy mode is the default. This mode is simpler from a
networking standpoint because you only need port 1433 for private
network connections or port 3342 for public network connections.
However, it is recommended that you instead use Redirect mode and
configure your firewall accordingly. Redirect mode enables direct
connectivity to the SQL managed instance, without an Azure proxy
gateway component, resulting in reduced latency and improved
throughput. You must configure firewalls in your infrastructure and
network NSGs in your Azure resources to allow port 1433 and ports
11000–11999.

Redirect mode is ideal for peer-to-peer networking and for use with
other Azure services. Enabling a public endpoint gives you the ability
to connect to your managed instance from the Internet without using
a VPN; it uses TDS only.

 If you did not choose these when you provisioned your SQL
managed instance, you can still do so manually following the
directions at https://learn.microsoft.com/azure/azure-
sql/managed-instance/public-endpoint-configure.

Note
Connections via the public endpoint have the word public in the
connection string. For example:
Click here to view code image

instance_name.public.host_name.database.windows.net

Create a VPN gateway via PowerShell
Native VNet implementation and connectivity to your on-premises
environment will need a VPN gateway. An Azure ExpressRoute
virtual private cloud connection between your infrastructure and

https://learn.microsoft.com/azure/azure-sql/managed-instance/public-endpoint-configure


Azure is recommended. Other VPN connections from your
infrastructure to Azure are supported, such as Azure site-to-site VPN
and point-to-site VPN.

 To configure a point-to-site VPN, Microsoft has provided a
handy PowerShell script:
https://learn.microsoft.com/azure/azure-sql/managed-
instance/point-to-site-p2s-configure#attach-a-vpn-gateway-to-
your-managed-instance-virtual-network.

Creating a VPN gateway to the SQL managed instance VNet is best
done from your client machine. Install PowerShell 7.1.3 and Azure
PowerShell 1.4.0 or newer on your on-premises client.

 Instructions for how to install the Azure PowerShell module
can be found at
https://learn.microsoft.com/powershell/azure/install-az-
ps#install-the-azure-powershell-module.

Install or update your local Az PowerShell module with the following
commands:

Install-Module -Name Az 
Update-Module -Name Az

To create the VPN gateway, you need the subscription ID, the
resource group, and the name of the VNet name you used to create
your managed instance. You will also need to create a certificate
name prefix of your choosing. These items are used in the following
PowerShell script:
Click here to view code image

$scriptUrlBase = 'https://github.com/microsoft/sql-server-
samples/tree/master/samples/ 
manage/azure-sql-db-managed-instance/attach-vpn-gateway' 
$parameters = @{ 
  subscriptionId = '<subscriptionId>' 
  resourceGroupName = '<resourceGroupName>' 
  virtualNetworkName = '<virtualNetworkName>' 

https://learn.microsoft.com/azure/azure-sql/managed-instance/point-to-site-p2s-configure#attach-a-vpn-gateway-to-your-managed-instance-virtual-network
https://learn.microsoft.com/powershell/azure/install-az-ps#install-the-azure-powershell-module


  certificateNamePrefix  = '<certificateNamePrefix>' 
  } 
Invoke-Command -ScriptBlock ([Scriptblock]::Create((iwr 
($scriptUrlBase+ 
'/attachVPNGateway.ps1?t='+ [DateTime]::Now.Ticks)).Content)) 
-ArgumentList 
$parameters, $scriptUrlBase

The deployment initiated by the preceding script could take up to an
hour to complete.

This code creates and installs the required certificates on the client
machine. It then calculates the IP subnet range needed for the
gateway and then creates the gateway. Finally, it deploys the ARM
template that attaches the VPN gateway to the VPN subnet.

 Steps to create a point-to-site VPN connection to your SQL
managed instance from an on-premises server, requiring both
PowerShell and the Azure portal, are available at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/point-to-site-p2s-configure#create-a-vpn-connection-
to-your-managed-instance.

After you have completed the VPN connection and your TDS
endpoints are ready to use, there are three main ways to connect.

Connect from an on-premises computer.

Connect from a VM.

Connect applications from any location.

Connect from an on-premises computer
A connection from an on-premises computer is sometimes called a
point-to-site connection. To connect using SSMS (the most recent
version), start by creating a connection to the VPN from your on-
premises machine. On Windows 10 or later, or Windows Server 2016
or later, from the Network and Internet option, go to VPN, then

https://learn.microsoft.com/azure/azure-sql/managed-instance/point-to-site-p2s-configure#create-a-vpn-connection-to-your-managed-instance


choose your managed instance VNet to select the connection. If
prompted for an elevated privilege, choose to elevate and continue to
make the connection. When connecting using SSMS, remember to
enter the fully qualified host name of the SQL managed instance in
the Server Name box.

Connect from a virtual machine
When connecting to a SQL managed instance from a VM, the
process is different if your VM is an Azure VM or an on-premises VM.

Azure VM connections
For an Azure VM, the connection is over a private IP to TDS using a
VM in a subnet separate from the one created for the SQL managed
instance. The VNet employed to create the SQL managed instance
cannot be used because it is dedicated to the SQL managed
instance.

To connect to the VM, you can use a Remote Desktop connection or
Azure Bastion, a more secure type of remote desktop connection
from within the browser. Azure Bastion does not require opening up
the same RDP/SSH ports to the public Internet.

 To create and connect to a SQL managed instance from an
Azure VM, refer to https://learn.microsoft.com/azure/azure-
sql/managed-instance/connect-vm-instance-configure. For
more information on RDP via Azure Bastion, visit
https://learn.microsoft.com/azure/bastion/bastion-connect-vm-
rdp-windows.

VM from on-premises
For a VM on-premises, the connection method is a bit different
because you need to attach a VPN gateway to the managed
instance. This is easily done with the script in the previous section,
“Create a VPN gateway via PowerShell.” This script creates and

https://learn.microsoft.com/azure/azure-sql/managed-instance/connect-vm-instance-configure
https://learn.microsoft.com/azure/bastion/bastion-connect-vm-rdp-windows


installs the certificates on the client machine, calculates the VPN
gateway subnet range, creates the subnet for the gateway, and
deploys the ARM template that attaches the VPN gateway to the VPN
subnet that you need for access.

 You can also find the instructions at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/point-to-site-p2s-configure#attach-a-vpn-gateway-to-
your-managed-instance-virtual-network.

Connect to applications
Applications can connect to SQL managed instances regardless of
where they are hosted: in the cloud, on-premises, or a hybrid option.
With Azure SQL Managed Instance, you can choose what is best for
your application. There are many options to choose from to connect.

Applications in the cloud
Consider the following for a cloud-hosted application:

An application inside the same VNet is the simplest, because
even if they exist in separate subnets, they can connect with the
correct connection string.

An application inside a different VNet is useful if you have VNets
in different subscriptions because this method works for that
scenario. You have two options with this approach:

Azure Virtual network peering. This is the preferable
method because it uses the Azure backbone network, so
there are no latency issues between the peered VNets.
With this method, the VNets have to be in the same region.

VNet-to-VNet, using a VPN gateway. If Azure Virtual
network peering is not an option, use a VPN gateway.

https://learn.microsoft.com/azure/azure-sql/managed-instance/point-to-site-p2s-configure#attach-a-vpn-gateway-to-your-managed-instance-virtual-network


Applications on-premises
Consider the following for hybrid infrastructure with application on-
premises and the database platform in Azure SQL Managed
Instance:

An on-premises application can connect through a private IP
using either a site-to-site VPN connection or Azure
ExpressRoute. Azure ExpressRoute is a service that lets you
create a private connection to your on-premises location and is
recommended over VPN connections. ExpressRoute avoids
moving data over the public Internet.

 For more information on Azure ExpressRoute, visit
https://learn.microsoft.com/azure/expressroute/expressroute-
introduction.

An application on a developer’s machine is the same as the
point-to-site connection covered earlier in the “Create a VPN
gateway via PowerShell” and “Connect from an on-premises
computer” sections.

On-premises with VNet peering can work when the VPN
gateway is installed in a separate VNet and subscription from
the SQL managed instance where the networks are peered.

 This should be used only in special cases, details for which can
be found at https://learn.microsoft.com/azure/azure-sql/managed-
instance/connect-application-instance#connect-from-on-
premises-with-vnet-peering.

An Azure App Service–hosted application is accessed using a
private IP. If using your App Service requires a gateway, that
gateway subnet must be created outside the SQL managed
instance VNet. This is different from the classic setup for on-
premises gateways. In this situation, the gateway must go
through the peering channel.

https://learn.microsoft.com/azure/expressroute/expressroute-introduction
https://learn.microsoft.com/azure/azure-sql/managed-instance/connect-application-instance#connect-from-on-premises-with-vnet-peering


 Review the most suitable networking and connections options for
your organization at https://learn.microsoft.com/azure/azure-
sql/managed-instance/connect-application-instance.

Network requirements for SQL managed
instances
The dedicated subnet is important enough to mention separately in
this section, as it is a subject that commonly causes issues—
especially if you are provisioning the Azure SQL managed instance
outside of the Azure portal.

Caution
Subnets can take a long time to create or configure. It is
common for this process to take 24 hours or more if an issue
arises, as it needs to roll back the process before you are
notified. To prevent issues when creating managed instances,
do not cancel a creation. Let the creation fail on its own if there
is an issue.

The most common challenges with a managed instance have to do
with networking. You can prevent many of these issues by meeting
the requirements laid out in this section before you begin provisioning
any instances.

Subnet
Managed instances need a dedicated subnet that is not a gateway
subnet. The subnet can only house managed instances. The subnet
cannot be shared with other resources.

Note
A SQL managed instance must be inside a subnet that is
dedicated to that SQL managed instance.

https://learn.microsoft.com/azure/azure-sql/managed-instance/connect-application-instance


Network security group
The NSG associated with the SQL managed instance must define the
inbound and outbound security rules before any other rules. If you are
doing transactional replication in your managed instance and have a
publisher or distributor, you will need to open port 445 (outbound) to
allow access to the Azure file share.

Caution
There should be only one inbound rule for ports 9000, 9003,
1438, 1440, 1452, and one outbound rule for ports 80, 443, and
12000. These are TCP management endpoint ports. SQL
managed instance provisioned through Azure Resource
Manager (ARM) deployments will fail if inbound and outbound
rules are configured separately for each port. If these ports are
in separate rules, the deployment will fail with a
VnetSubnetConflictWithIntendedPolicy error.

User-defined route table
A user-defined or static route table associated with the VNet must
include specific entries. These can be found at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/connectivity-architecture-overview#mandatory-user-defined-
routes-with-service-aided-subnet-configuration.

Service endpoints
By default, SQL managed instances do not have service endpoints,
and we recommend you disable this option when you create the
VNet. Service endpoints allow trusted traffic through the Azure
backbone network and allow the Azure service to recognize the
traffic.

https://learn.microsoft.com/azure/azure-sql/managed-instance/connectivity-architecture-overview#mandatory-user-defined-routes-with-service-aided-subnet-configuration


A feature to allow service endpoint policies has been introduced to
improve data egress protection to Azure Storage. This allows
granular control over which storage accounts can be accessed and
closes a potential data egress door from bad actors inside.

Service endpoint policies are free and may be valuable tools for
administrators looking to expose Azure Storage access for BULK
INSERT, or storage accounts for transactional replication
synchronization or the Azure Database Migration Service. This
feature was introduced in preview in November 2021.

 For more information, visit
https://techcommunity.microsoft.com/t5/azure-sql-
blog/harden-your-azure-sql-managed-instance-workloads-
against-data/ba-p/2893145.

IP addresses
SQL managed instances require 16 IP addresses, and a minimum
(that does not allow for scale out) of 32 are recommended. Since a
SQL managed instance VNet can use up to 256 IP addresses, the
number of SQL managed instances that can be deployed in a single
subnet depends on the subnet range. A subnet with the prefix /27 or
below is recommended.

Inside OUT
Why do SQL managed instances need so many IP
addresses?

When a SQL managed instance is created, several virtual
resources and networking devices are created in addition to
your primary instance. How many depends on the tier you
choose. They are used to ensure HA during regular
operations as well as service maintenance. This is all done

https://techcommunity.microsoft.com/t5/azure-sql-blog/harden-your-azure-sql-managed-instance-workloads-against-data/ba-p/2893145


behind the scenes for you and is mostly invisible to you but for
the IP addresses they require.

Migrate data to Azure SQL Managed
Instance
Azure SQL Managed Instance targets the migration scenario from
IaaS or from on-premises. In both cases, you will want to bulk move
your data. There are four options for you to choose from:

Link feature for Azure SQL Managed Instance

Azure Data Migration Service

Backup and restore

Managed instance pools

Each has their own benefits, as outlined in this section.

Link feature for Azure SQL Managed Instance
The new link feature for Azure SQL Managed Instance, introduced in
preview with SQL Server 2022, provides the fastest migration to
Azure SQL Managed Instance with the least downtime. It is the
recommended approach for migrating SQL Server 2022 workloads to
Azure SQL Managed Instance.

It allows for near–real time replication via a distributed availability
group and can facilitate migration without downtime as well as
failover and failback to SQL Server 2022.

Because the link feature uses the underlying technology of distributed
availability groups (without requiring the source SQL Server to be in
an AG), the initial seeding occurs without downtime or interruption



during normal database activity. Just as an AG would be, the initial
seeding is limited only by the bandwidth of the connection to Azure.

Previously, Azure SQL Managed Instance ran at a special version
level higher than any public SQL Server release, which meant
restoring down was impossible and migration to a managed instance
was a one-way ticket. Migrations to Azure SQL Managed Instance
are no longer one-way, and can be migrated back to SQL Server
2022 if necessary by performing a failover.

The link feature for Azure SQL Managed Instance is a faster
migration path to Azure SQL Managed Instance than the Log Replay
Service (LRS) offered by Azure Database Migration Service (DMS),
discussed next. Migration via LRS is actually still a preview feature,
while the link feature is receiving active attention and development
from Microsoft engineers.

The link feature for Azure SQL Managed Instance is for one SQL
Server database at a time. However, multiple links can be created to
a single SQL managed instance. This may allow you to design a
cloud-based consolidated infrastructure, or, to migrate multiple SQL
Server databases to a single SQL managed instance.

In general, the link feature provides much faster replication than log
shipping, with no downtime.

 For more information on the link feature for Azure SQL
Managed Instance, see Chapter 11.

Azure Data Migration Service
The Azure Database Migration Service (DMS) is a managed service
designed to enable migrations to Azure SQL platforms with minimal
downtime. You can use DMS for migrations to Azure SQL Managed
Instance as well as a variety of other migration sources and
destinations—even migrations from AWS RDS and Oracle to Azure
SQL platforms.



There are online and offline migrations, depending on your
organization’s tolerance for downtime. It is recommended you do a
trial run with the offline migration to determine what your downtime
will be before you decide which method to use. Using DMS for online
migrations requires the Premium pricing tier.

Whether you use online or offline migration, create your Azure
Database Migration Service in the same region as your target SQL
managed instance. This prevents errors, cuts down on the downtime
and migration time, and limits any movement of data across regions
or geographies.

 There are several prerequisites that you should review before
you begin. They can be found at
https://learn.microsoft.com/azure/dms/tutorial-sql-server-
managed-instance-online#prerequisites.

 Chapter 19, “Migrate to SQL Server solutions in Azure” has a
section on Data Migration Service.

Note
For online migrations using Azure Database Migration Service,
do not append multiple backups into a single backup media.
Ensure instead that each backup is a separate backup file. You
will need both a backup and a subsequent log backup on the
share that is used.

Migrate with backup and restore
The backup and restore migration method leverages the simplicity of
moving SQL backups to Azure Blob Storage, or backing up directly to
it. Backups in Azure Blob Storage can be directly restored into a SQL
managed instance using the traditional Transact-SQL (T-SQL)
RESTORE command. It’s recommended and cheaper to use block
storage, not page storage, for SQL Server backup files.

https://learn.microsoft.com/azure/dms/tutorial-sql-server-managed-instance-online#prerequisites


The backup file in Azure Blob Storage must be secured with a shared
access signature (SAS) key, and the credential using the SAS token
must be created with CREATE CREDENTIAL. (It is possible, but not
recommended, to use page blobs and a storage access key if
desired.) Chapter 10, “Develop, deploy, and manage data recovery,”
details how to do this.

You can begin the migration by restoring your database with the
standard T-SQL RESTORE syntax. Consider backing up to multiple files
for faster backup and restore performance, with a limit of 64 backup
files.

 For a complete walkthrough with T-SQL, see
https://learn.microsoft.com/sql/relational-databases/backup-
restore/sql-server-backup-to-url#Examples.

Restores to SQL managed instance are asynchronous. Should the
connection to your SQL managed instance be lost, the RESTORE
continues. You can check the status of the operation with
sys.dm_operation_status. Replace 'mydb' with your database name
in the following T-SQL script:
Click here to view code image

SELECT * FROM sys.dm_operation_status 
WHERE major_resource_id = 'mydb' 
ORDER BY start_time DESC;

The version of SQL Server you take your backup from is important.
Backups starting from SQL Server 2012 with Service Pack 1 CU2 can
be directly uploaded as .bak files to Azure Blob Storage with the
BACKUP TO URL syntax. For versions before SQL Server 2016, you
cannot use a SAS, so you need to perform the backup using the
deprecated WITH CREDENTIAL syntax.

If you are restoring a database with TDE enabled using a native
restore, migrate the certificate to the target SQL managed instance
before you perform the restore. This is no different from how you
would move your TDE certificate for a SQL Server instance.

https://learn.microsoft.com/sql/relational-databases/backup-restore/sql-server-backup-to-url#Examples


Your backup will not be restored when you use the restore method for
SQL Managed Instance if your .bak file has any features that are not
supported. Backups containing databases that have active in-memory
objects, for example, cannot be restored to the general purpose tier.

Inside OUT
Can you use backup and restore to get the settings from
the system databases?

System database restores are not supported with a SQL
managed instance. It is recommended that you script out the
system databases and run them on the destination instance
independently of your backup and restore processes if
needed.

Managed instance pools
You can create pools of SQL managed instances, allowing you to
migrate multiple smaller instances for the price of a single larger
instance. Similar to Azure SQL Database elastic pools, you can host
multiple SQL managed instances that share the total vCore
allocation.

Azure SQL Managed Instance pools allow SQL managed instances
to reserve as few as two vCores. For example, you could host eight
lightweight 2-vCore instances inside a single general purpose 16-
vCore managed instance pool, within the same VNet. The 2-vCore
instances are not available as standalone managed instances. For
simplified networking, you can deploy multiple managed instance
pools and multiple non-pooled managed instances in the same VNet
subnet.

This feature is currently in preview and only available for the general
purpose tier. Additionally, it is currently only possible via PowerShell



cmdlets, not the Azure portal.

 For more information, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/instance-pools-overview.

Azure SQL Managed Instance
administration features
It is the Azure SQL Managed Instance services that enable a DBA to
spend less time on administrative tasks that make a SQL managed
instance such an attractive option. The following services are either
simplified for the administrator or handled completely, saving time and
the need for the expertise.

High availability
Azure SQL Managed Instance offers 99.99 percent uptime without
concern for maintenance and upgrade outages. To ensure high
availability (HA), Azure SQL Managed Instance employs two models
and price options based on your tolerance for degradation during
maintenance. We’ll break down the HA features of each service tier.

General purpose
The general purpose service tier leverages the separation of compute
and storage. This tier contains two layers:

Stateless compute. This layer runs the Database Engine
process and contains the cached data on SSD for things like
tempdb, plan cache, and the buffer pool. This is operated by the
Azure Service Fabric, controls the health of the node, and
performs any failovers.

Stateful. This layer contains the database files stored in Azure
Blob Storage with built-in redundancy.

https://learn.microsoft.com/azure/azure-sql/managed-instance/instance-pools-overview


When a failure or upgrade occurs, the Azure Service Fabric moves
the stateless process to a different node. The Blob Storage in the
stateful layer is not affected. The data and log files are attached to
the newly initialized SQL Server. This tier can experience degradation
as this transition occurs and the instance starts with an initialized
cache. As mentioned, Azure SQL Managed Instance does not use
instant file initialization, so it is important to understand all aspects
that can affect degradation.

Business critical
The business critical service tier uses a quorum of engine nodes to
guarantee minimal impact during maintenance. This tier integrates
the Database Engine and the storage layer into a single node, and
uses replication to additional nodes to create a three-node or four-
node cluster. The database files are on SSD storage to improve I/O,
and HA is achieved by using technology similar to the AGs seen on-
premises.

Instead of an underlying Windows Server Failover Cluster (WSFC),
the Azure Service Fabric manages the cluster and node health
detection. To avoid dreaded “split-brain” scenarios, Azure maintains
special witness nodes called seed nodes that determine quorum
within a ring of cluster objects. This complex global cluster
management is mostly invisible to you and completely configured for
you.

The cluster includes a single primary replica and as many as three
secondary replicas. To ensure durability, the primary replica writes
each transaction to at least one secondary replica before committing
the transaction. This durability guarantees there is always a node to
fail over to, in case of a crash on the primary replica. Should a crash
occur, the failover is initiated by the Azure Service Fabric. When a
new primary is created, an additional replica is also created to ensure
quorum, and the connections are redirected to the new primary.

Forced versus unforced failovers



Similar to forced versus unforced failovers in a SQL Server AG,
unforced failovers occur regularly during maintenance processes.

Forced failovers are user initiated, but don’t necessarily mean there is
data loss. A forced failover might occur because of a service tier
change, such as changing the SKU or count of vCores. Manual
failovers to a replica in a failover group are also forced failovers.

Regardless of whether a failover is forced or unforced, the SLA is
honored.

Inside OUT
How do you see the last time your SQL managed instance
failed over?

Even though you and your applications may not have noticed,
you can see the last manual or Azure-initiated failover time by
looking at the sqlserver_start_time column from the
sys.dm_os_sys_info DMV. The time zone is the local system
date in the replica where the instance started.

Retry logic for transient connectivity issues
All applications connecting to cloud-hosted services should gracefully
handle transient connectivity issues with automatic retry logic. This is
not novel to Azure SQL platforms. Retry logic in your apps—even for
on-premises solutions—should be in place for automatic retrying of
sessions that are the victims of deadlocks, for example.

Retry logic is code that can retry a call when a transient connectivity
fault occurs. A transient fault can occur, for example, when Azure
dynamically reconfigures servers for a heavy workload and causes
clients to lose their connection. It is recommended that the client
program has retry logic so it can reestablish the connection after
increasingly escalating, randomized delay intervals. This exponential



backoff logic ensures the database does not get overwhelmed in a
retry situation with many connections trying to reconnect all at once,
spreading out the reconnections so that applications don’t essentially
launch a distributed denial-of-service (DDoS) attack on their own
database platform! Exponential delays with a randomized delay buffer
are common guidance for any application connecting to any cloud
asset.

Note
Exponential backoff is included as a feature in the
Microsoft.Data.SqlClient .NET library.

 For a list of common transient error codes for Azure SQL, visit
https://learn.microsoft.com/azure/azure-
sql/database/troubleshoot-common-errors-issues#list-of-
transient-fault-error-codes.

Replication
Azure SQL Managed Instance can use transactional replication to
replicate data to another SQL managed instance database, a single
SQL Server database, or a pooled database in an Azure SQL
Database elastic pool. A SQL managed instance can host a
publisher, distributor, and subscriber database, just like SQL Server.

 Common configurations can be found at
https://learn.microsoft.com/azure/azure-sql/managed-
instance/replication-transactional-overview#common-
configurations.

For the SQL managed instance to be a publisher and/or distributor,
there are a few requirements.

The instance cannot participate in geo-replication.

https://learn.microsoft.com/azure/azure-sql/database/troubleshoot-common-errors-issues#list-of-transient-fault-error-codes
https://learn.microsoft.com/azure/azure-sql/managed-instance/replication-transactional-overview#common-configurations


The publisher, distributor, and subscriber must all be on the
same VNet or have VNet peering set up between all three
networks.

The authentication used between all parties must be SQL
Authentication and the replication working directory must be an
Azure Storage Account share, set up using TCP outbound port
445 in the security rules of the NSG.

Bidirectional and one-way replication are both supported;
however, updatable subscriptions are not.

Scale up or down
SQL manage instances use vCores that allow you to define the CPU
cores and configure the storage capacity you need for your instance
within each tier. All databases in the SQL managed instance share
these resources. The storage and CPU can be scaled up or down as
needed within the limits of the service tier; however, changing these
resources does cause downtime.

Different service tiers have different limitations. For example, if you
downgrade from business critical to general purpose, the backup
retention period is different. If a database exceeds the threshold
database size, then extra storage costs will apply. If you are
upgrading to a higher tier, you must explicitly increase the size.

Monitor SQL managed instances
In general, monitoring and tuning a SQL managed instance can
involve many of the same tools as a SQL Server instance, as detailed
in other places in this book. This section talks about some monitoring
topics specific to Azure SQL Managed Instance.

sys.server_resource_stats
Many of the same DMVs mentioned elsewhere work the same on a
SQL managed instance. One DMV was created specifically for SQL



managed instances: sys.server_resource_stats. It provides 14 days
of past telemetry, including CPU and storage utilization, and is
sampled every 15 seconds. CPU is expressed as a percentage of the
utilization of the vCores currently allocated to the instance. This DMV
is roughly the equivalent to sys.resource_stats, a DMV specifically
created to provide utilization telemetry for Azure SQL Database only.

Azure Monitor
Integrated into the Azure portal are metrics, alerts, and diagnostic
logs (formerly called resource logs) for many different Azure
resources—Azure SQL Managed Instance included.

In the Azure portal screen for a SQL managed instance, you can use
the Metrics page, under Monitoring, to query a variety of live and
historical utilization statistics. The Alerts page provides for the
configuration of alert rules to send notifications to action groups, such
as the email address of a distribution group of Azure administrators.
Alerts in recent years were overhauled and provide much more
customizability; older alerts are now called classic. You could, for
example, configure an alert to be emailed out when CPU utilization
for the SQL managed instance averages above 90 percent.

Diagnostic Logs is the Azure standard name for a variety of metrics
collected that aren’t sent anywhere by default. Creating diagnostic
settings for an Azure resource, including a SQL managed instance,
defines a data pipeline between emitted, streamed data logs such as
resource usage statistics or SQL security audit events, and an
endpoint. The endpoints include a Log Analytics workspace (ideal for
consuming and analyzing streamed data), Azure Storage, an Azure
Event Hub, or third-party partner solutions. Sending this diagnostic
settings data to Log Analytics is the recommended and most
straightforward solution.

You can then review the output of the diagnostic settings data in
Azure portal, on the Logs page under Monitoring. The Azure
Monitor Log Analytics browser uses a browser-based Kusto Query
Language (KQL) querying tool with graphical output.



Azure SQL Analytics
Azure SQL Managed Instance is among the services that access
Azure SQL Analytics. Azure SQL Analytics is a monitoring tool for
performance that is in long-term public preview and is not actively
developed by Microsoft at this time. Azure SQL Analytics collects and
visualizes performance metrics and has built-in intelligence for
troubleshooting. The metrics help you customize monitoring rules,
alerts, and identify issues.

 For more information, see
https://learn.microsoft.com/azure/azure-
monitor/insights/azure-sql.

Link feature for Azure SQL Managed Instance
The new link feature for Azure SQL Managed Instance promises to
synchronize SQL Servers hosted anywhere, including on-premises,
to a SQL managed instance. Not specifically tied to the development
life cycle of SQL Server 2022, this feature remains in preview at the
time of this book’s writing.

Here are a few things to keep in mind about the link feature:

The link feature doesn’t require SQL Server 2022; it can be
configured for SQL Server versions going back to SQL Server
2016 (but for some reason, not SQL Server 2017 at the time of
this writing).

Some features of the SQL managed instance link require SQL
Server 2022—specifically, the holy grail of hybrid HA, which is
the ability to fail over and fail back from an on-premises or Azure
VM–hosted SQL Server to a managed instance.

The link feature provides a path for a seamless, no-downtime
migration from an on-premises SQL Server to Azure SQL
Managed Instance. This is faster and more useful than Log
Replay Service via DMS.

https://learn.microsoft.com/azure/azure-monitor/insights/azure-sql


The link feature promises fast asynchronous replication so it can
provide a cloud-based, read-only replica for reporting and further
integration, including with Azure Synapse Analytics, Power BI,
and more.

The link feature for Azure SQL Managed Instance is supported
in SQL Server 2022 Standard and Enterprise editions.

The link feature for Azure SQL Managed Instance is for one
SQL Server database at a time. However, you can create
multiple links to a single SQL managed instance, consolidating
workloads from different SQL Servers.

There is no built-in listener or other application redirection
technology specifically created for the link feature at the time of
this writing. There are two options:

You can create a CNAME in your DNS and point
applications to the CNAME. Then, at the time of failover,
change the CNAME and wait for DNS TTL to expire.

If you have an existing AG with a listener, you can use that
listener for failovers via the link feature for Azure SQL
Managed Instance. You would essentially add the listener,
not an individual SQL Server instance, to the link feature.
After a failover, the listener would redirect read/write traffic
to the SQL managed instance automatically.

Note
Keep in mind this book was written with the link feature for
Azure SQL Managed Instance in preview. A more
sophisticated hybrid listener alternative may be introduced in
the future.

 For more information on the public preview of this feature, visit the
announcement blog at https://aka.ms/mi-link-preview, or visit
Microsoft Docs at https://aka.ms/mi-link.

https://aka.ms/mi-link-preview
https://aka.ms/mi-link


 The link feature for Azure SQL Managed Instance is discussed
further in Chapter 11.

Azure SQL Managed Instance security
features
Security for Azure SQL Managed Instance is provided by several
different features, including Azure AD, multifactor authentication, and
authorization.

Azure Active Directory
Azure AD enables Microsoft services to integrate with centrally
managed identities and permissions to enhance security. Combined
with multifactor authentication (MFA), Azure AD increases data
security while still supporting single sign-on (SSO).

 For details on how to set up MFA, visit
https://learn.microsoft.com/azure/sql-database/sql-database-
ssms-mfa-authentication-configure.

If you are using a hybrid option, or you need to connect to legacy or
on-premises applications, you can also use Azure AD with an on-
premises Active Directory Domain Service (AD DS) that is federated
with the Azure AD. This centralized authentication:

Provides an alternative to native SQL Server Authentication.

Discourages the creation of multiple user identities across
database servers.

Allows centralized and simple password changes.

Allows for external (Azure AD) groups.

Enables integrated Windows Authentication and other forms of
authentication supported by Azure AD.

https://learn.microsoft.com/azure/sql-database/sql-database-ssms-mfa-authentication-configure


In addition, Azure AD:

Uses contained database users to authenticate identities at the
database level.

Supports token-based authentication for applications connecting
to Azure SQL Managed Instance.

Supports ADFS (domain federation) or native user/password
authentication for a local Azure AD without domain
synchronization.

Supports MFA when using SSMS.

Supports Active Directory Interactive Authentication when using
SQL Server Data Tools (SSDT). Active Directory Integrated
Authentication connects to the SQL managed instance by using
identities. This is similar to the connection from a federated
domain.

Access control using Azure AD
Azure AD is slightly different for SQL managed instances compared
to dedicated SQL pools in Azure Synapse or Azure SQL Database.

The Azure AD must be associated with the same subscription as the
SQL managed instance. (A directory can be associated with multiple
subscriptions.) Once you have provisioned an Azure AD admin for
your SQL managed instance, you can create Azure AD server logins.

 Detailed steps to complete this can be found at
https://learn.microsoft.com/azure/sql-database/sql-database-
aad-authentication-configure#provision-azure-ad-admin-sql-
managed-instance.

You can create logins and users in Azure SQL Managed Instance
based on Azure AD users (managed, federated, and guest), Azure
AD groups (managed and federated), and Azure AD applications via
service principals.

https://learn.microsoft.com/azure/sql-database/sql-database-aad-authentication-configure#provision-azure-ad-admin-sql-managed-instance


Modern interactive flow
A recommended step is to enable the modern interactive flow, a trust-
based improvement to authentication for the latest operating systems
(Windows 10 20H1, Windows Server 2022, or higher) and either
Azure AD or hybrid Azure AD.

At the time of this writing, this modern authentication alternative using
Azure AD and Kerberos is in preview. It is compatible with other
organizational settings to enforce MFA for tools like SSMS and web
applications when they authenticate to Azure SQL Managed
Instance.

The modern interactive flow is a newer alternative to the trust-based
authentication flow, which is used for AD-joined clients running at
least Windows 10 or Windows Server 2012. Determining which is
right for you involves assessing all the clients and applications
connecting to your managed instance. To start, ask yourself, do all
administrators, app developers, and business intelligence developers
have a supported OS? If so, consider enabling the modern interactive
flow when it is out of preview.

 For more information, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/winauth-azuread-setup.

Set up Azure Active Directory
Azure SQL Managed Instance is most often used to replace a
traditional SQL Server installation, so it is natural that it supports the
traditional SQL-authenticated logins and integration with Azure AD.

Azure AD server principals are the Azure version of on-premises
database logins in your SQL Server. These let you specify users and
groups from your Azure AD tenant (think AD groups on-premises).

https://learn.microsoft.com/azure/azure-sql/managed-instance/winauth-azuread-setup


Inside OUT
How do you know which logins in your managed instance
are Azure AD users?

Azure AD logins are signified with a value of EXTERNAL_LOGIN
or EXTERNAL_GROUP in the type_desc column of
sys.server_principals, with the type column set to E for
login or X for groups.

To create the login for these specific server-level principals in
conjunction with the Azure AD, use the CREATE LOGIN syntax with the
FROM EXTERNAL PROVIDER option. When FROM EXTERNAL PROVIDER is
specified, the login name must represent an existing Azure AD
account that is accessible in Azure AD by the current SQL managed
instance.

Azure AD-authenticated logins can be created for:

Azure AD cloud-only identities

SSO Azure AD hybrid identities with password authentication or
pass-through authentication

Federated authentication

 For more information, see
https://learn.microsoft.com/azure/azure-
sql/database/authentication-aad-configure.

Enable Windows Authentication via Kerberos for
Azure AD
You can add a service principal to a SQL managed instance to enable
authentication of Windows Authenticated logins via Kerberos. This
allows an even smoother lift-and-shift migration to Azure for existing

https://learn.microsoft.com/azure/azure-sql/database/authentication-aad-configure


applications that have significant investment in Windows
Authenticated principals for authentication.

This feature was announced in August 2022 and is currently in
preview at the time of this book’s writing. The SQL managed instance
service principal allows for Windows Authentication on SQL managed
instances for devices or VMs joined to Active Directory, Azure AD, or
hybrid Azure AD.

 For more information on this developing feature, visit
https://learn.microsoft.com/azure/azure-sql/managed-
instance/winauth-azuread-overview.

Azure SQL Managed Instance data
protection features
Managed instances secure your data by providing built-in security
features to make administering it easier. This section discusses some
of the features you should be familiar with.

 Many of these security and data protection features are
discussed in more detail in Chapter 13.

Prevent data exfiltration
A variety of strategies and technologies are needed to ensure that
data is not exfiltrated from your enterprise, even by inside actors.
Some regulations and audit compliance might require you to report
on various strategies. In August 2022, the Azure SQL Managed
Instance program group published a lengthy blog post on a variety of
permissions and restrictions to consider inside and outside of the
database engine, located here:
https://techcommunity.microsoft.com/t5/azure-sql-blog/prevent-data-
exfiltration-in-azure-sql-managed-instance/ba-p/3590381.

https://learn.microsoft.com/azure/azure-sql/managed-instance/winauth-azuread-overview
https://techcommunity.microsoft.com/t5/azure-sql-blog/prevent-data-exfiltration-in-azure-sql-managed-instance/ba-p/3590381


One aspect of this is the ability to configure custom service policies, a
feature in preview at the time of this book’s writing.

Isolation
Security isolation is achieved in Azure SQL Managed Instance with
VNet implementations and using VPNs or ExpressRoute to connect
to your on-premises machines. The only endpoints exposed are
through private IP addresses. The underlying infrastructure is always
dedicated, ensuring a single-tenant infrastructure completes the
trifecta of isolation security.

Auditing
Azure SQL Managed Instance tracks events in the audit log file of the
Azure Storage account. The audit file is used to maintain regulatory
compliance, gain insight into discrepancies, and uncover suspected
security violations using threat detection. Threat detection is built-in
and used to expose unusual attempts to access databases. There
are alerts regarding suspicious activities, potential vulnerabilities,
SQL injection attacks, and anomalous database access patterns.
These alerts, which you can view from the Azure Security Center,
provide details of suspicious activity, offering recommendations on
how to resolve the issues.

Data encryption
Azure SQL Managed Instance has a similar suite of data protection
features as SQL Server. For example:

Data encryption in motion is provided using TLS.

Always Encrypted is offered to protect data in flight, at rest, and
during query processing.

As discussed, encryption of data at rest is achieved via TDE.
TDE encrypts the data and log files, using real-time I/O



encryption and decryption when it is accessed. Azure SQL
Managed Instance supports a user-provided, or bring your own
key (BYOK) TDE certificate.

 For more information on providing your own key, see
https://learn.microsoft.com/azure/azure-sql/database/transparent-
data-encryption-byok-overview.

When configuring the link feature for Azure SQL Managed Instance,
you upload your TDE certificate from your SQL Server first, before
beginning the synchronization.

Automated key rotation is a security feature to prevent keys from
becoming compromised or expired. Automated key rotation is an
important security feature and a big time saver. Automated key
rotation for BYOK TDE certificates became generally available for
Azure SQL Database and Azure SQL Managed Instance in October
2022.

 Look for more information on this feature soon, and check out
the preview announcement here:
https://techcommunity.microsoft.com/t5/azure-sql-
blog/automated-key-rotation-for-tde-byok-now-available-in-
preview-for/ba-p/3607932.

Row-level security
Row-level security controls access to specific rows of data in a table
based on the user executing a query. Row-level security simplifies
design and coding by enabling you to implement restrictions on the
user and not on other factors. Combined with Azure AD, this can be a
powerful security feature to tie data access to an individual’s domain
security groups.

Dynamic data masking
Although not encryption, dynamic data masking is a data-filtering
technique used to limit exposure by masking data. This provides an

https://learn.microsoft.com/azure/azure-sql/database/transparent-data-encryption-byok-overview
https://techcommunity.microsoft.com/t5/azure-sql-blog/automated-key-rotation-for-tde-byok-now-available-in-preview-for/ba-p/3607932


added layer of protection as well as the ability to determine what roles
can select sensitive data, and what roles see obfuscated, or masked,
data. This allows the data to look different to specific users without
actually changing the underlaying data.

Support for granular permissions for dynamic data masking was
added to Azure SQL Managed Instance in 2021. These granular
permissions were first introduced for Azure SQL Database and Azure
Synapse Analytics. Dynamic data masking limits sensitive data by
masking—not modifying—that data for certain database roles. These
same capabilities were added in SQL Server 2022.



Chapter 19

Migrate to SQL Server
solutions in Azure

Migration services options
Resolve common migration failures using Database Migration
Service
Migrate with Azure Data Factory
Best practices for security and resilience during migration

SQL Server 2022 is the most cloud-connected SQL Server version
ever. There are several new and interesting sections in this chapter to
look forward to.

This chapter starts with migration options for SQL Server and for
Azure infrastructure as a service (IaaS) and platform as a service
(PaaS) offerings. It then investigates common migration failures when
using Azure Database Migration Service (DMS). Next, it covers Azure
Data Factory (ADF), and wraps up—along with the book—with best
practices to achieve a successful migration to Azure.

All scripts for this book are available for download at
https://www.MicrosoftPressStore.com/SQLServer2022InsideOut/dow
nloads.

https://www.microsoftpressstore.com/SQLServer2022InsideOut/downloads


Migration services options
Microsoft offers several ways to help you migrate to newer versions of
SQL Server or to an Azure IaaS or PaaS offering. In this chapter we
hope to make it clear which will be most useful to you, and in what
scenarios.

These tools have evolved over the last few years to specialize in
certain use cases. Let’s begin with an introduction to the Microsoft
players in this realm; then we can identify the best uses for each one.

Microsoft Assessment and Planning (MAP) toolkit. A starting
point for many projects, the MAP toolkit is an agentless multi-
product planning and assessment tool used to inventory an
entire information technology infrastructure, including SQL
Server, by scanning IP addresses, Active Directory (AD), and
network assets. The MAP toolkit gathers information to a SQL
Server database and has a lightweight reporting suite built in.

Total Cost of Ownership (TCO) calculator. This Azure-
provided website defines and calculates the TCO for migrations
to Azure, including cost savings from Azure migrations:
https://azure.microsoft.com/pricing/tco/calculator.

Database Experimentation Assistant (DEA). This
experimentation solution for SQL Server upgrades provides
feedback on potential upgrade issues.

Azure Data Migration Assistant (DMA). This tool helps you
upgrade to a modern data platform. The DMA detects
compatibility issues that could affect database functionality in a
new version of SQL Server or Azure SQL Database.

Azure Database Migration Service (DMS). This entirely
managed service is used to perform online and offline
migrations to Azure SQL platforms. A legacy, soon-to-be
deprecated version is managed within the Azure portal, and a

https://azure.microsoft.com/pricing/tco/calculator


newer version is run as an extension in Azure Data Studio
(ADS).

SQL Server Migration Assistant (SSMA). This tool is designed
to automate database migration to SQL Server from Microsoft
Access, DB2, MySQL, Oracle, and SAP ASE.

Data Access Migration Toolkit (DAMT). This ADS extension
supports the migration of application source code from one
database platform to another.

Azure SQL Managed Instance Link to SQL Server. This new
SQL Server 2022 and SQL Managed Instance feature can
provide hybrid high availability (HA), disaster recovery (DR), and
cloud-based readable secondary replicas. Because it
synchronizes data and can failover to a SQL managed instance,
it is also effectively an easy, no-downtime migration from SQL
Server instances in your infrastructure up to Azure SQL
Managed Instance. The underlying distributed availability group
is configured for you.

 For more information, see Chapter 11, “Implement high availability
and disaster recovery,” and Chapter 18, “Provision Azure SQL
Managed Instance.”

Microsoft has a table that outlines the different uses for each of these
tools and includes a few third-party options as well—ones that are
outside the scope of this book. You can find them all at
https://learn.microsoft.com/azure/dms/dms-tools-matrix.

The primary use of these tools is to support your migration journey.
From the business-justification phase to implementation, let’s focus
on some of these tools individually to see how they can support
migrations.

Microsoft Assessment Planning toolkit
The MAP toolkit is an automated, agentless, multi-product planning
and assessment tool used to speed up migrations.

https://learn.microsoft.com/azure/dms/dms-tools-matrix


The purpose of this tool is to accelerate and automate the overall
assessment process. It gathers details by discovering the current
hardware and software environment, and it returns detailed readiness
assessment reports with recommendations to support enterprises as
they determine their future business needs. MAP is an extensive tool
for planning the entire IT department.

From one single networked computer, MAP enables you to inventory
and assess many Windows technologies and account for their
licenses, assets, disk space, versions, and so on.

 You can download the MAP toolkit from
https://www.microsoft.com/download/details.aspx?&id=7826.

 For a guided walkthrough of the MAP tool, see
https://learn.microsoft.com/training/modules/sql-server-
discovery-using-map/.

Inside OUT
How often can you run the MAP toolkit?

The free MAP toolkit can be run as often as needed. In fact,
the tool is handy for not just migrations, but for other IT
management tasks, like assessing volume licensing
compliance and storage requirements. It might just become a
part of your regular workflow routine.

Consider a quarterly business review or audit requirement for
licensing. The MAP toolkit can help with discovering which
servers and desktops are running SQL Server, and it can
create reports to show to both technical and management
audiences.

Total Cost of Ownership calculator

https://www.microsoft.com/download/details.aspx?&id=7826
https://learn.microsoft.com/training/modules/sql-server-discovery-using-map/


The TCO calculator helps with migrations to Azure. Using the TCO
calculator, you can enter data for workloads individually, categorized
by server, database, storage, and networking. You can also add
information about Azure options, existing licensing via Software
Assurance, and more costs—even your local price per kilowatt-hour
of electricity.

 You can find this tool online at
https://azure.microsoft.com/pricing/tco/calculator/.

If you sign in, there is also an option to download and upload these
workloads in an Excel worksheet; each workload has its own tab. The
Excel worksheet contains comments to help you understand how to
fill it out.

To make this task easier and comparable, the calculator uses industry
standard averages provided by Nucleus Research as a starting point.
These can be adjusted; however, the industry standards make
decisions easier when a value is not clear to you. Like with any TCO
calculator, the more accurate the input, the more accurate the output.

The final report contains your estimated cost savings over the years.
It includes categories such as compute, datacenter, networking, labor,
storage savings, and detailed breakdowns on these values.

You can run this tool repeatedly to compare versions. The TCO
calculator can be a powerful and standardized way to quantify the
long-term impact of a cloud migration when used along with other
available options in this list.

Database Experimentation Assistant
The DEA is a tool for evaluating upgrades of SQL Server with specific
workloads. The foundation of the DEA is Distributed Replay, a feature
that has been deprecated in SQL Server 2022.

 For more information about DEA, and a link to download it,
visit https://learn.microsoft.com/sql/dea/database-
experimentation-assistant-overview.

https://azure.microsoft.com/pricing/tco/calculator/
https://learn.microsoft.com/sql/dea/database-experimentation-assistant-overview


The DEA can test workloads coming from SQL Server versions as
early as 2005. The purpose of the DEA is to give you confidence in a
successful upgrade. This is a first step in your analysis to determine
the types of issues, if any, you might encounter in an upgrade
scenario with on-premises servers.

This tool can be instrumental in creating a baseline for testing
upgrades and comparing workloads. The DEA looks for:

SQL code that has compatibility issues

SQL code that might run slower

Query plans that might run slower

Workload comparisons between the different versions

These issues and comparisons are found using Distributed Replay,
first introduced in SQL Server 2012 and originally only a command
line tool. It has since been expanded to provide a graphical user
interface (GUI) and simpler setup.

The tool collects data via system traces. You run a workload on a
machine and collect the workload; then you can “replay” that
workload on other SQL Server versions, configurations, or setups.
The data collection can be run for a single database or multiple
databases, including all the databases on an instance, which could
include linked servers.

After the analysis is run, the tool provides a report showing the
performance implications based on a threshold you choose. For
example, if you deem a 7 percent improvement to be a notable
amount, set the threshold to 7%, and the report will reflect any
improvement as better than 7 percent and any degradation as worse.
These are shown in a pie chart; you can drill into each section for
further details. Summary statistics and graphs for individual queries
display how many queries have degraded, errored, improved, stayed
the same, or did not have enough information.



This tool can be run multiple times. Once it has been set up with a
workload, it is relatively easy to use that workload to compare many
different setups, configurations, and versions.

You can capture and replay the workload on Azure SQL Database
and Azure SQL Managed Instance, with the additional requirement of
using an Azure Blob Storage account to store the captured trace
data.

Inside OUT
Can the Data Experimentation Assistant (DEA) be used
only for version comparison?

The DEA can be used for hardware changes, configuration
changes, and feature comparisons between different versions
of SQL Server. You can also use this feature to test other
changes. For example, you can test the performance a
different index would have on your workload by not changing
anything other than the index.

Azure Data Migration Assistant
You can use the DMA to find compatibility issues and other migration
challenges when targeting SQL Server on a variety of platforms. DMA
can recommend performance improvements and allows you to move
a schema, data, and uncontained objects from a source to a target
server. This is a first step in your analysis to determine the types of
issues you might encounter in an upgrade scenario or migration to
Azure SQL Database.

When targeting an Azure PaaS database, DMA:

Finds compatibility issues with the Azure version

Finds partially supported or unsupported features



Identifies new features in the target that are recommended for
performance, security, and storage enhancements

Provides recommendations on how to resolve issues

When targeting SQL Server on-premises or in an Azure virtual
machine (VM), the DMA:

Detects compatibility issues for upgrades

Identifies feature recommendations and potential benefits for
performance, security, and storage enhancements

In migrations to Azure or to an on-premises SQL Server, DMA can
help migrate:

Database schemas

Data and users

Server roles

Logins (Windows and SQL Server)

 You can download DMA from the download center, at
https://www.microsoft.com/download/details.aspx?id=53595.

Note
The DMA does not support migration to Azure SQL Managed
Instance. For more on this, see the section at the end of this
chapter on the Azure SQL Migration extension for ADS.

If you intend to use DMA on a production database, it is
recommended that you run it during non-peak workload times, and
run each piece for the assessment separately. For example, run the
compatibility issues and new features recommendations at different
times to avoid consuming too many resources. To reduce
performance impact, it is best to run DMA on a machine other than
the SQL Server host.

https://www.microsoft.com/download/details.aspx?id=53595


If you are migrating logins or data across networks, use Transport
Layer Security (TLS) encryption. This will slow your migration but is
worth the added overhead. Be sure your test run is encrypted so your
estimates are accurate.

DMA can be run multiple times without issue. It is recommended to
run it as often as needed to resolve all issues before migration. It is
also useful for informational purposes when running upgrades. Even
if you are not migrating to another server or the cloud, this tool can
make you aware of potential issues in performing an in-place
upgrade.

Inside OUT
How do you handle agent jobs when using DMA?

DMA does not copy linked servers, SQL Server Agent jobs, or
Service Broker endpoints. Check out the open-source tools at
the end of this section for options to re-create what is needed
after migration.

Specifics for Linux migrations
While the overall migration workflow for Windows and Linux is the
same, the move from Windows to Linux requires a couple of
additional considerations.

Linux and Windows use different path formats and path separator
characters. As a result, to migrate to SQL Server on Linux, the user
must provide both the Windows and Linux versions of the path to the
location of the physical file. You can provide both versions of the path
in different ways depending on the location of the physical file. Use
Samba to share the file with other computers on the network. Use the
mount command to mount the share onto the computer running Linux.



Although the migration of AD logins is officially supported by SQL
Server on Linux, it requires additional configuration to work
successfully. The details are outside the scope of this chapter, but
can be found at https://learn.microsoft.com/sql/linux/sql-server-linux-
active-directory-authentication.

After performing the required configuration, you can migrate AD
logins as usual. Standard SQL authentication works as expected
without any additional setup.

Azure Database Migration Service
The Azure DMS is a managed service designed specifically for the
migration of multiple databases. SQL Server sources and Azure SQL
targets are naturally supported, but DMS can also facilitate migrations
from PostgreSQL, MySQL, AWS RDS, and MongoDB. DMS
migration targets include Azure SQL Managed Instance, Azure SQL
Database, Azure Database for PostgreSQL, Azure Database for
MySQL, and Azure Cosmos DB.

DMS is actually two different versions of a service developed by
Microsoft to facilitate migrations to Azure database platforms using a
fully managed Azure infrastructure. The original version of DMS is
driven entirely by the Azure portal, and a newer version is driven by
the Azure SQL Migration extension for Azure Data Studio (ADS). This
is an important distinction as DMS continues to evolve. The original
version is currently labeled as “Legacy – to be deprecated,” and by
the time you read this book, might already have been replaced. We
recommend using DMS solutions provided by ADS when possible.
Not all combinations of sources and targets have been developed for
the newer, ADS-driven experience at the time of this writing.

Microsoft Docs provides tutorials for migrations of SQL Servers using
the Azure portal or ADS. As this product continues to be actively
developed with the ADS solution, use the documentation for the latest
steps and features.

https://learn.microsoft.com/sql/linux/sql-server-linux-active-directory-authentication


DMS is a combination of DMA that generates assessments and a
migration service that performs the steps needed to migrate the data
to the cloud.

The DMS Standard compute tier for offline migrations is completely
free. The premium tier, which allows for both online and offline
migration, is free for 183 days from the creation of the service, after
which it charges hourly.

Inside OUT
Is DMS available everywhere?

At the time of this writing DMS is available in most regions,
with a few exceptions. Availability might have changed since,
though, so always check the up-to-date list here:
https://azure.microsoft.com/global-infrastructure/services/?
products=database-migration.

Using DMS to perform an online migration requires creating an
instance based on the premium pricing tier. DMS can perform both
online (continuous sync) and offline migrations. It is recommended
that if you are migrating only SQL Server databases, you should
access your existing database(s) with DMA. For other SQL offering
source migrations, access your existing database with SSMA.

With an offline migration, the downtime begins at the time the
migration begins. To limit your downtime, you should use the online
migration options to keep things in sync for the time between
migration completion and application reconfiguration to cut over to the
migration target. The online option allows for minimal downtime.

Inside OUT

https://azure.microsoft.com/global-infrastructure/services/?products=database-migration


How do you know how long a migration will take?

Regardless of the migration method used for the live cutover,
it is recommended that an offline migration be done during
testing to determine the approximate length of time for the
migration. This rough estimate will also help you determine if
an offline migration is possible for your scenario.

To improve performance, also consider using the multi-CPU
general purpose pricing tier when you create your service
instance. This will enable the service to take advantage of
multiple vCPUs for parallelization and faster data transfer
during the migration period and change tiers when complete.
Alternatively, you can temporarily scale up your Azure SQL
Database target instance to the premium tier during the data
migration operation to minimize Azure SQL Database
throttling that might affect data transfer activities when using
lower-level SKUs.

Azure SQL Migration extension for Azure Data
Studio
When you choose the newer Azure Database Migration Service in the
Azure portal, you are prompted to install ADS and the Azure SQL
Migration extension for ADS. The extension assists with DMS
migrations, including for multiple databases to Azure collectively. This
is particularly useful when you have multiple dependent databases
that need to be migrated at once.

At the time of this book’s writing, the Azure SQL Migration extension
for ADS can perform migrations to SQL Server on Azure VM or Azure
SQL Managed Instance. More targets could be introduced after this
book is published. For other platforms not yet supported by the
extension, use the legacy DMS wizard in the Azure portal.

 The extension is available in the Extensions Marketplace, at
https://marketplace.visualstudio.com/items?itemName=ms-

https://marketplace.visualstudio.com/items?itemName=ms-databasemigration.data-access-migration-toolkit


databasemigration.data-access-migration-toolkit.

Once installed, the Migration extension is a global extension made
available in any of your database context menus. Right-click the
instance under Servers, and choose Manage. Then, under General,
choose Azure SQL Migration. (See Figure 19-1.)

Figure 19-1 Azure SQL Migration extension in ADS.

When you select the large Migrate to Azure SQL button on the
Azure SQL Migration page (refer to Figure 19-1), you see two
options: Start a new session and Resume a saved session.
Remember: The DMS is a fully managed cloud service, and this
ADS-based wizard will guide you all the way to a completed
migration.

Let’s review what happens next:

1. The tool detects every database you are currently connected to
in ADS. Assess any online database on the instance.

2. The tool assess the viability of the database for migration.
Depending on the outcome of that assessment, it lists options in
the Choose your Azure SQL Target section. Each option
comes with a recommended configuration once performance
data has been collected.

https://marketplace.visualstudio.com/items?itemName=ms-databasemigration.data-access-migration-toolkit


If you choose to have ADS collect performance data now, it is
important to collect that data at peak workload to accurately
reflect the database’s workload. So, do this step during a busy
workday.

The minimum amount of time for a performance reading is 10
minutes, but the longer you let it run, the more accurate it
becomes. If you’ve collected performance data using this tool
before, select it from its stored location.

After you have collected a representative sample of performance
data on the databases to be migrated, stop the collection. A
procedural recommendation will be displayed; you can choose to
scale up or down Azure resources based on the observed data.
By default, only up to the 95th percentile of observed activity will
be considered. This can also be customized.

You can take advantage of any preview service tiers of
hardware. For example, the Azure SQL Managed Instance
Memory Optimized – Premium series tier is in preview at the
time of this writing.

3. The tool prompts you to provide all the necessary information
about the Azure SQL migration target, including the following:

Azure account

Subscription

Location region

Resource group

The SQL Server on Azure VM name or Azure SQL
Managed Instance of your target

Other target platforms might be added after this book’s writing.

If you are logged into Azure from ADS, these fields will be filled
in for you, and you can adjust selections with the drop-down
menus.



4. The tool prompts you to choose whether you want to migrate
online or offline. For an offline migration, the application
downtime begins when the migration starts. With an online
migration, the downtime is limited to the cutover at the end of
migration. (Note that the premium DMS service is required for an
online migration; again, this is free for 183 days).

5. Now you designate where you previously placed the backup you
want to migrate. You must choose a recent backup or create a
new backup and use the WITH CHECKSUM option. The backup can
be in your infrastructure in a network share or you can upload it
to an Azure Blob Storage container.

6. The Migration service orchestrates the migration activities and
tracks progress. The option is to create a new migration project
or use one that was previously created if available.

7. The final step is to review all the details and ensure nothing has
been missed or is incorrect. Once you have verified the details,
the migration is ready to start.

While the migration is running you will see a window on the Azure
SQL Migration screen that updates you on the status of the migration.
(See Figure 19-2.) In the top-right corner of the window is a Refresh
button to allow for manual refreshes of the window. When the
migration is complete, you can expand each bar in the window to see
more details.



Figure 19-2 Database migration status.

SQL Server Migration Assistant
The SSMA was designed specifically for migration of non-SQL Server
workloads to a SQL Server machine. This includes Microsoft Access,
DB2, MySQL, Oracle, and SAP ASE. Each of these sources has very
different requirements and processes for migration.

Despite its age, the SSMA remains actively developed, and a new
version was released in August 2022. Support for migrations to Azure
Synapse Analytics (from Oracle only) was recently introduced.

For the most current information, it is recommended that you review
the documentation directly for each solution:



Microsoft Access.
https://learn.microsoft.com/sql/ssma/access/sql-server-
migration-assistant-for-access-accesstosql.

DB2. https://learn.microsoft.com/sql/ssma/db2/migrating-db2-
data-into-sql-server-db2tosql.

MySQL. https://learn.microsoft.com/sql/ssma/mysql/sql-server-
migration-assistant-for-mysql-mysqltosql.

Oracle. https://learn.microsoft.com/sql/ssma/oracle/sql-server-
migration-assistant-for-oracle-oracletosql.

SAP Adaptive Server Enterprise (ASE) (formerly SAP
Sybase ASE). https://learn.microsoft.com/sql/ssma/sybase/sql-
server-migration-assistant-for-sybase-sybasetosql.

Data Access Migration Toolkit
The DAMT is a new Visual Studio Code extension developed by
Microsoft, currently in preview. It is designed to scan your code
solutions and identify actions needed for migration to SQL Server.

 You can download and install the DAMT to your local
installation of Visual Studio Code here:
https://marketplace.visualstudio.com/items?itemName=ms-
databasemigration.data-access-migration-toolkit.

DAMT can help identify compatibility issues as well as extract SQL
queries and data access APIs (in Java only, at the time of this book’s
writing). DAMT helps cover the other important part of a database
platform migration: the application. Manually checking potentially
billions of lines of nested code for deprecated code and for
functionality and compatibility issues can be impractical. Often, this
aspect of database platform changes is overlooked and understaffed,
and often many issues are missed.

DAMT scans Java and .NET source code and produces a report in
HTML and JSON of its findings. This report provides a summary and

https://learn.microsoft.com/sql/ssma/access/sql-server-migration-assistant-for-access-accesstosql
https://learn.microsoft.com/sql/ssma/db2/migrating-db2-data-into-sql-server-db2tosql
https://learn.microsoft.com/sql/ssma/mysql/sql-server-migration-assistant-for-mysql-mysqltosql
https://learn.microsoft.com/sql/ssma/oracle/sql-server-migration-assistant-for-oracle-oracletosql
https://learn.microsoft.com/sql/ssma/sybase/sql-server-migration-assistant-for-sybase-sybasetosql
https://marketplace.visualstudio.com/items?itemName=ms-databasemigration.data-access-migration-toolkit


details of the changes needed. You can use the HTML report to plan
your pre-migration application development efforts. You can use the
JSON version as an input for DMA to obtain additional information
before you attempt your migration.

Inside OUT
Can you run the toolkit against test files?

Yes. An excellent way to verify that all the updates and
changes have been made to the file, stored procedures, and
SQL statements is to branch off your Git repository. Then, as
you make changes to the new branch, continually check it to
make sure you are not missing something as your migration
project progresses.

Resolve common migration failures
using Database Migration Service
The following list outlines the most common issues with SQL Server
migrations to Azure SQL. Other database platforms might have other
nuances and migration blockers to SQL Server. The majority of
migration failures occur with online migrations.

 For known migration issues with third party database vendors,
visit https://learn.microsoft.com/azure/dms/known-issues-
troubleshooting-dms.

Support for online migrations to Azure SQL Database using
DMS extends only to Enterprise, Standard, and Developer
editions, so ensure you are using a supported edition before
beginning.

https://learn.microsoft.com/azure/dms/known-issues-troubleshooting-dms


Certain data types are not supported. The SQL server
sql_variant data type is not currently supported by DMS for
online migrations to Azure SQL Database. To check your tables
for this data type, run the following query:

Click here to view code image
SELECT DISTINCT c.TABLE_NAME,c.COLUMN_NAME,c.DATA_TYPE 
FROM INFORMATION_SCHEMA.columns AS c 
WHERE c.data_type in ('sql_variant');

Timestamp columns are not migrated as the source timestamp
value. Azure generates a new timestamp value in the target
table. If you need the source value migrated instead, contact the
engineering team at
AskAzureDatabaseMigrations@service.microsoft.com.

DMS only supports SQL Server backups created with a
checksum. Verify the SQL Server backups you choose for the
migration have been taken WITH CHECKSUM. (This is usually a
good idea anyway.) If you choose to let DMS take the backup, it
will be taken with checksum.

DMS also does not support SQL Server backups that are
appended to a single backup. Ensure each full and log backup
are written to separate files.

DMS does not support migrating SQL Server databases with
more than one transaction log file. This is usually a bad idea
anyway. Resolve this problem before migrating.

The SQL Server FILESTREAM and FileTable features are not
supported for Azure SQL Managed Instance. The source
database can’t contain a FILESTREAM filegroup. For workloads
that depend on these features, migrate to Azure VMs instead.

In-memory OLTP is not available in the DTU Standard or vCore
general purpose tier for Azure SQL Database. If your source
SQL Server uses in-memory objects, choose either the premium

mailto:AskAzureDatabaseMigrations@service.microsoft.com


or business critical tier of Azure SQL Database as the migration
target.

SQL Server temporal tables might present challenges for online
migration. Be cautious when using these tables. You can use
the following code to determine which, if any, of your tables are
temporal:

Click here to view code image
SELECT name, temporal_type, temporal_type_desc 
FROM sys.tables 
WHERE temporal_type <> 0;

Active triggers could create challenges for online migration
because they might fire during the migration. Use the following
code to determine if you have any active triggers. DMS disables
and enables triggers for some database sources, but for others,
it might be necessary to manually disable all triggers in the
database before taking the backup that will be used for the
migration. Enable triggers after the database migration is
complete, and before application activity is restored.

Click here to view code image
SELECT s.name 'Schema', T.name 'Table Name', G.name 
'Trigger' 
FROM sys.tables AS T 
INNER JOIN sys.triggers AS G ON G.parent_id = T.object_id 
INNER JOIN sys.schemas AS S ON s.schema_id = t.schema_id 
WHERE is_disabled = 0;

Large object columns with data larger than 32 KB
Large object data types might require special handling. In this
context, these are data types that exceed the maximum row size of
8,000 bytes. Columns larger than 32 KB might get truncated at the
target. You can use the following code to determine which, if any, of
your columns will be affected. This script might take a while to run on
databases with many tables and columns.



Click here to view code image

DROP TABLE IF EXISTS #results; 
CREATE TABLE #results (tablename nvarchar(256), columnname 
sysname, [datalength_bytes] 
bigint, INDEX cl_results CLUSTERED (tablename, columnname) ); 
DECLARE @tablename nvarchar(256), @columnname sysname; 
DECLARE cur_columns CURSOR LOCAL FAST_FORWARD FOR 
SELECT schema_name(o.schema_id)+'.['+o.name+']', c.name 
FROM sys.columns AS c 
INNER JOIN sys.objects AS o ON c.object_id = o.object_id 
WHERE o.type_desc = 'user_table'; 
OPEN cur_columns; 
FETCH NEXT FROM cur_columns INTO @tablename, @columnname; 
WHILE @@FETCH_STATUS=0 
BEGIN 
    INSERT INTO #results (tablename, columnname, 
[datalength_bytes]) 
    EXEC ('SELECT ''' 
          +@tablename+''', ''' 
          +@columnname+''', 
MAX(datalength(['+@columnname+']))' 
            +  ' FROM ' +@tablename); 
    FETCH NEXT FROM cur_columns INTO @tablename, @columnname; 
END 
CLOSE cur_columns; 
DEALLOCATE cur_columns; 
SELECT tablename, columnname, [datalength_bytes] FROM 
#results 
WHERE [datalength_bytes] > 32765;

Final notes for migration
When the migration of your data is complete, there are a few more
items you want to include in your migration plan. These relate to
connectivity error handling, security, and the application.

Once your data has migrated, the most important thing is being able
to connect to it. To find your connection string, locate the resource in
the Azure portal, whether it is an Azure SQL Database or an Azure
SQL Managed Instance. Then, in the pane on the left side of the



screen, select Settings and then Connection Strings to find the
details you need based on the connection type you want. Options
include ADO.NET (SQL Authentication), JDBC (SQL Authentication),
ODBC (includes Node.js and SQL Authentication), PHP (SQL
Authentication), and Go (SQL Authentication). Each of these options
provides a link to download the associated driver for SQL Server as
well.

Open source PowerShell migration with dbatools
There is a well-developed, community-driven open source option to
automate many SQL Server administrative tasks, including migration,
available at https://dbatools.io. This open source PowerShell library
was created by Chrissy LeMaire, a Data Platform and PowerShell
MVP; a host of DBAs worldwide help to expand and improve the
library.

 To perform an offline migration of an on-premises SQL Server
to Azure SQL Managed Instance with dbatools, review this
Microsoft blog post by a member of the Microsoft SQL Server
product team at
https://techcommunity.microsoft.com/t5/Azure-SQL-
Database/Automate-migration-to-SQL-Managed-Instance-
using-Azure/ba-p/830801.

For this offline migration process, Azure PowerShell controls and
manages the Azure resources and dbatools initiates the migration of
the logins and agent jobs. This process requires that you have
version 150.18147.0 or higher of
Microsoft.SqlServer.SqlManagementObjects, the SQL Server
Management Objects (SMO) library.

If you want to perform an online migration, use DMS.

Offline migration with dbatools
Some prerequisites before getting started:

https://dbatools.io/
https://techcommunity.microsoft.com/t5/Azure-SQL-Database/Automate-migration-to-SQL-Managed-Instance-using-Azure/ba-p/830801


It’s recommended to use dbatools with at least PowerShell 5.1,
the version installed in Windows 10 and Windows Server 2019.
Newer versions are supported, such as PowerShell 7
(recommended).

The location you are executing the PowerShell commands from
needs access to both the source SQL Server and the target
managed instance.

You can install dbatools from the online PowerShell Gallery with
the command Install-Module -Name dbatools. If the
PowerShell Gallery isn’t accessible from your workstation, offline
installation alternatives are provided at https://dbatools.io/offline.

You might have your favorite PowerShell terminal or scripting
environment, but Visual Studio Code with the official PowerShell
extension is as good as any. The Windows PowerShell
Integrated Scripting Environment (ISE), which was the standard
host for PowerShell scripting for a long time, is no longer
actively developed.

To use this open-source solution, you need the Az.Resources,
Az.Storage, and dbatools modules. If you have access to the
PowerShell Gallery, you can use the following PowerShell
commands to obtain them:

Click here to view code image
Install-Module -Name Az.Resources 
Install-Module -Name Az.Storage 
Install-Module -Name dbatools

Migration code
Each of the following sample scripts initializes the variables needed
for each step. You can update each one for your environment names
(your resource group name, for example). Create a new storage
account for temporary use to hold the migrated data. You can remove

https://dbatools.io/offline


this temporary storage account at the end; there is an example that
shows you how to do just that at the end of this section.

The scripts in this section’s examples use the Azure public endpoint
to connect to Azure SQL Managed Instance. For more transport
security when it comes time to migrate your production data, set up a
point-to-site virtual private network (VPN) or Azure ExpressRoute.
Alternatively, run the script from a VM that is placed in the same
subnet as your managed instance.

Storage setup
To move your databases, you need a temporary Azure Blob Storage
account. If you already have one you’d like to use, you can skip this
step.

If you choose to create a new Azure Blob Storage account for this
purpose, note that names are limited to a maximum of 24 characters,
can contain only numbers and lowercase letters, and must be globally
unique within Azure.

Choose or create a storage account in the same region as your Azure
SQL managed instance. This makes a significant difference in the
speed of the database restore process. If you load your data in a
different region, there could be delays and extra cost incurred to
move it to the region of the SQL managed instance.

The following PowerShell script creates an Azure Blob Storage
account that will be used in this example:
Click here to view code image

$resourceGroup = "YourResourceGroupName" 
$location = "northeurope" # Refer to Get-AzLocation 
$containerName = "mycontainername" 
$blobStorageAccountName = "newstorageaccountname" # must be 
unique in Azure 
New-AzResourceGroup -Name $resourceGroup -Location $location 
$storageAccount = New-AzStorageAccount -ResourceGroupName 
$resourceGroup ` 



-Name $blobStorageAccountName ` 
-Location $location ` 
-SkuName "Standard_LRS" ` 
-Kind "StorageV2" 
$ctx = $storageAccount.Context 
New-AzStorageContainer -Name $containerName -Context $ctx -
Permission Container

Execute this script to create the temporary Azure Blob Storage
account to use for migrating your data into Azure.

Source instance setup
Generate the shared access signature (SAS) key, which enables your
SQL Server instance to access the Azure Blob Storage account and
puts the database backups in that location. This SAS key should be
stored in the credential object on the source SQL Server instance.
For example, the following sample script using the dbatools cmdlet
New-DbaCredential:
Click here to view code image

$sourceInstance = "servername" # or servername/instancename 
$sas = (New-AzStorageAccountSASToken -Service Blob -
ResourceType Object ` 
-Permission "rw" -Context $ctx).TrimStart("?") 
$sourceCred = New-DbaCredential -SqlInstance $sourceInstance 
` 
-Name 
"https://$blobStorageAccount.blob.core.windows.net/$container
Name" ` 
-Identity "SHARED ACCESS SIGNATURE" ` 
-SecurePassword (ConvertTo-SecureString $sas -AsPlainText -
Force)

Database migration
Place backups of your SQL Server database(s) in Azure Blob
Storage. The simplest way is to back up directly to a URL. Here is
where dbatools comes in:



Click here to view code image

$sourceInstance = "servername" # or servername/instancename 
$sourcedatabase = "databasename" 
Backup-DbaDatabase -SqlInstance $sourceInstance -Database 
$sourceDatabase ` 
-AzureBaseUrl 
"https://$blobStorageAccount.blob.core.windows.net/$container
Name" ` 
-BackupFileName "WideWorldImporters.bak" ` 
-Type Full -Checksum -CopyOnly

To migrate multiple databases, place them in the Database parameter
value, in a comma-separated list.

If you are taking a backup of a large database, you might also want to
create backups on multiple files (striped backups) and set some of
the following parameters: COMPRESSION, MAXTRANSFERSIZE =
4194304, BLOCKSIZE = 65536.

 For more information on striped backups, see Chapter 10,
“Develop, deploy, and manage data recovery.”

Migrating databases to target instance
The migration stage takes place on your SQL managed instance.
This requires you to create a SAS token that will enable Azure SQL
Managed Instance to read a .bak file from Azure Blob Storage, create
a credential with this SAS token, and restore the databases:
Click here to view code image

## Generate new SAS token that will read .bak file 
$sas = (New-AzStorageAccountSASToken -Service Blob -
ResourceType Object ` 
-Permission "r" -Context $ctx).TrimStart('?') # -ResourceType 
Container,Object 
$targetLogin = Get-Credential -Message "Login to target 
Managed Instance as:" 
$target = Connect-DbaInstance -SqlInstance $targetInstance -
SqlCredential $targetLogin 



$targetCred = New-DbaCredential -SqlInstance $target ` 
-Name 
"https://$blobStorageAccount.blob.core.windows.net/$container
Name" ` 
-Identity "SHARED ACCESS SIGNATURE" ` 
-SecurePassword (ConvertTo-SecureString $sas -AsPlainText -
Force) ` 
-Force 
 
Restore-DbaDatabase -SqlInstance $target -Database 
$targetDatabase ` 
-Path 
"https://$blobStorageAccount.blob.core.windows.net/$container
Name/WideWorld 
Importers.bak"

This script prompts for the SQL login details that should be used to
access the managed instance. It results in the selected database
backup being restored on the target managed instance, completing
your database migration.

Server-level objects migration
After you migrate your database objects, you might still need to
migrate server-level objects such as SQL Agent jobs and operators or
logins. The dbatools Copy-Dba* commands provide a set of useful
scripts that you can apply to migrate these objects.

Of the set of commands that follow, use and customize only those
relevant to your environment. As mentioned, this is where you can
migrate SQL Server Agent jobs, linked servers, and endpoints.

 If you do not see the command you need here, review the
documentation at https://docs.dbatools.io.

Click here to view code image

$sourceInstance = "servername" # or servername/instancename 
$targetInstance = 
"myserver.public.instancename.database.windows.net,3342" 
# Azure SQL Managed Instance name with port 

https://docs.dbatools.io/


$targetLogin = Get-Credential 
# provide sign in credential for the target SQL Server 
instance, 
# for example, a SQL Authenticated username and password 
Copy-DbaSysDbUserObject -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaDbMail -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaAgentOperator -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaAgentJobCategory -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaAgentJob -Source $sourceInstance -Destination 
$.targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaAgentSchedule -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaLogin -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin -ExcludeSystemLogins 
Copy-DbaLinkedServer -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin 
Copy-DbaEndpoint -Source $sourceInstance -Destination 
$targetInstance ` 
-DestinationSqlCredential $targetLogin

Cleanup process for PowerShell migration
If the Azure Blob Storage account you used for the migration is meant
to be temporary, you can remove it using the following PowerShell
command. It is good practice to always clean up resources you no
longer need.
Click here to view code image



$resourceGroupName = "YourResourceGroupName" 
$blobStorageAccountName = "newstorageaccountname" 
Remove-AzStorageAccount -ResourceGroupName $resourceGroupName 
-Name ` 
$blobStorageAccountName -Force

Migrate with Azure Data Factory
ADF contains tools that can be used to integrate and migrate data.
ADF integration runtime (IR) is a service that allows integration of
data across different network environments. IRs are also used for
data migration; however, they are typically not used for full
migrations, but rather as a part of an ongoing process of migrating
data.

An ADF IR can also be used to read and write data between on-
premises and cloud data sources. An IR provides the compute
environment where the activity either runs from or gets dispatched
from.

ADF pipelines define the IR that dispatches an activity. ADF stores
the JSON of the data movement and metadata of the database where
the dispatching is initiated. This is not only important for compliance,
security, and performance, but also for egress costs. ADF has been
optimized for a global service reach by allowing the IR to exist in a
different location from the ADF it belongs to.

 A list of regions in which ADF is available can be found at
https://azure.microsoft.com/global-infrastructure/services/?
products=data-factory.

ADF has three different types of integration runtimes: Azure IR, self-
hosted IR, and the Azure-SSIS IR. Let’s look at each in the next three
sections.

Azure integration runtime

https://azure.microsoft.com/global-infrastructure/services/?products=data-factory


The Azure IR dispatches activities, usually between Azure resources.
There is no infrastructure or patching, and you only pay for the actual
utilization.

You might find there is a point where more data integration units
(DIUs) cost more money, but because the IR is running more quickly,
they might be less expensive overall. (DIUs are a measure that
represents the power of a single unit in ADF—a combination of CPU,
memory, and network resource allocation.) A different default number
of DIUs is used for various scenarios. You can override the default by
specifying a (usually higher) value in the dataIntegrationUnits
property. DIUs only apply to Azure IRs.

Data flows versus the copy data activity
In ADF, data flows perform data transformations. Behind the scenes,
they use scaled-out Spark clusters. These activities can be
operationalized using existing ADF scheduling, control, flow, and
monitoring capabilities. Low-code and GUI based, they are very user
friendly and require no writing of code. Data flows can only be
executed by Azure IRs, not by self-hosted IRs or Azure SSIS
runtimes.

The Copy activity can be executed by Azure IRs or self-hosted IRs.
The Copy activity has built-in connectors for a huge variety of Azure
services, databases, NoSQL platforms, file storage platforms, HTTP,
OData, ODBC, REST, and even external services and applications.

 For a complete list of supported Copy activity data stores and
formats, see https://learn.microsoft.com/azure/data-
factory/copy-activity-overview#supported-data-stores-and-
formats.

Azure integration runtime location
It is considered best practice to choose the same region as the
destination data store. This might require you to create a new Azure
IR in a particular region.

https://learn.microsoft.com/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats


When an ADF instance is created, an Azure IR named
AutoResolveIntegrationRuntime is automatically deployed. This IR
cannot be removed. This does not automatically mean it is a good
idea to use it, however, for two reasons:

The location of the ADF instance could cause a compliance
issue—for example, if the data needs to stay in a particular
region. This is a typical need for governments, finance, and
other institutions. To work around this, you can create the
runtime in the needed region and use the connectVia property in
your linked services definition to force the use of that runtime.
Linked services are JSON-defined connections between a data
store and the IR. The connectVia property is specified in JSON
and refers to the name of the Azure IR or self-hosted IR.

 For more information, see https://learn.microsoft.com/azure/data-
factory/concepts-linked-services.

Queue times for activity startup can be longer in the
AutoResolveIntegrationRuntime, which is assigned resources
from the Azure region. This works fine in most cases. The
service-level agreement (SLA) for startup time is 4 minutes, so
this is not the instant execution you might be used to with SQL
Server Agent jobs and SSIS packages. You can reduce
queueing time by choosing your own IR and/or increasing the
time to live (TTL) value in your IR configuration. This will keep
hold of resources longer before releasing them. This is
especially helpful when you have a series of activities to execute
in a limited span of time, but there are delays or pauses
between each. You cannot change the TTL of the
AutoResolveIntegrationRuntime.

Self-hosted integration runtime
You can use the self-hosted IR both in the cloud and on a private
network. This is a common method for moving data from on-premises
to a cloud VM. An Azure IR is used to dispatch transform activities,
such as a Stored Procedure activity.

https://learn.microsoft.com/azure/data-factory/concepts-linked-services


We wouldn’t use the self-hosted IR for a Databricks Notebook activity.
This illustrates how these runtimes can be used collectively. The self-
hosted IR can be used to move data to the cloud and then the Azure
IR can be used to dispatch the transform activities from a Databricks
notebook. Another typical use case for the self-hosted IR is to provide
support for datastores that require you to bring your own driver.

 The full list of supported data stores for copy activities can be
found at https://learn.microsoft.com/azure/data-factory/copy-
activity-overview#supported-data-stores-and-formats.

The self-hosted IR runs only on Windows servers and must be
installed on a machine inside the private network in which the source
or target is located.

Note
For the purposes of ADF and because of the networking
involved, an Azure VM is the equivalent of an on-premises
server. If your data is stored in either, you will still need to use
the self-hosted IR rather than the Azure IR.

You can share a self-hosted IR across multiple Azure data factories,
but they must be in the same tenant. If you need to work across
multiple tenants, you will need one self-hosted IR per tenant
containing a data factory.

Self-hosted IR servers and nodes
There is a limit of only one self-hosted IR on a server. If you do not
want to use a second server, share the self-hosted IR for two different
data factories.

Shared data factories must be in the same Azure AD tenant and have
a managed identity. Self-hosted IRs can be associated with multiple
on-premises servers or Azure VMs, a sort of IR cluster. Each
associated server is called a node. Each self-hosted IR can have up

https://learn.microsoft.com/azure/data-factory/copy-activity-overview#supported-data-stores-and-formats


to four nodes, benefitting both HA and scalability. The additional
nodes can improve performance and throughput during data
movement between on-premises and cloud data stores. This scale-
out lends itself to HA and multi-node self-hosted IR use cases.

 For more information, see
https://learn.microsoft.com/azure/data-factory/create-self-
hosted-integration-runtime?tabs=data-factory#high-
availability-and-scalability.

Inside OUT
Should the self-hosted IR be on the same server as the
data source?

It is recommended that the self-hosted IR be on a different
server, but close to the data source. Being on a different
server prevents it from competing with the data source for
resources. Having the server that hosts the self-hosted IR
nearby reduces as much network latency as possible. It is
recommended that you do not co-locate an ADF self-hosted
IR and a Power BI on-premises in a data gateway on the
same machine.

 Step-by-step instructions for creating a self-hosted IR using
PowerShell can be found at
https://learn.microsoft.com/azure/data-factory/self-hosted-
integration-runtime-automation-scripts.

Potential issues with self-hosted integration
runtimes
There are tasks that might fail in a self-hosted IR. The many steps
that go into setting up the integrations and systems vary based on

https://learn.microsoft.com/azure/data-factory/create-self-hosted-integration-runtime?tabs=data-factory#high-availability-and-scalability
https://learn.microsoft.com/azure/data-factory/self-hosted-integration-runtime-automation-scripts


workload and use case. For this reason, Microsoft maintains up-to-
date documentation on common issues and their solutions at
https://learn.microsoft.com/azure/data-factory/self-hosted-integration-
runtime-troubleshoot-guide. This link includes information on how to
view the error logs if you are unfamiliar, and is updated regularly with
common issues people encounter.

Azure-SSIS integration runtime
The Azure-SSIS IR can be used both in the cloud and on-premises.
This IR is installed in Azure and joined to a private network to support
data access.

The Azure-SSIS IR is made up of a cluster of Azure VMs that you can
scale manually by specifying the number of nodes in the cluster. You
regulate runtime costs by ensuring you stop the runtime when it is not
being used.

This runtime supports packages deployed to an SSIS Catalog
(SSISDB) running on Azure SQL Database. You can deploy your
existing SSIS packages to the Azure-SSIS IR with minimal
modification. When your SSIS project’s deployment target is an Azure
SQL Database, it uses the project deployment model
(recommended). When the deployment target is a file system, it
deploys with a package deployment model.

After the runtime is provisioned, you can use either SQL Server Data
Tools, SQL Server Management Studio, or the command line tools
(dtinstall/dtutil/dtexec) to deploy and run SSIS packages in
Azure.

Azure-SSIS integration runtime location
The location of the Azure-SSIS IR is important to ensure the best
performance of any data integration processes. Although the location
of the Azure-SSIS IR does not need to be the same as the ADF, it
should be in the same region where the Azure SQL Database hosting
the SSISDB is located to limit the traffic between two regions.

https://learn.microsoft.com/azure/data-factory/self-hosted-integration-runtime-troubleshoot-guide


When possible, it is best if the Azure-SSIS IR and the Azure SQL
Database are in the same virtual network (VNet) to minimize data
movement.

 For step-by-step directions on how to set up an Azure-SSIS
IR, see https://learn.microsoft.com/azure/data-factory/tutorial-
deploy-ssis-packages-azure#create-an-azure-ssis-integration-
runtime/.

Best practices for security and
resilience during migration
Finally, let’s review some strategic and tactical best practices for your
data migration.

Network security
During database migration, provide a single file share location when
possible. This shared folder should be accessible by the source
server and the target server to avoid a copy operation. A copy
operation might introduce a delay based on the size of the backup
file, and the added step increases the chances of failure.

You must provide the correct, minimal permissions to the shared
folder to avoid migration failures or, conversely, to avoid accidentally
exposing data. The shared folder should also be temporary in nature
to avoid unnecessarily storing a large amount of sensitive data. The
permissions can be specified in DMA, for example. If the SQL Server
instance runs under network service credentials, temporarily give the
correct permissions on the network share to the machine account for
the SQL Server instance.

For a secure migration, if connecting to the source and target servers
over the public Internet, encrypt the connection. Using TLS
encryption increases the security of data transmitted across the
networks between DMA and the SQL Server instance. (TLS 1.3 is

https://learn.microsoft.com/azure/data-factory/tutorial-deploy-ssis-packages-azure#create-an-azure-ssis-integration-runtime/


supported by SQL Server 2022 on Windows and its updated ODBC
and OLEDB data providers.) This is particularly important when
migrating SQL logins. TLS encryption prevents the SQL logins being
migrated from being intercepted and/or modified on-the-fly by an
attacker.

If all application access is transmitted across a secure internal
network or private external network, encryption might not be required.
Consider your application security and regulatory requirements.
Enabling network transport encryption might slow performance due to
the extra overhead involved in encrypting and decrypting packets.

Cloud requirements for application resilience
Cloud application architecture must be designed to gracefully handle
intermittent network hiccups for more than a few seconds, for any
reason. Similarly, once migrated from on-premises to Azure, it is
important for legacy applications to be modified to gracefully handle
and recover from transient network connectivity failures.

Transient connectivity issues can occur for a variety of expected
reasons in any cloud platform. For example, when a PaaS database
is moved or reconfigured, the application might momentarily lose
connection to the database. These issues can be planned by the
cloud provider (for example, load balancing or patching) or unplanned
(for example, a failover). It is not a matter of if, but when, so all
applications must be designed to be resilient when these failures
occur in their error handling and connectivity retry components.

When reconnecting after a transient network connectivity issue,
applications should not attempt to immediately reconnect and
continue trying until they succeed. Instead, cloud-based applications
should use an exponentially increasing wait with a randomized delay.
This gradually connects each of the many clients to the cloud
resources, reducing network congestion and avoiding a sudden
resource overload. Retry delays are not typically present in many
legacy applications designed to be on-premises. If these retry delays
are not introduced after a cloud migration, they can create a ripple



effect, unwittingly causing a denial of service (DoS) attack on your
own cloud services!

There are many approaches to implementing retry logic with
exponential back off. One of the ways developers might implement
this is via the Microsoft.Data.SqlClient, which introduced a new
configurable retry logic with version 3 in 2021. The retry logic can be
configured through code or application configuration files.

 For more information, see
https://learn.microsoft.com/sql/connect/ado-net/configurable-
retry-logic and https://learn.microsoft.com/azure/azure-
sql/database/troubleshoot-common-connectivity-issues.

https://learn.microsoft.com/sql/connect/ado-net/configurable-retry-logic
https://learn.microsoft.com/azure/azure-sql/database/troubleshoot-common-connectivity-issues


Index

A

accelerated database recovery (ADR), 103, 107, 239–240,
335

access and authentication
anonymous, 397–398
Azure AD, 850–853, 909
backup, 467
database migration and, 226–227
integrated authentication, 82–87
Mixed Mode, 143
modes of, 549–555
permissions and authorization, 593–605
right of access, 618
role-based access control, 155, 794, 850, 853–854
Shared Access Signature (SAS), 313–315, 468–469
security principals, 555–593, 621
security tasks, 605–615
SMTP server, 399
SQL Server via Linux, 206

access token, 553
ACID properties, 669
Active Expensive Queries, 35–36



active log, 106
Activity Monitor, 32–36
actual execution plans, 706, 709–710
ad hoc queries, 122, 172
addresses, TCP/IP, 627
administration/administrator

availability group, 543–548
Azure AD, 850–851
Azure SQL Managed Instance, 903–908
dedicated connections, 614–615
footprint, 2
foundations of automated, 394–412
logins, 579–582
Maintenance Plans, 414–425
multiple-server, 428–434
passwords, 209
PowerShell, 434–444
privileges, 199, 573–577
security tasks, xxix, 605–615
tools for, xxxi, 1

Advanced Data Security, 860
Advanced Encryption Standard (AES), 463, 637, 641, 645
affinity masks, 122–124
agent servers, 819, 920
alert notifications

administrator, 38–39
availability group, 548
Azure SQL Managed Instance, 875
SQL Server Agent, 407–410

alphanumeric data types, 250
Always Encrypted, 12, 642–648
Always On, 74



analytics, 309, 827, 906–907
antivirus exclusions, 171
append-only ledger tables, 655
application security groups (ASGs), 795, 796
applications, 675, 698, 701, 896–898, 905, 928, 938
architecture, Linux vs. Windows, 197
architecture, on-premises database

configuration settings, 115–127
data compression, 109–112
data files and filegroups, 93–98
file types, 93
partition tables, 108–109
temporary database management, 113–114
transaction log, 99–108

assessment, upgrade, 4, 5
atomicity, 669, 671
attacks

brute-force and dictionary, 623
DDoS, 667–668
ransomware, 451–453
SQL injection, 599, 622, 652, 860, 912

auditing, 657–664, 854–859, 912
authentication. See access and authentication
authorization and permissions, 593–605, 621
auto close, 233
auto_create_stats, 420
auto_update_stats, 341, 784
autogrowth events, 344–345, 369
automatic failovers, 515–516
automatic plan correction, 745
automatic seeding, 518–521
automating scripts, 10



availability groups (AGs)
administration, 543–548
Always On, 74
asynchronous commits, 79, 512–517, 546
Azure SQL Database, 797
backing up, 426–428
capabilities of, 494–496
designing, 502–532
failovers in, 515–518
hybrid topology, 531–532
Linux, 81–82, 537–543
multiserver administration in, 430
PowerShell with, 442–444
read-scale, 80, 510
recent improvements, 509–512
resource creation, 542
seeding options, 518–522
server-level options, 522–523
service accounts, 579
SQL Server Agent, 411–412
synchronizing database replicas, 525
synchronous commits, 79, 512–517, 546
types of, 80–81
WSFC with, 507–508

Average Disk seconds per Read or Write, 375–376
Azure

cloud, 71
command line interface, 840–841
data services, 826–828
DBaaS, 790
governance, 792–794
hybrid cloud, 821–825



infrastructure as a service, 797–805
key features, 789–790
networking in, 795–796, 824–825
platform as a service, 805–821
portal, 803–805, 832–833, 860, 886
PowerShell for, 791
SSIS IR, 936–937

Azure Active Directory (Azure AD)
access via, 12, 82–85, 850–853
AD DS vs., 197
authentication, 156, 551–553, 879
Azure SQL Managed Instance, 908–911
B2B/guest users, 848–849
credentials, 852
Domain Services (AD DS), 197
FCI configuration, 496
function of, 85–87
Linux support, 83
setup, 910
subscription, 793

Azure Arc, 51–52, 197
Azure Arc-enabled servers, 51, 154–155, 823
Azure Backup, 867–868
Azure Blob Storage, 322–323, 798, 901, 929–933
Azure Cosmos DB, 827
Azure Data Factory, 933–937
Azure Data Migration Assistant (DMA), 916, 919–921
Azure Data Studio (ADS)

command line, 46
Extended Events, 364
extensions, 45–46
features, 43–45



function of, 40–41
migrations, 922–925
notebooks, 47–48
open-source, 41
SQLCMD mode, 10
user interface, 41–43

Azure Database Migration Service (DMS), 223, 901, 916,
921–933

Azure ExpressRoute, 824
Azure Hybrid Benefit, 821
Azure integration runtime (IR), 933–934
Azure Key Vault, 636–637
Azure Kubernetes Service (AKS), 188, 193
Azure Monitor, 380–383, 906
Azure SQL Advanced Threat Protection (ATP), 652, 854,

859, 860, 861
Azure SQL Analytics, 384, 907
Azure SQL Database

audits, 663–664
cloud models, 796–821
copying databases, 842
data management, 796–797
database provisioning, 836–844
disaster recovery prep, 861–868
elastic jobs, 393
elastic pools, 817–818
elastic queries, 818–819
Export Service, 863
features, 620, 829, 871
limitations, 812–813, 817
Log Replay Service, 490
logical server provisioning, 830–836



login migration, 612–613
logins, 86–87
Microsoft Defender protection, 651–653
migrations, 6
multi-modal capabilities, 827
new features, 830
platform as a service, 805–806
Private Link for, 850
purchase models, 806–812
restoring corrupt, 330
security, 846–861
SQL Server vs., 812–818
third-party fully-managed data platforms, 827

Azure SQL Edge, 212, 822
Azure SQL Managed Instance

administration, 903–908
connecting instances, 893–899
creating instances, 883–892
data migration, 900–903
data protection features, 911–913
deleting instances, 892–893
function of, 870, 871, 872–873
Kerberos for, 87
link feature, 532–537, 870, 874, 876, 888, 900–901,

907–908
migration, 916
new features, 869–870
protection of, 651
provisioning, 886–890
security, 908–911
server-level collation, 143
SQL Server vs., 873–883



unified data platform, 309
Azure Stack, 823
Azure Storage

backups, 469
costs, 800
deleting old backups, 421
Kubernetes code, 190
SQL Server data files in, 801
SSMS and, 469

Azure Synapse Analytics, 309, 827
Azure Synapse Link, 181–182, 827
Azure VMs

authentication, 554
automatic backups, 822
Azure SQL Managed Instance connections, 896
bandwidth, 800
confidential, 805
D: volume, 132
IP forwarding, 666
NSGs, 664–665
sizing, 801–802
SQL Server FCIs, 502
SQL Server on, 138–139, 163

B

B+ tree, 764
backups

access to, 125
automatic, 822
Azure SQL Managed Instance, 876–879, 901
backup set, 471



backup to URL, 468–469
chains, 459–461
checks/tests, 483
compressing, 112
copy policy, 467
creating/verifying, 472–475
database, 422–423, 426–428
database moves and, 243–244
deleting old, 421–422
devices, 467–472
immutable, 452
long-term retention, 867–868, 878
master key, 173–174
migration, 5
options for, 67
RAID and, 67
recommended frequency, 473
redundancy, 877
restoring, 220–221
reviewing successful, 174–175
scheduling, 173
security of offsite, 483
types of, 453–467

Backup-SqlDatabase, 439
BACPAC file, 222, 862, 863
bash shell, 186, 207
basic availability groups, 81, 506
batch mode, 746, 776–777
batch requests, 377
BCP (Bulk Copy Program), 9, 11–12
benign waits, 352–353
binary data type, 258



binary file execution, 208
binary large objects (BLOBs), 292–295, 798
blockchain, 653
blocked connections, 675, 676–679
Border Gateway Protocol (BGP), 628
branch predictors, 61
browser, 7, 213
brute-force attacks, 623, 624
buffer pool, 56–57, 70, 99, 635, 640, 736
buffers, backup, 474
built-in database roles, 586–588
built-in server roles, 563–572
BUILTIN\Administrators group login, 578
bulk-logged recovery model, 454, 455
business critical service tier, 904

C

cache
data, 56–57
drive caching, 801
procedure, 56, 57–58, 728–732
sequence objects, 271

cardinality estimation (CE), 722–725, 747
catalog views, PolyBase, 319–320
Central Management Servers, 24
certificates, digital, 630–631
certification authority (CA), 630–631
chains, backup, 459–461
change data capture, 303–308
change tracking, 303–308
character data types, 255



check constraints, 269
Check Database Integrity task, 417
CHECK_POLICY, 561
checkpoints, database

defined, 238
indirect, 238–239
memory-optimized tables, 286
performance, 100
types of, 103–105

CHECKSUM, 98, 228, 326, 464–465
claims, 86
classification, 115
classifier function, 386
clean pages, 70
clock cycles, 60, 91
cloud computing

application resilience, 938
cloud witness, 498
cloud-first development, 794
data protection in, 631
defined, 88
key features, 789–790
Microsoft Defender for Cloud, 155–156
networking, 71
public environments, 789
recoveries, 484–485
security, 636–637, 826, 829
See also Azure

cloud models, 796–825
clustering

cluster health reviews, 193
indexes, 111, 753, 754–760



Kubernetes, 183
nodes, 74–76
Windows vs. Linux, 537–538
See also failover cluster instances (FCIs)

cmdlets, 436–444
code

compatibility, 223
IntelliSense, 27–28
migration, 930

collation
constraints, 543
data type, 251–253
instance, 142, 143
three levels of, 230–231
UTF-8, 251–252

Collation tab, 142
columns

Always Encrypted, 642–648
column sets, 261
computed, 275–276
partitioning, 295–303
sparse, 274–275
width of, 252

columnstore indexes
clustered, 754, 773–775, 781, 783
compress data with, 109
difference between rowstore and, 753, 770–771
maintenance of, 341–342
ordered clustered, 747, 774
performance tuning with, 718
understand, 773–780

command line



ADS, 46
Azure interface, 791, 840–841
container deployment from, 186–187
downloading updated tools, 12
Linux interface, 8–9, 198
start SQL Server Setup from, 159

committed transactions, 98, 99, 105
compatibility levels

Query Store for, 237
setting, 232
upgrading, 222–225, 724–725

compound primary keys, 267
compression

backup, 112, 423
data, 112
transaction log data, 512
XML, 787–788

compute tier, 810
concurrency

on-disk vs. memory-optimized, 700–702
isolation levels and, 671–702
optimistic, 263, 286

Configuration Checker, 3–4
Configuration Manager. See also Report Server

Configuration Manager; mssql-conf for SQL Server on
Linux; SQL Server Configuration Manager

configuration settings
automating SQL Server Setup, 158
Azure SQL Managed Instance vs. SQL Server, 880–

882
database, 229–240
FCI, 496–502



log shipping, 491
migration and, 227–229
PolyBase, 312
post-install, 163–176
on-premises database architecture, 115–127
Query Store, 738
SQL Server Agent, 400
SQL Server on Linux, 204, 206–212
SQL Server volume, 134–135
SSISDB, 176–177
SSRS, 177–180
surface area, 168
zone-redundant, 863

connectivity issues, 905
consistency, 669
constraints

collation, 543
edge, 288, 289
table, 266–269

contained availability groups, 81, 506
contained databases, 555, 584
contained users, 584, 880
containers

Azure, 793
defined, 87
Kubernetes, 182–193
Linux, 56
SQL Server use in, 185–188
types of, 87–92, 227, 232–233

control plane, 183
Copy activity, 934
copy-only backups, 465



core counts, 62–63, 90, 91, 114
core processors, 122–124
corruption, database. See also DBCC CHECKDB

checking for, 475
detect/prevent/respond to, 325–330
recovering from, 464–465

cost, logical server provisioning, 831
cost threshold for parallelism, 117
cost-based optimizers, 117
CPU (central processing unit)

core allocation, 122–124
function of, 59–63
high performance settings, 200
pressure, 121
virtualizing, 87–92

crash recovery, 105–106. See also failures; recovery
CREATE and ALTER operations, 339
CREATE DATABASE statement, 218
creation, database, 216–220
credentials, 636, 852
cumulative updates, 217
customization, 18, 29–31
CXCONSUMER wait type, 354–355. See also wait types and

statistics

D

daemons, 210
data

analytics, 309
Azure services, 826–828
caches, 56–57



capturing modifications to, 303–308
collectors, 371–384
compression, 109–112
constraints, 266–269
data in motion, 632, 635
exfiltration, 911
external, 153, 316–317
file size management, 342–347
flows, 934
loss, 72–73, 449
masking, 650–651
migration, 4–6, 900–903, 915–938
protection, xxix–xxx, 618–668, 911–913
security principals, 620–631
storage, 63–70
synchronization, 79
temporal table movement, 278
types, 250–266, 273–274
virtualization, 153, 309

Data Access Migration Toolkit (DAMT), 916, 926
Data Definition Language (DDL), 593–594, 620
Data Encryption Standard (DES), 637
Data File I/O, 35
data files

access to, 125
adding, 218–219
Azure Storage, 801
moving, 241
recommended number of, 114
restoring corrupt, 329
server architecture and, 93–98
volume settings, 134



Data Manipulation Language (DML), 593, 594, 862
Data Migration Assistant (DMA), 4–6, 223, 916
data pages, 96–98
Data Profiling Task, 50
Data Quality Client, 8–9
Data Quality Services, 8–9
Data Tools

database deployment with, 220
installation, 141
list of, 48–51

data transfer speeds, 825
data types

general-purpose, 250–258
preferences, 266
specialized, 258–266
user-defined, 273–274

database as a service (DBaaS), 790, 805
Database Engine

full installation, 6
network access to, 70
NUMA nodes, 62
running queries, 57
Server Registration with, 22
TDE in, 639
tools and services, 7–14

Database Engine Tuning Advisor, 14–16
Database Experimentation Assistant (DEA), 916, 918, 919
database infrastructure, 55
Database Mail, 394–400
database master key (DMK), 463, 634, 637, 638–639, 641
Database Migration Service, 926–933
database transaction units (DTUs), 806–808, 812



databases
accessing, 82–87
audits, 854–859
backing up, 422–423
compatibility levels, 222–225
consolidating, 818
contained, 555
creating new, 216–220, 416, 837–838
detaching, 243
edge computing, 52
files, shrinking, 345–346
firewall, 846–849
geo-replication, 863–865
life cycle, 831
manual exports, 862
master keys, 312
memory-optimized tables prep, 283
Microsoft Purview for, 52
migrating, 225–229, 931–932
mirroring, 78, 213, 240
moving existing, 220–222
moving/removing, 241–248
options for, 230–240
ownership, 218
on-premises architecture, 93
principles, 582–593
provisioning Azure, 836–844
restoring, 475–481
scoped credentials, 315–316
settings, 217, 229–240
sharding, 820–821
snapshots, 462–463



space management, 845
SSRS, 178
VLDBs, 453, 462, 468, 810

datetime data types, 256–258
DBCC CHECKDB

with checksum enabled, 475
integrity checks, 98, 164, 173, 330, 417, 734
determining timing of, 329
resources required, 327
scheduling, 173, 326–327

deadlocks, capturing, 367–369
decompression, 112
dedicated administrator connection (DAC), 614–615
defaults

collation, 231
configuration settings, 117
constraint, 269
database settings, 216–217
disaster recovery features, 861–862
LPIM policy off, 58
tempdb database, 144–145

defense in depth, 621–622
degree, 747
degree of parallelism (DOP), 748. See also max degree of

parallelism (MAXDOP)
delayed durability, 80, 99, 702–705
delegation, 85, 892–893
deltastore data, 777–778
developers/development. See also applications

cloud-first, 794
containers in, 187
Extended Events for, 370



privileges for, 573, 591
devices, backup, 467–472
dictionary attacks, 623
differential backups, 458–459, 475, 477
differential bitmaps, 97, 458, 465
digital certificates, 630–631
Digital Defense Report, 451
direct-attached storage (DAS), 65, 66
directory structures, 197
DirectQuery, 7
dirty pages, 70, 77, 238, 671
disaster recovery

availability groups, 495
Azure SQL Database, 861–868
defined, 74
scenario, xxx, 447–449
site security, 484
technologies, 488–496
See also failures; recovery

discontinued features, 53
disks

Azure storage, 798–800
backup, 468
C: volume, 131
disk starting offset, 135
D: volume, 132
settings, 202
striping options, 800

distributed availability groups, 80–81, 506–507
distributed transactions, 511, 881–882
distributed-denial-of-service (DDoS) attacks, 667–668
distributions, Linux, 195–196, 198, 199–200, 206



Docker, 1, 88, 89, 185–188, 199
downtime, 450, 502
drive caching, 801
drivers. See ODBC; OLE DB
durability, 669, 702–705
dynamic data masking, 650–651, 913
dynamic management objects (DMOs), 347–358, 371–384
dynamic management views (DMVs), 409, 544
dynamic quorum management, 499

E

edge computing, 52, 822
edge tables, 287–289, 292
EKM modules, 635–636
elastic pools, 795, 817–818, 844–845
elimination, partition, 108, 109
email

Database Mail, 394–400
history, 398
settings, 178

enclaves, secure, 643, 644, 647
encryption

backup, 463–464
data, 912
encryption keys, 179, 645–646
hashing vs., 623–625
hierarchy, 630, 631, 634–635, 637–639
network, 71
protocol, 629
ransomware attacks, 452
sensitive data, 619



symmetric/asymmetric, 629–630
TDE, 227, 466, 521, 639–642

encryption keys
automatic rotation of, 912
public and private, 629–630
secret, 629
See also master keys

endpoints
Azure SQL Managed Instance, 894
mirroring, 509, 539
Private Link, 850
security isolation, 912
service, 667, 796, 899

enlightenment, 69
erasure, right of, 619
Error Logs, 31–32
errors

failure options, 72–82
log retention, 174
out-of-memory (OOM), 56, 282

estimated execution plans, 706, 708–709
estimation, cardinal, 722–725
event alerts, 38, 408
event forwarding, 431
EXECUTE AS statement, 600
execution account, 179
execution plan, 705–735
exfiltrated data, 911
exponential backoff, 905
Export Service, 863
ExpressRoute, 824
Extended Events



availability groups, 547–548
GUI, 14–15, 361–370
XEvent Profiler, 362, 363

extensions
ADS, 45–46
Azure, 153–157
buffer pool, 57

extents
backups and, 458
tempdb, 114
uniform and mixed, 95

external cluster management, 504
external file formats, 317–318
external scripting, 8
external tables, 309–323, 785

F

failover cluster instances (FCIs)
Always On, 76–77
availability groups, 507
capabilities of, 492–494
configuring, 496–502
defined, 75

failover groups, Azure SQL Database
sample, 886–890
set up, 865–866

failovers
acceptable downtime and, 450–451
application resilience and, 938
automating, 443
availability group, 515–518



availability group planned, 516
availability group forced, 516–518
Azure SQL Managed Instance, 534, 537, 904, 908
compare technology, 489
document scenarios for, 522–524
failover cluster instance, 77, 504–507
failover_mode_desc, 544
forced vs. unforced, 904
geo-replication, 864–866
impact on secondary replicas, 512–515
link feature for Azure SQL Managed Instance, 533–534,

900
long-term backup retention and, 867–868
multisubnet, 528–530
SQL Server Agent job considerations, 411
Replica read-write traffic redirection, 509
tooling and automation, 537
unplanned on a failover cluster instance, 286

failures
antivirus interference, 171–172
audit initiation, 658–659
cumulative update, 217
data recovery prep, 446–451
delayed durability and, 99
Linux node, 75
migration, 926–933
node restart after, 542
partial restores for, 95
reducing downtime from, 92
types of, 72–73
See also recovery

faults, page, 377–378



federation, 86
Fibre Channel (FC), 68
file system

configuration, 124–127
Linux setup, 201–202
Windows vs. Linux, 197–198

filegroups, 93–98, 461–462
files

data files. See data files
editing Linux, 202
file backups, 461–462
generating configuration, 159–160
instant file initialization (IFI), 106
locating database, 241–242
page files, 116, 173
separating SQL Server, 133
size management, 342–347
system, 245
tempdb, 114
test, 926
transaction log storage, 99
user, 244

FILESTREAM, 292–295
FileTable, 295
fill factor, 331–333
filter drivers, 474
filtered nonclustered indexes, 767
filtering objects, 25–26, 649–650
firewall

built-in protection, 652
Linux, 206
perimeter security via, 621



server- and database-level, 846–849
firmware, 61
flash memory, 64–65
floating-point values, 254
forced failovers, 516–518, 904
forced query plans, 728, 740, 741–742
foreign keys, 266–268
fragmentation, 331, 333–334, 419
full backups, 456–458, 459, 475, 476
full recovery model, 454, 455, 481
full seeding, 521–522
full-text indexes, 786

G

General Data Protection Regulation (GDPR), 618–619
geometry/geography data type, 259–260
geo-replication, 863–865, 867, 905
GNU packages, 195–196
GNU/Linux. See Linux
Google, 86, 182, 628
governance, cloud, 792–794
graph tables, 287–292
graphical execution plans, 713–722
graphics processing units (GPUs), 624, 625

H

Hadoop, 309, 314–315, 317, 319
HADRON, 495, 525
hard drives, 64
hardware



Azure SQL Managed Instance service tier, 885–886
basic components, 55
CPU, 59–63
memory, 56–59
networks, 70–72
security threats, 61
SQL Server 2022 requirements, 130
storage, 63–70
tips for choosing, 838
virtualization and, 88

hash indexes, 781–782
hashing, 623–624
heaps, 331, 753, 758–759
hierarchyid data type, 264–265
high availability (HA)

availability groups, 78–82, 495
Azure SQL Managed Instance, 873, 885–886, 903–905
defined, 72, 488
disaster recovery features, 861
failure points, 72–73
FCIs, 76–77
log shipping, 77–78
offerings, 55
recovery technologies, 488–496
redundancy, 73–74
tools, 72–82

high performance, 200
history

History Cleanup task, 421
retention, 174–176

Horizontal Fusion, 7
horizontal partitioning, 108, 296–302



hybrid environments
AG topology, 531–532
hybrid buffer pool, 70
hybrid cloud, 797, 821–825
recovery in, 484–485

Hyperscale service tier, 810–812, 843–844
Hyper-Threading, 60, 91, 114, 144, 779
hypervisors, 87, 89, 90, 91

I

IaaS, 664–668
idempotent functions, 683
identifiers, unique, 756–757
identities, managed, 552–553, 852
immutable backups, 452
immutable storage, 653
INCLUDE statement, 764–766
incremental statistics, 234
indexes

adding to secured columns, 646
clustered, 754–760, 770
columnstore, 109, 341–342, 718, 753–754, 770–771,

773–780
compressing, 109–112
full-text indexes, 786
maintaining, 330–342
memory-optimized, 419, 780–783
nonclustered, 753, 759–772, 782–783
partitioning, 297–298
primary keys and, 267
query, 717



rebuilding, 336–339
reorganizing/rebuilding, 418–420
rowstore, 753–754
scheduling maintenance, 173
spatial, 786–787
statistics for, 783–785
unique constraint and, 267
usage, 771–772
XML indexes, 787–788

infrastructure as a service (IaaS), 664–668, 790, 796, 797–
805

initialization, instant file, 106, 125–127
In-Memory OLTP, 59, 102, 670, 700, 927
installation

Azure VM, 163
Installation Center, 2–3
Kubernetes, 182–193
Linux installs, 200–213
new instances, 137–163
plan for, 3–6
PolyBase, 311
post-install configuration, 163–182
PowerShell module, 436–438
pre-install considerations, 130–137
SSMS, 19
using configuration file, 160–163

Installation Center, 2–3
instances

adding databases to, 215–240
configuring SQL Server, 209–211
creating new, 883–892
failovers to managed, 532–537



instance collation, 142, 230–231
moving databases within, 242–247
multiple, 138
named, 203
new instance installation, 137–163
restoring, 876
stacking, 7
See also Azure SQL Managed Instance; failover cluster

instances (FCIs)
instant file initialization (IFI), 106, 125–127, 142
integrated authentication, 82–87, 552
integration runtimes, 933–937
integration services, 11, 13, 48–51
integrity checks. See also DBCC CHECKDB
Intel QuickAssist Technology (Intel QAT), 112
intelligent query processing (IQP), 620, 705, 746–752, 871
IntelliSense, 10, 27–28
interleaved execution, 750
Internet Information Services (IIS), 16
Internet of Things (IoT), 627
Internet Small Computer Systems Interface (iSCSI), 68
Invoke-Command, 443
Invoke-Sqlcmd, 440–441
isolation

ACID properties of a relational database, 669
levels and concurrency, 671–702
security, 912
snapshot isolation (SI), 235, 285

J

Java, 7, 8, 152, 197, 818, 926



jobs
agent, 920
automating, 37–38
elastic database, 819–820
Job Activity Monitor, 38

join operators, 720
JSON, 261–262, 358

K

Kerberos, 83–85, 87, 911
kernel support, 47
kernels, 58, 195, 202
keyboard shortcuts, 28
keys. See also encryption keys; referential integrity
Kirby, 558, 559, 564, 573, 581, 606–608, 615, 834, 839, 841
Kubernetes, 1, 182–193
Kubernetes minikube, 188
Kusto Query Language (KQL), 45, 382, 859, 907

L

languages
.NET, 274
external, 7–8
Java, 7, 8, 152, 197, 818, 926
Markdown, 47, 48

large value data, 253–254, 928
lazy commit, 80, 99
ledger, 653–657

tampering, 654
licensing



affinity masking and, 124
installation and, 136
open-source software (OSS), 197
terms, 209

link feature for Azure SQL Managed Instance, 532–537, 870,
874, 876, 888, 900–901, 907–908

Linux
Active Directory on, 83
affinity configuration, 124
availability groups, 81–82, 537–543
command line interface, 9
command line tool updates, 12
containers, 56
Database Mail, 397
failover clusters, 75, 79, 497
file editing, 202
memory management, 58
migrations, 920–921
navigating, 198
patches, 390
performance metrics, 379–380
system overview, 195–196
Windows vs., 196–199
WSFC and, 510
See also SQL Server on Linux

live execution plans, 706, 711
load-balanced read-only routing, 530
Local Server Groups, 22–23
lock modes, 675, 676–679, 689
lock pages in memory (LPIM)

configuration settings, 121–122
evaluating necessity of, 172



function of, 58–59
on/off checks, 172
space and, 116

Log Analytics, 384, 858–859
log files, 158
log maintenance, 173
Log Replay Service (LRS), 490
log sequence number (LSN), 100
log shipping, 77–78, 489–492
log truncation, 101–102
logical processors, 116–117, 122
logical server provisioning, 87, 830–836
logins

administrator, 579–582
configuring, 559–582
creating with known SIDs, 608
database migration and, 226
database user, 582, 585
migrating, 608–614
orphaned SIDs, 605–608
Pacemaker, 542
special purpose, 577–579
user identifiers for, 556–557

logs, error, 31–32, 174
looping code, 721
lost updates, 683

M

Machine Learning Services, 7–8, 152–153, 167–168, 852
macOS

command line interface, 9



command line tool updates, 12
Docker on, 187
Server setup, 1
SQLCMD mode, 10

maintenance
Azure SQL Managed Instance, 875
data collectors, 371–384
database corruption response, 325–330
DMOs to monitor activity, 347–358
Extended Events, 361–370
file size management, 342–347
index and statistics, 330–342
Maintenance Plans, 414–425
Resource Governor, 384–389
servicing model, 389–391
SQL Assessment API, 358–361
SQL Server, 37, 173, 203, 235, 325, 393, 412–414
Window (Azure SQL), 838, 875–876, 885, 890

malware, 451
managed disks, 800
managed identities, 552–553, 852
Managed Instance. See Azure SQL Managed Instance
management, temporary database, 113–114
Management Console, 13
Management Data Warehouse (MDW), 16
Management Studio. See SQL Server Management Studio

(SSMS)
Markdown language, 47, 48
masking data, 650–651, 913
master files, 246
master keys

backups, 173–174



column, 645–646
database, 463, 634, 637, 638–639, 641
encryption hierarchy and, 637–639
number of possible, 312
protection of, 634
service, 173–174, 634, 637, 638

Master/Target (MSX/TSX) servers, 428–430
MATCH subclause, 290–291
max degree of parallelism (MAXDOP), 118–119, 145. See

also degree of parallelism (DOP)
Max Server Memory, 119–121, 146–147, 165
max worker threads, 120, 121
mechanical drives, 64
media sets, 470–471
memory

buffer pool, 56–57
limits by SQL edition, 59
Linux management, 58
lock pages in memory (LPIM), 58–59
max settings, 165–168
memory grant feedback, 748–749
In-Memory OLTP, 59
non-uniform memory access, 61–62
OOM errors, 56, 282
overcommitting, 89
performance metrics, 377, 378
persistent, 64–65, 69, 70
procedure cache, 57–58, 728
settings, 119–122
storage, 63–70
working set, 56

memory-optimized objects, 97–98, 113



memory-optimized tables
backing up, 465
delayed durability and, 704
function of, 282–287
index maintenance, 419
indexes in, 780–783
isolation levels and, 695
metadata storage, 113
queries using, 700
statistics, 785

menus, customizing SSMS, 29–31
merge join operators, 720
metadata

cached plan, 732
key, 646
memory-optimized, 113

metrics, performance, 371–384
Microsoft Assessment Planning (MAP) toolkit, 915, 916–917
Microsoft default settings, 117
Microsoft Defender for Cloud, 155–156
Microsoft Defender for SQL, 651–653, 854, 859–861, 867
Microsoft Purview, 52, 156–157, 619–620
migration

Azure Data Factory, 933–937
common failures, 926–933
data, 4–6, 900–903
database, 220–229, 926–933
login, 608–614
security and resilience during, 937–938
service options, 915–926
SQL Server-authenticated logins, 899
time, 922



Minimum Recovery LSN, 103, 106
mirroring endpoint, 509, 539
missing indexes, 767–771
mistakes, installation, 130
mixed extents, 95, 114
Mixed Mode authentication, 143
model database, 94
modern interactive flow, 910
modifications, capturing data, 303–308
module, PowerShell, 791–792
moving/removing databases, 220, 241–248
msdb database, 399
Msodbcsql: See ODBC (Open Database Connectivity)
MSOLEDBSQL 529, See also OLE DB
mssql-cli, 10–11
mssql-conf, 203, 207, 212
multifactor authentication (MFA), xxix, 83, 396, 452, 551,

792, 908
multi-select tool, 26
multi-server administration, 428–434
MultiSubnetFailover, 528–530. See also availability groups

(AGs)
multitenant architecture, 817–818

N

name identifiers, 853
natively compiled stored procedures, 283–285
.NET, 273, 274, 691–692
network interface cards (NICs), 69, 92
network security group (NSG), 664–666, 795, 898
network-attached storage (NAS), 68–69



networks
Azure, 795–796
Azure/on-premises, 824–825
Azure SQL Managed Instance, 893–899
BGP routing, 628
cluster security, 192
data transfer speeds, 825
enabling TCP/IP, 169–170
security, 664–668, 937
SQL Server connection, 70–72
transient connectivity issues, 905
virtual, 92
See also virtual network (VNet)

new databases, 215–240
NEXT VALUE FOR, 272
nodes

clustering, 74, 75, 76, 496
fencing, 75
graph table, 287, 288, 289
intermediate/non-leaf, 111
Kubernetes, 183
node majority, 498
self-hosted integration runtime, 935–936

nonclustered indexes, 753, 759–772, 782–783
non-relational data management, 827
nonrepeatable reads, 684–687
non-uniform memory access (NUMA), 61–62, 91
normalization, 266
notebooks, ADS, 47–48
NT LAN Manager (NTLM), 83, 84
NTFS allocation unit size, 127
NUMA nodes



affinity masks and, 123, 124
Linux configuration, 201
parallelism and, 118, 119

numeric data types, 254–255
nvarchar data type, 253

O

Object Explorer, 20–21
objective, service. See service tiers/objective
objects

AG object creation, 508
binary large objects (BLOBs), 292–295
DMOs, 347–358, 371–384
filtering, 25–26
ledger, 657
limiting access to, 604–605
memory-optimized, 97–98, 113
migrating server-level, 932
moving security, 613
multi-select tool, 26
sequence, 270–273

ODBC (Open Database Connectivity), 10, 322–323, 633, 645,
937

offline migrations, 242, 929
OLE DB, 356, 529, 633, 937. See also MSOLEDBSQL
on-disk concurrency, 700
on-disk tables, 784–785
OpenShift, 185
open-source software (OSS), 41, 197, 929
operating systems

command line tool updates, 12



data protection from, 633–634
Linux, 195, 200
macOS, 1, 9, 10, 12, 187
page files, 116
reserving memory for, 120
SQL Server setup, 129, 131
SSMS support for, 19

operators
new, 407
notifications for, 40
query execution plans, 715–717, 719
SQL Server Agent, 406–407

optimistic concurrency, 263, 286
Optimization Level, 716
Optimize for Ad Hoc Workloads, 122
OPTIMIZE_FOR_SEQUENTIAL_KEY, 759–760
orchestration, container, 182–193
ordered clustered columnstore index, 747, 774
orphaned SIDs, 605–608
Outlook web mail, 396
out-of-memory (OOM), 56, 282
overcommitting memory, 89
Overview, Activity Monitor, 33
ownership

AG replica, 503
authorization as, 597
chaining, 598–599
database, 218
migration and, 227
SA login, 577–578
total cost of, 915



P

Pacemaker
cluster management via, 75, 77, 79
cluster setup, 540, 541
configuration, 541
external resource, 504, 514, 518
login, 542
scoring system, 540, 543

package managers, 195, 198
packets, network, 626
page faults, 377–378
page files, 116, 173
page life expectancy (PLE), 376
page reads, 376–377
page splits, tracking, 332–333, 369
PAGELATCH_* waits, 356, 357
pages

automatic repair events, 545
compressing, 110–111
leaf-level and non-leaf-level, 110–111

parallelism, 116–119, 721–722, 733–735, 748
Parameter Sensitive Plan (PSP) optimization, 749–750
parameter sniffing, 715, 725–727
parameterization, 122, 622, 725–727
partial restores, 95, 480–481
partition tables, 108–109, 234
partitioning, 76, 295–303
passwords

administrator, 209
authenticating, 552
GPUs for cracking, 625



hashing to secure, 623–624
login, 143
policy enforcement, 560
SA passwords, 186
secure backups, 484
tips on, 209, 624

patches
applying, 164
failover cluster, 502
importance of, xxix
SSRS, 380

performance
alerts, 38
allocation unit size, 127
availability group, 545
Azure Storage and, 801
Azure VM, 797–798
backups and, 426
checkpoints for, 100
durability settings, 99, 702–705
failures, 72–82
isolation levels and concurrency, 671–702
memory-optimized table, 700–702
metrics via DMOs, 371–384
power-saving settings and, 63
query execution plan, 705–735
rows read, 710
secondary replica impacts, 513–514
separating Server files, 133
simultaneous multithreading for, 60
SQL Server 2022 upgrades, 736
SQL Server Agent, 409



stability vs., 58
strategies, xxxiii
table partitioning for, 296
tempdb, 113
tuning, 669–752

Performance Monitor, 120–121, 374–375
perimeter security, 621
permissions

accumulation of, 595–597
AG object creation, 508
authorization and, 593–605
cached plan metadata access, 732
data migration, 5–6
execution plan viewing, 712
migrating logins and, 608–614
role-based access control, 853–854
server privileges, 573–577
SQL Server Agent, 403
types of, 558

persistent memory (PMEM), 64–65, 69, 70
persistent volume claim (PVC), 184, 189, 190
phantom rows, 687–688
plan cache, 56
planned failovers, 516
platform as a service (PaaS), 790, 796, 805–821, 829, 872
pods, Kubernetes, 183
point-in-time restores, 478–480, 481
policy-based management (PBM), 431–434
PolyBase, 13, 141, 153, 309–323
polymorphism, 292
pools

elastic pools, 795, 817–818, 844–845



managed instance, 902–903
resource, 387–389

ports, 71, 206, 314–315
Power BI, 151, 180
power saving, 63
power supply, 482
PowerShell

administration, 434–444
Azure SQL Managed Instance provisioning, 891–892
database creation, 839–840
function of, 199
logical server creation, 833–834
migrations, 929–933
PowerShell 7, 437, 791
Provider, 12
scripting, 829
VPN gateway via, 894

precedence, data type, 266
primary keys, 266–268
principles, database, 582–593
principles, security, 549, 555–593, 609, 620–631
privacy, 617–619
private key, 629–630
Private Link, 796, 850
privileges, 557–559, 591–593
procedure cache, 56, 57–58, 728–732
Processes, Activity Monitor, 33–34
processors, parallelism for logical, 117
production environment, 580
production instances, 19
Project Jupyter, 47
properties, database, 230–240



protocols, security, 620–631
provisioning

Azure SQL Database databases, 836–844
Azure SQL Database logical servers, 830–836
Azure SQL Managed Instance, 534–536, 886–890
elastic pools, 844–845
resources, 89–90
time, 875

pseudonymization, 618
public key, 629–630
purchase models, Azure, 806–808, 812
pushdown computation, 310
Python, 7, 8, 207

Q

queries
advanced tuning features, 735–752
Azure SQL Database elastic, 818–819
change tracking/data capture, 307–308
DMOs, 347, 348
execution plan, 702–705
graph data, 290
optimizing for ad hoc, 7, 122, 172
performance counters, 409
PolyBase, 310
temporal table, 279–281

Query Optimizer, 57, 233, 235, 705, 720
query plans

configuration settings and, 229
execution of, 670
parallel, 116–117



parameterizing, 122
tuning, 735–752

Query Store
configuration, 738
enabling, 746
forced query plans, 728
function of, 237, 737–742
hints, 742–745
parameterization hints, 727
replicas, 82
replicas on, 531

Query Tuning Assistant (QTA), 29, 237, 724
quorums

clustering and, 74
resolving partition issues with, 76
strategy, 507–508
WSFC and, 497–499, 516

R

R language, 7, 8
RAID storage, 66–67
rainbow tables, 624
random-access memory (RAM), 56, 89
ransomware attacks, xxx, 451–453
READ COMMITTED, 672–674, 679–680, 682–685, 689–696
read committed snapshot isolation (RCSI)

columnstore index support, 773
enabling, 236
isolation levels and, 672, 673, 674, 691
lock waits and, 355
optimistic concurrency via, 263



secondary databases, 525
tempdb for, 113, 114
workload, 696

read operations, 649–650
read scale-out replicas, 816–817
READ UNCOMMITTED, 673, 680, 689–691, 702
read-only replicas, 80, 237, 524–530
READPAST table hint, 681
reads

nonrepeatable, 684–687
phantom, 688–689
read scale-out replicas, 816–817
secondary replica, 743
writes blocking, 683–684

read-scale availability groups, 80, 510
read-write redirection, 509
REBUILD index, 335, 336
Recent Expensive Queries, 35–36
recovery

accelerated database recovery (ADR), 239–240
backup types, 453–467
checkpoints and, 100, 238–239
hybrid/cloud environments, 484–485
log truncation delays and, 101
MinLSN, 103, 106
model, 228, 232, 454–456
preparation for, 446–451
preparing Azure database for, 861–868
ransomware attacks, 451–453
restart recovery, 105–106
scenario, 447–449, 482
strategy design, 445, 481–485



transaction log file corruption, 329–330
See also backups; disaster recovery; failures; restores

recovery model
bulk-logged recovery model, 454, 455
full recovery model, 454, 455, 481
simple recovery model, 454, 456, 481

Recovery Point Objective (RPO), 55, 73–74, 446, 449–450,
473, 485, 487, 495, 811, 862–866

Recovery Time Objective (RTO), 55, 74, 104, 141, 414, 446–
448, 450, 461, 475, 478, 482–483, 485, 487, 495, 545, 811

Red Hat Enterprise Linux (RHEL), 1, 3, 75, 154, 185, 199,
205, 540

Redo phase, 100, 105, 107
redundancy, 73–74, 877
referential integrity, 267

primary and foreign, 266–268
RegisterAllProvidersIP, 528–530
registered servers, 23
relational tables, 290
relationships, 287
remote connection, 615
removal, database, 241–248
Remove-Item, 440
reorganizing indexes, 339–340, 418
replicas

Azure SQL Managed Instance data, 905
databases, 426–428, 503
failover partners, 515
limits for, 511
minimum synchronized, 511
performance impacts, 513–514
provisioning Hyperscale, 843–844



read scale-out, 816–817
read-only, 524–530
read-write traffic, 509–510
secondary, 512–513, 743
seeding options, 518–522

Report Server Configuration Manager, 18, 151
Reporting Services. See SQL Server Reporting Services

(SSRS)
repositories, third-party, 204
reserved capacity, 809
resilience, migration, 937–938
Resource Governor, xxxii, 115, 384–389
Resource Waits, 34–35
resources

Activity Monitor use of, 36
auto close, 233
Azure resource groups, 793–794
Azure SQL Database limits, 812–813, 817
name identifiers, 853
provisioning, 89
Resource Governor, 115, 384–389
scalability, 794–795
shared via VLANs, 71–72
table-valued functions (TVFs), 59
Uniform Resource Identifier, 313, 314
virtual consumer, 88, 89
wait, 352

restores
automated restore scripts, 484
Azure SQL Managed Instance, 876–879, 901
backup, 220–221, 452
data file corruption, 329



database, 475–481
database moves and, 243
encryption and, 227
partial, 480–481
single-user mode, 247
See also failures; recovery

retention, long-term backup, 867–868
retry logic, 905, 938
right of access, 618
ring buffer, 374
role-based access control (RBAC), 155, 794, 850, 853–854
roles, database, 585–593
roles, server, 562–573
rolled back transactions, 98, 99, 105
root account, 199
rows

compression of, 110
concurrent updates, 681–682, 692
Number of Rows Read, 710
phantom, 687–688
row-level security, 648–650, 913

rowstore data, 109, 262–263, 686, 746
rowstore indexes

clustered, 754–758
columnstore vs., 753–754
nonclustered, 760–772
rowstore clustered index, 754–758

RPO. See Recovery Point Objective (RPO)
RTO. See Recovery Time Objective (RTO)
run commands, 199
runbooks, 47, 450–451, 482, 483
runtime, integration, 933–937



S

S3-compatible object storage, 320–322, 472
SA passwords, 186, 577–578
salt, random, 623, 624
saves, data, 63
scalar UDF inlining, 750–752
Scale Out configuration, 149–150, 180
scaling up/out/down, 794–795, 817, 842–843, 905
scans, 717–718
scheduler flexibility, 124
scoped credentials, 315–316
secondary replicas, 743, 816–817
Secure Sockets Layer (SSL), 71
security

admin tasks, xxxiii, 605–615
auditing, 657–664
Azure, 793
Azure SQL Database, 846–861
Azure SQL Managed Instance, 879–880, 908–911
cloud, 826, 829
CPU vulnerabilities, 60–61
data platform protection, 631–653
data protection, 911–913
disaster recovery site, 484
firewall, 846–849
IaaS, 664–668
IFI risk, 125–126
ledger, 653–657
logical server provisioning, 831
Microsoft Defender for Cloud, 155
Microsoft Defender for SQL, 859–861



Microsoft Purview, 619–620
migration, 937–938
network, 70–71
offsite backup, 483
principles, 549, 555–593, 609, 620–631
ransomware attacks, 451–453
remote connection, 120
row-level, 648–650, 913
SQL Server Agent, 401–403
TLS, 632–633
Trustworthy setting, 228–229, 237
worst practices, 589
See also access and authentication

Security Technical Implementation Guide (STIG), 826
seek operators, 717
seek time, 64
self-hosted integration runtime, 935
sensitive data, 619
sequence objects, 270–273
SERIALIZABLE isolation level, 673, 674, 679, 680
Server Management Objects (SMO), 12
Server Power Options, 170
serverless compute tier, 810
servers

authentication for, 559–561
Azure Arc-enabled, 51, 154–155, 823
connecting to, 834–836
copying, 842
deleting, 836
firewall for, 846–849
groups, 22–23, 24
principles, 553



privileges, 573–577
provisioning logical, 830–836
role memberships, 611
self-hosted integration runtime, 935–936
Server Registration, 21–22
server-level collation, 143, 230–231

service accounts, 131, 177, 500, 578–579
Service Broker, 399
service master key (SMK), 173–174, 634, 637, 638
service principal name (SPN), 83, 84
service tags, 795
service tiers

basic, 862
business critical, 282, 718, 808–809, 816, 863, 880,

884–885, 904, 906
general purpose, 718, 808, 845, 863, 884–885, 903,

906
hyperscale, 808–812, 816, 843–844
premium, 282, 816, 863
standard, 718

service tiers/objective
Azure SQL Managed Instance, 884–886, 903–905
database copies and, 842
DTU, 807
performance and, 813
scaling down, 842
secondary database, 864, 865, 866

Service-Level Agreement (SLA), 445
Services Manager, 13
servicing model, 389–391
SET TRANSACTION ISOLATION LEVEL, 679
settings. See configuration settings



setup
Installation Center, 2–3
operating systems and, 1, 3
plan for upgrade/installs, 3–6
Windows SQL Server, 139–140
See also installation

setup.exe, 139–140, 159–162
sharding databases, 820–821
shared access signature (SAS), 313–315, 468–469, 931
SharePoint

Integrated mode, 152
new database creation, 218, 416
Power Pivot for, 148
statistics creation, 233, 235, 784
unique identifiers and, 757

shortcuts
customizing, 29–31
SSMS keyboard, 28

shredding, 787–788
shrinks

auto, 234
file, 345–347
Shrink Database task, 418
when to shrink database, 418

Simple Mail Transfer Protocol (SMTP), 394, 399
simple recovery model, 454, 456, 481
simultaneous multithreading (SMT), 60, 91
single-user mode, 247–248
site-to-site VPNs, 824
size, file, 342–347
sliding window partition strategy, 300–302
SMB 3.0 file share, 69



SMO, 359
SNAC: See SQL Native Client (SNAC)
snapshot isolation (SI), 235, 285, 692–700
snapshots, database, 462–463
snippets, 27–28
solid-state drives, 64, 113
space management, 845
sparse columns, 261, 274–275
spatial data types, 259–260
spatial indexes, 786–787
speculative execution vulnerabilities, 60–61
spinlock algorithms, 736
split brain. See partitioning
split-merge databases, 820–821
SQL Assessment API, 358–361
SQL Native Client (SNAC) 27, 529
SQLNCLI. See SQL Native Client (SNAC)
SQLNCLI11. See SQL Native Client (SNAC)
SQL Platform Abstraction Layer (SQLPAL), 212
SQL Server

adding databases to, 215–240
audits, 657–663
authentication, 551
Azure SQL Database vs., 812–818
Azure SQL Managed Instance vs., 873–883
Azure Storage, 799, 801
Azure VM with, 138–139, 163
core counts by edition, 62–63
discontinued features, 53
editions, 59, 63, 135–137, 208, 226
encrypting, 630, 631
FCIs, 499–502



installation. See installation
Linux distributions support, 199–200
login migration, 611
maintenance, xxxii, 412–425
PowerShell and, 438–442
services, 209, 871

SQL Server 2022
Azure SQL Managed Instance compatibility, 874
new features, 230
performance improvements, 736
security features, 846
upgrades to, 136, 137

SQL Server Agent
alternatives, 813
automated admin via, 394, 400–412
enabled on Linux, 203
enabling, 400
error log retention, 174
event forwarding, 431
function of, 37–40
history retention, 175–176
jobs, 400–401, 403–406, 411, 422
Master/Target servers, 428–430
security, 401–403
services of, 813
setup, 169

SQL Server Administration Inside Out
book organization, xxi–xxiv
signature tips, xxxv
support for, xxxv
text conventions, xxxiv

SQL Server Analysis Services (SSAS)



alternatives, 814
configuration, 180
installation, 147–148
memory limits, 165–166
services of, 813
version 2022, 7

SQL Server Configuration Manager
enable availability groups with, 505
enable startup trace flags with, 175
import certificates with, 635
manage services with 13
manage service accounts with, 131, 578
manage database files with, 242, 246,
manage protocols and ports with, 71, 170
manage SQL Server Agent with, 400

SQL Server Integration Services (SSIS)
alternatives, 814
FCI and, 494
function of, 48–51
installation, 148–149
integration runtimes, 936–937
Linux use of, 213
login migration with, 609–610
Scale Out configuration, 149–150
services of, 813
SSISDB, 176–177

SQL Server Management Studio (SSMS)
Activity Monitor, 32–36
additional tools, 27–31
database creation with, 218, 219
deprecated features, 27
Error Logs, 31–32



features of, 20–27
function of, 18–40
installation, 2, 19–20, 141
keyboard shortcuts, 28
log shipping, 492
Maintenance Plan building, 424–425
Master/Target server creation, 429
model database connections, 218
releases/versions, 19
server audits in, 659, 660, 661–662
server-level firewall, 849
SQL Server Agent, 37–40
SQLCMD mode, 10
upgrades, 20
v19 tools, 27
vulnerability assessment from, 860
XEvent Profiler, 362, 363, 364

SQL Server Migration Assistant (SSMA), 916, 925
SQL Server on Linux

authentication, 554
caveats of, 212–213
configuration settings, 206–212
data protection on, 634
installation, 1, 3, 200–213

SQL Server Reporting Services (SSRS)
alternatives, 814
configuration, 177–180
FCI and, 494
installation, 16–17, 150–151
memory limits, 166–167
patches, 380
in-place upgrades and, 6



Report Server Configuration Manager, 18
report subscription emails, 399
services of, 813
SharePoint Integrated mode, 152
version 2022, 7
Web Portal URL tab, 17, 178
web service URL, 177

SQL Server Setup
automating, 158–163
launching, 139–140
logging files, 158

sql_variant data type, 265–266
SQLCMD utility, 9–10
SSISDB, 176–177, 225
Stand-Alone Installation, 140
Standard HDD storage, 799
static code, 47
statistics

index, 783–785
maintaining, 330–342
table, 233–235
Update Statistics task, 420
updating index, 340–341
viewing live query plan, 711
wait, 349–358

storage
audit storage account, 855–858
Azure disk, 798–800, 801
Azure SQL Managed Instance backup, 876
Azure VM, 132
bandwidth, 800
binary large objects (BLOBs), 292–295



common terms, 63–64
configurations, 65–70
delayed durability, 80
immutable, 653
ledger, 654
migration, 930
procedure cache, 729
provisioning virtual, 90
S3-compatible object, 320–322, 472
shared, 493
space management, 845
Storage Spaces, 68–69
storage-area network (SAN), 68
tempdb, 113
transaction log file, 99–100, 102–103
types of, 64–65
usage for installation, 131–132
volume settings, 134

stored procedures, 283–285, 602–604
stretch clusters, 497
strings, 250
subnets, 664–665, 891–892, 898
subscription settings, 179
support

distributed transaction, 511
Kubernetes, 184
life cycle, 390–391

surface area settings, 168
SUSE Linux Enterprise Server (SLES), 3, 199, 205, 311, 504
swap files, 116
switches, 186
synchronization, data, 79, 511



sys.server_resource_stats, 906
system databases, 215–216, 241–242, 465–466
system files, 245, 246, 399
system libraries, 195
system usage, 115
system-versioned temporal tables, 277–282

T

table variable deferred compilation, 750
tables

accessing, 604
binary large objects (BLOBs), 292–295
clustered indexes for, 754
compressing, 109–112
computed columns, 275–276
constraints, 266–269
on-disk, 784–785
external, 318–319, 785
graph, 287–292
ledger, 655–657
partitioning, 108–109, 295–303
PolyBase for external, 309–323
sequence objects, 270–273
sparse columns, 274–275
statistics, 233
structures, 249–276
table hints, 680
temporal, 277–282
See also memory-optimized tables

tail-log backups, 457–458
Target server (TSX), 428–430



TARGET_RECOVERY_TIME, 239
TCP/IP, 169–170, 625–628
tempdb

collation, 230–231
D: volume for, 132
default settings, 144–145
improvements to, 736–737
rebuilding indexes via, 337
space concerns, 696–697
TDE’s effect on, 641–642
VM location, 802–803
working area, 113

temporal tables, 277–282, 308
temporary database management, 113–114
test files, 926
thick/thin provisioning, 90
third-party repositories, 204, 827
threads, max worker, 120, 121
ticket granting server (TGS), 83, 84, 85
time data type, 256–258
timeouts, 675
toolbars, customizing, 29
tools

Database Engine, 7–14
database migration, 222
discontinued, 53
elastic database, 818
performance/reliability monitoring, 14–16
SQL Server Data Tools (SSDT), 48–51
SSMS, 18–40
SSRS, 16–18

Total Cost of Ownership (TCO) calculator, 915, 917–918



trace flags
Trace Flag 1118 and 1117, 114
Trace Flag 1800, 135
Trace Flag 3226, 175

tracking changes, 303–308
traffic redirection, 509–510, 526–528
transaction log files

active log, 106
adding, 218–219
benefits of IFI to, 125
corruption repair, 329–330
data files and, 93, 94
Maintenance Plans, 416
moving, 241
recording changes via, 99–108
shrinking, 346–347
tempdb, 114
transaction log backups, 457, 475, 477
volume settings, 134

transactions, distributed, 881–882
Transact-SQL functions, 112
transient connectivity issues, 905
Transmission Control Protocol (TCP), 71
transparent data encryption (TDE), 227, 466, 521, 639–642,

846
Transparent Hugepages (THP), 201
Transport Layer Security (TLS), 71, 178, 632–633, 888, 937
Triple Data Encryption Standard (3DES), 637
troubleshooting

antivirus interference, 171–172
Database Mail, 398–399
Extended Events, 15



log files for, 158
options, 240
Query Store, 739

TRUNCATE command, 594
Trustworthy setting, 237
T-SQL code

changes to, 223
database creation with, 841–842
login migration, 610–612
server audits with, 660, 661, 662
statement task, 423

tuning query plans, 735–752

U

Ubuntu, 1, 3, 75, 199, 205
Undo phase, 105, 107
unforced failovers, 904
Unicode, 250, 251
uniform extents, 95, 114
Uniform Resource Identifier (URI), 313, 314, 622
unique constraints, 267, 268
unique identifiers, 264, 756–757
Universal Authentication with MFA, 551
unmanaged disks, 799
updateable ledger tables, 655. See also ledger
updates

antivirus interference, 171–172
applying patches, 164
auto update statistics, 234–235
concurrent, 681–682
cumulative, 217



index statistics, 340–341, 783
isolation conflicts, 697–700
packages on Linux, 205
Update Statistics task, 420
Windows Update, 140

upgrades
compatibility levels, 237
Management Studio, 20
in-place, 6
plan for, 3–6
Query Tuning Assistant (QTA), 29
rolling, 502
SSISDB database, 225

usage
system, 115
volume, 131–133

user files, 244
user-defined data types (UDTs), 273–274
user-defined service roles, 572–573
user-defined traffic routes, 666–667, 899
users

Azure AD, 41–43, 910
Azure interface, 791
B2B/guest users, 848–849
concurrent updates by, 681–683
contained, 584, 880
database, 582–585
login identifiers, 556–557
orphaned SIDs, 605–608
right of access/erasure, 618–619
single-user mode, 247
user-defined data types, 273–274



See also access and authentication
UTF-8 collation support, 231–232, 251–252

V

varbinary(max) data type, 253, 258, 293, 294
varchar data type, 250
vCore purchasing model, 808, 812, 884
verification

backup, 474
data change, 686
data page, 98, 228, 236, 326
ledger, 653

vertical partitioning, 302–303
vertices, 287
very large databases (VLDBs), 453, 462, 468, 810
views

audit log, 662–663
DMVs, 409
execution plan, 708–712
ledger, 656–657
partitioning, 109
PolyBase, 319–320
testing permissions with, 600–602

virtual consumers
hardware sharing for, 87, 88
networking for, 92
provision resources for, 89–90

virtual CPU (vCPU), 91
virtual IP resource, 542–543
virtual local area networks (VLANs), 70, 71–72
Virtual Log File (VLF), 100–101, 346, 355, 736



virtual machines (VMs)
Azure portal management, 803–805
Azure SQL Managed Instance connections, 896
containers and, 56, 87
D: volume on, 132
disabling SMT for, 60, 61
Enterprise edition for, 63
installing separate, 203
performance of Azure, 797–798
See also Azure VMs

virtual network name (VNN), 75, 496
virtual network (VNet)

Azure, 795
Azure SQL Managed Instance, 891–892
database integration with, 849–850
NSGs for, 664–666
peering in, 535
security, xxx, 651, 652
servers associated with, 846
service endpoints, 667

virtual private network (VPN), 824, 825, 894
virtualization

containers and, 87–92
data, 153, 309
defined, 87
simultaneous multithreading (SMT), 60

Visual Studio Code, 436, 442, 926
volumes

Grant Perform Volume Maintenance Tasks, 141–142
usage plan, 131–133

votes, quorum
dynamic management and, 499



forced failovers and, 516–517
majority, 74, 76, 498
WSFC setup and, 507–508

VSS Writer, 7
vulnerability assessment, 652, 860

W

wait types and statistics, 349–358, 546
Windows

authentication, 550, 583, 610, 911
command line tool updates, 12
Linux vs., 196–199, 212–213, 537–538
PowerShell, 437
Server Power Options, 170
SQL Server setup, 129
Windows Registry, 212
Windows Services Manager, 13
Windows Update, 140

Windows Management Instrumentation (WMI) alerts, 39,
169, 407, 410

Windows Server Failover Clustering (WSFC)
AG operation via, 79
availability groups and, 507–508
defined, 75, 504
function of, 492, 493
majority votes, 76
quorums and, 497
witness, 498

working set, 57, 201
workload groups, 115, 387–389
write-ahead logging (WAL), 99



writes, reads blocked by, 683–684

X

xml data type, 260–262
XML indexes, 787–788

Y

YAML files, 183, 190–192

Z

zeroing out, 106, 125
Zero Trust model, xxix, xxx
zone-redundant configuration, 837, 863, 876, 877, 887



Code Snippets
Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in
single-column, landscape mode and adjust the font size to the
smallest setting. In addition to presenting code and configurations in
the reflowable text format, we have included images of the code that
mimic the presentation found in the print book; therefore, where the
reflowable format may compromise the presentation of the code
listing, you will see a “Click here to view code image” link. Click the
link to view the print-fidelity code image. To return to the previous
page viewed, click the Back button on your device or app.
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Dedications
	Contents at a glance
	Table of Contents
	About the Authors
	Acknowledgments
	Randolph West
	William Assaf
	Elizabeth Noble
	Meagan Longoria
	Joey D’Antoni
	Louis Davidson
	Melody Zacharias
	William Carter
	Josh Smith

	Foreword
	Introduction
	Who this book is for
	How this book is organized
	Conventions
	Errata, updates, and book support

	Part I: Introduction
	Chapter 1. Get started with SQL Server tools
	SQL Server setup
	Tools and services installed with the Database Engine
	Performance and reliability monitoring tools
	SQL Server Reporting Services (SSRS)
	SQL Server Management Studio (SSMS)
	Azure Data Studio
	SQL Server Data Tools
	SQL Server on Azure Arc–enabled servers
	Microsoft Purview
	Discontinued and deprecated features

	Chapter 2. Introduction to database server components
	Memory
	Central processing unit
	Data storage
	Connect to SQL Server over the network
	High-availability concepts
	Secure SQL Server
	Understand virtualization and containers

	Chapter 3. Design and implement an on-premises database infrastructure
	Introduction to SQL Server database architecture
	Data files and filegroups
	Record changes in the transaction log
	Partition tables
	Compress data
	Manage the temporary database
	Configuration settings


	Part II: Deployment
	Chapter 4. Install and configure SQL Server instances and features
	What to do before installing SQL Server
	Install a new instance
	SQL Server on Azure virtual machines
	Post-installation server configuration
	Post-installation configuration of other features
	Container orchestration with Kubernetes

	Chapter 5. Install and configure SQL Server on Linux
	What is Linux?
	Considerations for installing SQL Server on Linux
	Install SQL Server on Linux
	Configure SQL Server on Linux
	Caveats of SQL Server on Linux

	Chapter 6. Provision and configure SQL Server databases
	Add databases to a SQL Server instance
	Move and remove databases

	Chapter 7. Understand table features
	Review table structures
	Special table types
	Store large binary objects
	Table partitions
	Capture modifications to data
	Benefits of PolyBase for external data sources and external tables


	Part III: SQL Server management
	Chapter 8. Maintain and monitor SQL Server
	Detect, prevent, and respond to database corruption
	Maintain indexes and statistics
	Manage database file sizes
	Monitor activity with DMOs
	Monitor with the SQL Assessment API
	Use Extended Events
	Capture performance metrics with DMOs and data collectors
	Protect important workloads with Resource Governor
	Understand the SQL Server servicing model

	Chapter 9. Automate SQL Server administration
	Foundations of SQL Server automated administration
	Maintain SQL Server
	Use SQL Server maintenance plans
	Strategies for administering multiple SQL Servers
	Use PowerShell to automate SQL Server administration

	Chapter 10. Develop, deploy, and manage data recovery
	Prepare for data recovery
	Ransomware attacks
	Understand different types of backups
	Understand backup devices
	Create and verify backups
	Restore a database
	Define a recovery strategy

	Chapter 11. Implement high availability and disaster recovery
	Overview of high-availability and disaster-recovery technologies
	Configure failover cluster instances
	Design availability groups solutions
	Understand the Azure SQL Managed Instance link feature
	Configure availability groups in SQL Server on Linux
	Administer availability groups


	Part IV: Security
	Chapter 12. Administer instance and database security and permissions
	Understand authentication modes
	Grasp security principals
	Understand permissions and authorization
	Perform common security administration tasks

	Chapter 13. Protect data through classification, encryption, and auditing
	Privacy in the modern era
	Microsoft Purview overview
	Introduction to security principles and protocols
	Protect the data platform
	Ledger overview
	Audit with SQL Server and Azure SQL Database
	Secure Azure infrastructure as a service


	Part V: Performance
	Chapter 14. Performance tune SQL Server
	Understand isolation levels and concurrency
	Understand durability settings for performance
	How SQL Server executes a query
	Use advanced engine features to tune queries

	Chapter 15. Understand and design indexes
	Design clustered indexes
	Design rowstore nonclustered indexes
	Understand columnstore indexes
	Understand indexes in memory-optimized tables
	Understand index statistics
	Understand other types of indexes


	Part VI: Cloud
	Chapter 16. Design and implement hybrid and Azure database infrastructure
	Cloud computing and Microsoft Azure
	Cloud models and SQL Server
	Cloud security
	Other data services in Azure

	Chapter 17. Provision Azure SQL Database
	Provision an Azure SQL Database logical server
	Provision a database in Azure SQL Database
	Provision an elastic pool
	Manage database space
	Security in Azure SQL Database
	Prepare Azure SQL Database for disaster recovery

	Chapter 18. Provision Azure SQL Managed Instance
	What is Azure SQL Managed Instance?
	Create a SQL managed instance
	Delete a SQL managed instance
	Establish a connection to a SQL managed instance
	Migrate data to Azure SQL Managed Instance
	Azure SQL Managed Instance administration features
	Azure SQL Managed Instance security features
	Azure SQL Managed Instance data protection features

	Chapter 19. Migrate to SQL Server solutions in Azure
	Migration services options
	Resolve common migration failures using Database Migration Service
	Migrate with Azure Data Factory
	Best practices for security and resilience during migration


	Index
	Code Snippets

